内蒙古科技大学马文蔚大学物理下册第六版解答
- 格式:doc
- 大小:4.48 MB
- 文档页数:22
1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:第一分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速度为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的概念能够求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时刻t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r-+=)(21m j i r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdtvd a -==)/(422s m ji v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的概念)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的概念)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥ 3.牛顿定律单元练习答案1.C 2.C 3.A4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x22=;x x x v k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2 Rgo μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdvmmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,那么对小珠可列方程1. av m f mg 2cos =-θ,tv mmg d d sin =θ, 和 tav d d θ=,θd d v at =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳索完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变成零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:依照牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点离开球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞进程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 抵达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
⼤学物理活页作业答案(全套)马⽂蔚1.质点运动学单元练习(⼀)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提⽰:⾸先分析质点的运动规律,在t <2.0s 时质点沿x 轴正⽅向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反⽅向运动;由位移和路程的定义可以求得答案。
)6.135m (提⽰:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动⽅程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=?)/(32s m ji t r v -=??=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==sin cos 2t A tdt A A vdt A x totoω=ωω-=+=??cos sin9.解:(1)设太阳光线对地转动的⾓速度为ωs rad /1027.73600*62/5-?=π=ωs m th dt ds v /1094.1cos 32-?=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=?=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(⼆)答案1.D 2.A 3.B 4.C5.14-?==s m t dt ds v ;24-?==s m dtdva t ;2228-?==s m t Rv a n ;2284-?+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:⽕箭竖直向上的速度为gt v v o y -?=45sin ⽕箭达到最⾼点时垂直⽅向速度为零,解得s m gtv o /8345sin =?=3.⽜顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωµ2Rg o µ≥ω 8.解:由⽜顿运动定律可得dtdv t 1040120=+ 分离变量积分()??+=tovdt t dv 4120.6 )/(6462s m t t v ++=()++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由⽜顿运动定律可得dtdv mmg kv =+- 分离变量积分-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=+ln+=???? ??+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对⼩珠可列⽅程 a v m f mg 2 cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代⼊初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(⼀)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +?=;2212m t F v v ?+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=?J x F W 800=?=(2)s N Fdt I ?==40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解:物体m 落下h 后的速度为 gh v 2=当绳⼦完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,⼈、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+??totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(⼆)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦⼒mg f µ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=µ.8.解:根据⽜顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球⾯时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两⼩球间距离最⼩ v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两⼩球间距离最⼩,形变最⼤,最⼤形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=②联⽴①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统⽔平⽅向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ① mgR MV V u m =+-2221)(21 ②解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2 =-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(⼀)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
大学物理下册答案马文蔚【篇一:大学物理第五版马文蔚课后答案(上)】但由于|dr|=ds,故drds?,即||=.由此可见,应选(c). dtdt1-2 分析与解dr表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,dtdrds表示速度矢量;在自然坐标系中速度大小可用公式v?计算,在直dtdt2这是速度矢量在位矢方向上的一个分量;2?dx??dy?角坐标系中则可由公式v??????求解.故选(d).?dt??dt?1-3 分析与解dv表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,dtdrds在极坐标系中表示径向速率vr(如题1 -2 所述)在自然坐标系中表示质点的速率v;dtdt而dv表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(d). dt1-4 分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b).1-5 分析与解本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为x?船速度v?dx?dtll2?h2,其中绳长l 随时间t 而变化.小dldl,式中表示绳长l 随时间的变化率,其大小即为v0,代入整理后为dtl2?h2v?v0l2?h2/l?v0dx?0来确定其运动方向tdxdx=4.0 s 时质点速度和加速度可用和两式计算.dtdt2dx?0 得知质点的换向时刻为 tp?2s (t=0不合题意) dt,a?2dtt?4.0s1-7 分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中ab、cd 段斜率为定值,即匀变速直线运动;而线段bc 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t 图上是平行于t 轴的直线,由v-t 图中求出各段的斜率,即可作出a-t 图线.又由速度的定义可知,x-t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t 的位置x,采用描数据点的方法,可作出x-t 图.解将曲线分为ab、bc、cd 三个过程,它们对应的加速度值分别为 dxdx??48m?s?1dtt?4.0?s??36m.s2aab?acd?vb?va?20m?s?2(匀加速直线运动),abc?0(匀速直线运动)tb?tavd?vc??10m?s?2 (匀减速直线运动)td?tc根据上述结果即可作出质点的a-t 图[图(b)].在匀变速直线运动中,有由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为1x?x?v0t?t22用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作v?20m?s?1的匀速直线运动, 其x -t 图是斜率k=20的一段直线[图(c)].则ds?解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为,y?2?这是一个抛物线方程,轨迹如图(a)所示.(dx)2?(dy)2,最后用s??ds积分求s.12x 4(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置.2222x2?y2?x0?y0?2.47m(dx)2?(dy)2,由轨1xdx,代入ds,则2s内路程为 2s??ds??pq44?x2dx?5.91m1-9 分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为 vx?dxdy??10?60t,vy??15?40t dtdt-1-1当t =0 时, vox =-10 m2s , voy =15 m2s ,则初速度大小为v0?v0x?v0y?18.0m?s?122v0yv0x32(2) 加速度的分量式为ax?dvdvx?60m?s?2 , ay?y??40m?s?2 dtdtax?ay?72.1m?s?222ay21-10分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为 y1?v0t?121aty2?h?v0t?gt2 22当螺丝落至底面时,有y1 =y2 ,即11v0t?at2?h?v0t?gt222t?2h?0.705s g?a(2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?12gt?0.716m 2解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有 0?h?1(g?a)t2t?22h?0.705s g?a(2) 由于升降机在t 时间内上升的高度为1h??v0t?at2 则d?h?h??0.716m21-11 分析该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的o′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x′和y =y0 +y′,将所得参数方程转换至oxy 坐标系中,即得oxy 坐标系中质点p 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(b)所示,在o′点p 的参数方程为t,则质tx??rsiny???rcos坐标变换后,在oxy 坐标系中有x?x??rsiny?y??y0??rcost?r t则质点p 的位矢方程为r?rsindttttt(2) 5s时的速度和加速度分别为1-12 分析为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.v?当杆长等于影长时,即s =h,则t?【篇二:物理学教程第二版马文蔚下册课后答案完整版】放置,其周围空间各点电场强度e(设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(b)中的()题 9-1 图板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(b).9-2 下列说法正确的是( )(a)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(b)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(c)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(d)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(b).9-3 下列说法正确的是( )(a) 电场强度为零的点,电势也一定为零(b) 电场强度不为零的点,电势也一定不为零(c) 电势为零的点,电场强度也一定为零(d) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(d).*9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(a) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(b) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(c) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(d) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(b).虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.中子电量为10-21-21 e,e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为qmax??1?2??8?10?21e二个氧原子间的库仑力与万有引力之比为范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带21e 的上夸克和两个带?e的下夸克构成.若将夸克作为经典粒33求它们之间的相互作用力.解由于夸克可视为经典点电荷,由库仑定律f 与径向单位矢量er 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求p点的电场强度.分析依照电场叠加原理,p点的电场强度等于各点电荷单独存在时在p点激发电场强度的矢量和.由于电荷量为q的一对点电荷在p点激发的电场强度大小相等、方向相反而相互抵消,p点的电场强度就等于电荷量为2.0q的点电荷在该点单独激发的场强度.解根据上述分析ep?题 9-7 图9-8 若电荷q均匀地分布在长为l 的细棒上.求证:(1) 在棒的延长线,(2) 在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长(即l→∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元dx,其电荷为dq =qdx/l,它在点p 的电场强度为de?e??de接着针对具体问题来处理这个矢量积分.(1) 若点p 在棒的延长线上,带电棒上各电荷元在点p 的电场强度方向相同,e??ldei(2) 若点p 在棒的垂直平分线上,如图(a)所示,则电场强度e 沿x 轴方向的分量因对称性叠加为零,因此,点p 的电场强度就是e??deyj??lsin?dej证 (1) 延长线上一点p 的电场强度e电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点p的电场强度e 的方向沿y 轴,大小为1q/l此结果与无限长带电直线周围的电场强度分布相同[图(b)].这说明只要满足r2/l2 <<1,带电长直细棒可视为无限长带电直线.电场强度的大小.【篇三:大学物理(第二版)下册答案-马文蔚】>答案9—13 马文蔚第九章静电场(b)中的( )题 9-1 图照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(b). 9-2 下列说法正确的是( )(a)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(b)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(c)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(d)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电1 / 80场强度都不可能为零,因而正确答案为(b).9-3 下列说法正确的是( )(a) 电场强度为零的点,电势也一定为零(b) 电场强度不为零的点,电势也一定不为零(c) 电势为零的点,电场强度也一定为零(d) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(d).*9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(a) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(b) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(c) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(d) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(b).子间的库仑力和万有引力的大小.-21-21-21-21 e,而中子电量与e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原 e,中子电量为10 e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为qmax??1?2??8?10?21e二个氧原子间的库仑力与万有引力之比为2 / 80-21e范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带上夸克和两个带?2e 的3201e的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10- m),中3解由于夸克可视为经典点电荷,由库仑定律f 与径向单位矢量er 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求p点的电场强度.分析依照电场叠加原理,p点的电场强度等于各点电荷单独存在时在p点激发电场强度的矢量和.由于电荷量为q的一对点电荷在p点激发的电场强度大小相等、方向相反而相互抵消,p点的电场强度就等于电荷量为2.0q的点电荷在该点单独激发的场强度.解根据上述分析题 9-7 图(2) 在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长(即l→∞),试将结果与无限长均匀带电直线的电场强度相比较.3 / 80题 9-8 图分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元dx,其电荷为dq =qdx/l,它在点p 的电场强度为de?e??de接着针对具体问题来处理这个矢量积分.(1) 若点p 在棒的延长线上,带电棒上各电荷元在点p 的电场强度方向相同,e??ldei(2) 若点p 在棒的垂直平分线上,如图(a)所示,则电场强度e 沿x轴方向的分量因对称性叠加为零,因此,点p 的电场强度就是e??deyj??lsin?dej证 (1) 延长线上一点p 的电场强度e沿x 轴.(2) 根据以上分析,中垂线上一点p的电场强度e 的方向沿y 轴,大小为e??-l/2此结果与无限长带电直线周围的电场强度分布相同[图(b)].这说明只要满足r2/l2 <<1,带电长直细棒可视为无限长带电直线.题 9-9 图分析这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上p处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心o处的电场强度. 解将半球壳分割为一组平行细圆环,任一个圆环所带电荷元de?9-10 水分子h2o 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r0 .试计算在分子的对称轴线上,距分子较远处的电场强度.5 / 80。
物理学简明教程(马文蔚等著)第六章课后练习题答案详解6 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).6 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).6 -3下列说法正确的是( )。
(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).6 -5一半径为R的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度. 解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+= 积分得 02/004d cos sin 2εδθθθεδE π⎰==6 -6 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷. 解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE单位面积额外电子数25cm 1063.6/-⨯=-=e σn6 -7 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变R 1 <r <R 2 ,L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 这与5 -20 题分析讨论的结果一致.6 -8 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为r εQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有202101202121013211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V += 若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+= (2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==6 -9 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 带电圆环激发的电势220d π2π41d xr r r σεV += 由电势叠加,轴线上任一点P 的电势的()x x R εσx r r r εσV R -+=+=⎰22002202d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V-1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.6 -10 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为300kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量Kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰.(2) 一个家庭一年消耗的能量为J 1008.1h kW 3000100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3 个家庭一年消耗的电能.6 -11 一真空二极管,其主要构件是一个半径R 1 =5.0×10-4m 的圆柱形阴极和一个套在阴极外,半径R 2 =4.5×10-3m 的同轴圆筒形阳极.阳极电势比阴极电势高300V ,阴极与阳极的长度均为L =2.5×10-2m .假设电子从阴极射出时的速度为零.求:(1) 该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.分析 (1) 由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2) 计算阳极表面附近的电场强度,由F =qE 求出电子在阴极表面所受的电场力.解 (1) 电子到达阳极时,势能的减少量为J 108.4Δ17-⨯-=-=eV E ep由于电子的初始速度为零,故J 108.4ΔΔ17-⨯-=-==ep ek ek E E E因此电子到达阳极的速率为1-7s m 1003.122⋅⨯===meVm E ekv (2) 两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2π2d 21R Re ελr ελV R R -=-=⋅=⎰r E 负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R V R ελe e E 12110ln π2=-=电子在阴极表面受力N 1037.414r e e E F -⨯=-=这个力尽管很小,但作用在质量为9.11 ×10-31kg 的电子上,电子获得的加速度可达重力加速度的5 ×1015 倍.6 -12 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布.分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=p p V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为 r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E =r >R 2 时, ()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R εQR εq V R R R R rr+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞l E l E l E l E R 1<r <R 2 时,200322π4π4d d d 22R εQr εq V R R rr+=⋅+⋅=⋅=⎰⎰⎰∞∞l E l E l E r >R 2 时,rεQq V r 03π4d +=⋅=⎰∞l E 3 也可以从球面电势的叠加求电势的分布.在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)rεQq V 03π4+=由题意102001π4π4R εR εV V +== 得102001π4π4R εQR εq V V +== 代入电场、电势的分布得 r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQ R r V R E -=;r R εQR r r V R V 201012π4)(--= r >R 2 时,220122013π4)(r R εQ R R r V R E --=;r R εQ R R r V R V 2012013π4)(--=6 -13 两线输电线,其导线半径为3.26 mm ,两线中心相距0.50 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.解 由教材第六章6 -4 节例3 可知两输电线的电势差RεU =ln π0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据 F 1052.512-⨯=C6 -14 在A 点和B 点之间有5 个电容器,其连接如图所示.(1) 求A 、B 两点之间的等效电容;(2) 若A 、B 之间的电势差为12 V ,求U A C 、U CD 和U D B .解 (1) 由电容器的串、并联,有μF 1221=+=C C C AC μF 843=+=C C C CD51111C C C C CD AC AB ++= 求得等效电容C AB =4 μF .(2) 由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U6 -15 半径为0.10 cm 的长直导线,外面套有内半径为1.0 cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1) 导线表面最大电荷面密度;(2) 沿轴线单位长度的最大电场能量. 分析 如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εσR ελE ==查表可以得知空气的击穿电场强度E b =3.0 ×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1) 导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εσ显然导线表面最大电荷面密度与导线半径无关.(2) 由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210π2R r R rRr ελE m <<==0=E (其他)22210202121rE R εE εw b m m ==沿轴线单位长度的最大电场能量r rE R εr r w W R R b Ωm d 1πd π2212210⎰⎰⎰⎰=⋅= 14122210m J 1076.5lnπ--⋅⨯==R R E R εW b m。
第九章 振动
习题:P
37~39
1,2,3,4,5,6,7,8,16.
9-4 一质点做简谐运动,周期为T,当它由平衡位置向X轴正方向运动
时,从1/2最大位移处到最大位移处这段路程所需的时间( )
A、T/12 B、T/8 C、T/6 D、T/4
分析(C),
通过相位差和时间差的关系计算。可设位移函数
y=A*sin(ωt),其中 ω=2π/T;
当 y=A/2,ωt1=π/6;当 y=A,ωt2=π/2;△t=t2-t1=[π/(2ω)]-[π/(6ω)]=
π/(3ω)=T/6
第十章 波动
习题:P89~93 1,2,3,4,5,6,12,16,25,
10-6
在驻波中,两个相邻波节间各质点的振动():
A.振幅相同,相位相同
B.振幅不同,相位相同
C.振幅相同,相位不同
D.振幅不同,相位不同
答案:
波函数叠加检验.(C) 振幅相同,相位相反
第十一章 光学
P177~182 1,2,3,4,5,6,7,8,11,23,26,31,37,38.
11-4 、 在迈克尔逊干涉仪的一条光路中,放入一片折射率为n=1.4的透明介
质薄膜后,干涉条纹产生了7.0条条纹移动.如果入射光波长为589nm,则透明介
质薄膜厚度为( )
A 10307.5nm B 1472.5nm C 5153.8nm D 2945.0nm
答案(C) 由2(n-1)t=N得出
11-26、 某人用迈克尔逊干涉仪测量一光波的波长,当可动反射镜M移动
了0.310mm的过程中,观察到干涉条纹移动了1100条,求该光波的波长
解:d=N /2, =563.6nm
第十二章 气体动理论
习题:P220~222 1,2,3,5,13,14,24.
12-2 1 mol的氦气和1 mol的氧气(视为刚性双原子分子理想气体)。当
温度为T时,期内能分别为:
A 3/2RT,5/2kT B 3/2kT,5/2kT C 3/2kT,3/2kT D 3/2RT,5/2RT
答案:D (由1mol理想气体的内能定义式得出)
12-13 当氢气和氦气的压强、体积和温度都相等时,它们的质量比和内能比各为
多少?(氢气视为刚性双原子分子理想气体)
解:
质量比等于摩尔质量比,为1:2
内能比等于自由度比,为5:3
第十三章 热力学基础
习题:P270~275 1,2,3,4,5,6,7,9,11,12,15,25,27.
13-4 气体经历如图所示的循环过程,在这个循环过程中,外界传给气体的
净热量是答案:
A 3.2*10^4J B 1.8*10^4J C 2.4*10^4J D 0J
答案B,由循环所围成的面积计算得出。
13-25 一定量理想气体经图示的ABCDA,,其中AB是等温过程,BC是等体过程,DA是
绝热过程。请完成表格中的内容。
A-B 0 1400 1400
B-C -200 0 -200
C-D -200 -400 -600
D-A 400 -400 0
ABCDA循环效率=42.9%
第十四章 相对论
习题:P316~318 1,2,3,4,15,22.