当前位置:文档之家› 阿氏圆最值问题

阿氏圆最值问题

阿氏圆最值问题
阿氏圆最值问题

中考数学几何模型之阿氏圆最值模型(解析版)

中考数学几何模型:阿氏圆最值模型 名师点睛 拨开云雾 开门见山 在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. A B P O 【模型建立】 如图 1 所示,⊙O 的半径为R ,点 A 、B 都在⊙O 外 ,P 为⊙O 上一动点,已知R=2 5 OB , 连接 PA 、PB ,则当“PA+ 2 5 PB ”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段 OB 上截取OC 使 OC=25R ,则可说明△BPO 与△PCO 相似,则有2 5 PB=PC 。故本题求“PA+ 2 5 PB ”的最小值可以转化为“PA+PC ”的最小值,其中与A 与C 为定点,P 为动点,故当 A 、P 、C 三点共线时,“PA+PC ”值最小。

【技巧总结】 计算PA k PB +g 的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P 使得PA k PB +g 的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB 2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值

与椭圆有关的最值问题

与椭圆有关的最值问题 圆锥曲线在高考中占很重要的地位,每年必考。对椭圆、双曲线、抛物线的研究方法基本相同,椭圆 为三曲线之首,对椭圆的学习就更为重要了。而椭圆中的最值问题是比较重要的课题,它主要体现了转化 思想及数形结合的应用,涉及到的知识有椭圆定义、标准方程、参数方程、三角函数、二次函数、不等式 等内容。能够考查学生的分析能力、理解能力、知识迁移能力、解决问题的能力等等。下面介绍几种常见 的与椭圆有关的最值问题的解决方法。 1 ?定义法 2 2 例1。P(-2, 3 ),F2为椭圆——=1的右焦点,点M 在椭圆上移动,求丨MP| + | MF 2 |的最大值 25 16 和最小值。 分析:欲求丨MP| + | MF 丨的最大值和最小值 可转化为距离差再求。由此想到椭圆第一定义 | MF | =2a- | MF | , F 1为椭圆的左焦点。 解:| MP| + | MF | = | MP| +2a- | MF | 连接 PR 延长 PF 1 交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知 -| PF |兰| MP| - | MF |兰| PR |当且仅当M 与M 1重合时取右等号、M 与M 2重合时取左等号。因为 2a=10, | PF 1 | =2所以(| MP| + | MF |) ma>=12, (| MP | + | MF | ) min =8 2 2 X y 结论1:设椭圆二 2 =1的左右焦点分别为F 1、F 2, P(x o ,y o )为椭圆内一点,M(x,y)为椭圆上任意 a b 一点,则| MP | + | MF |的最大值为 2a+ | PF 1 |,最小值为2a - | PR |。 2 2 例 2: P(-2,6),F 2为椭圆— -L 25 16 M ,此点使| MP| + | MF |值最小,求最大值方法同例 1。 MF |连接PF 1并延长交椭圆于点 皿仆则M 在M 1处时| MP | - | MF I 取最大值| PF 1 |。二| MP | + | MF |最大值是10+ , 37,最小值是,41 2 2 x y 结论2:设椭圆一2 - =1的左右焦点分别为F 1、F 2, P(x o ,y o )为椭圆外一点,M(x,y)为椭圆上任意一点, a b 则| MP | + | MF |的最大值为 2a+ | PF 1 |,最小值为 PF ?。 2. 二次函数法 2 2 例3?求定点A(a,0)到椭圆务'£ =1上的点之间的最短距离。 a b 分析:在椭圆上任取一点,由两点间距离公式表示| PA |,转化为x,y 的函数,求最小值。 1 1 解:设 P(x,y)为椭圆上任意一点,| PA | 2=(x-a) 2+y 2 =(x-a) 2+1- x 2 = (x_ 2a)2+1d 由椭圆方 =1的右焦点,点 M 在椭圆上移动,求| MP | + | MF |的最大值和 最小值。 分析:点P 在椭圆外,PF 2交椭圆于 解:| MP | + | MH | = | MP | +2a- | M 1 M 2

圆中的最值问题

圆中的最值问题 Prepared on 24 November 2020

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求a b +的最大值.(有修改) 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为_________. 题4 (2013年武汉五模)在△ABC中,120 A BC=.若△ABC的内切圆半径为r,则r的最 ∠=?,6 大值为_________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF 交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是 _________. 题1图题2 图题3 图

题4图题5图 【典题讲练】 类型1(相关题:题5) 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是_________. 在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件. 如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动. (1)当A在原点时,求点B的坐标; (2)当OA=OC时,求原点O到点B的距离OB; (3)在运动的过程中,求原点O到点B的距离OB的最大值,并说明理由.

5最值系列之阿氏圆问题

最值系列之阿氏圆问题 所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆. 如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆. 下给出证明 法一:首先了解两个定理 (1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则 AB DB AC DC = . F E D C B A 证明: ABD ACD S BD S CD = ,ABD ACD S AB DE AB S AC DF AC ?= =?,即AB DB AC DC = (2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则 AB DB AC DC = . A B C D E 证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DB AC DC = . 接下来开始证明步骤:

如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PA k MB PB ==,故M 点为定点,即∠APB 的角平分线交AB 于定点; 作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PA k NB PB ==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点; 又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆. 法二:建系 不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设 P (x ,y ),PA=kPB ,即: ()()()()()()22 2222 2 2222222 2 22 12210 2201 x m y k x m k y k x y m k m x k m m k m x y x m k ++=-+-+-++-=++-+=- 解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线. 那么这个玩意和最值有什么关系呢?且来先看个例子: 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交 AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则1 2 PA PB +的最小值为__________.

圆中有关最值问题一.doc

圆中有关最值问题(1)教学设计 一、设计思路: 圆中有关最值问题是中考数学中的重要内容,是综合性较强的问题,它贯穿初中数学的 始终,是中考的热点问题。其运用性质有:圆中直径是最长的弦、垂线段最短、三边关系定 理、对称法等。本节课以例题入手来研究圆中的有关最值问题。 二、学情分析 学生知识技能基础:学生在前面几节课已经认识了圆,学习了圆的有关知识,以及数学 的基本结论:圆中直径是最长的弦、垂线段最短、三角形三边关系等基本知识,这些为本节 课的学习奠定了良好的知识技能基础。 学生活动经验基础:通过以往的数学学习,学生已经具有了一些数学活动经验的基础; 另一方面,在以往的数学活动中,学生已经经历了很多合作交流的学习过程,具有了一定的 合作学习的经验,具备了一定的合作交流的能力。 三、教学目标 知识与技能: 1、会利用直径是圆中最长的弦这一基本结论解决有关最值问题; 2、会利用圆外一点与圆上各点的连线中最短与最近距离这一基本事实,解决圆中有关最值问题。 方法与途径: 通过观察、操作、想象、推理、交流等活动,发展空间观念,培养学生动手动脑、发现 问题及解决问题的能力,以及推理能力和有条理的表达能力。 情感与评价: 通过实际操作、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思 维变得更加灵活。 现代教学手段: 多媒体和几何画板的合理应用,增加了课时内容,激发了学生学习的积极性,突破了教 学重点、难点的同时,更重要的是使复杂问题更加简单化,通过清楚的动画演示,使学生进 一步感受何时取得最大值问题。 四、教学重点与难点 教学重点:将试题转化为最值中的有关模型 教学难点:将试题转化为最值中的有关模型的方法

专题8.1 与圆有关的最值问题-2019届高三数学提分精品讲义 2020.8.9

解析几何 问题一:与圆有关的最值问题 一、考情分析 通过对近几年的高考试题的分析比较发现,高考对直线与圆的考查,呈现逐年加重的趋势,与圆有关的最值问题,更是高考的热点问题.由于圆既能与平面几何相联系,又能与圆锥曲线相结合,命题方式比较灵活,故与圆相关的最值问题备受命题者的青睐. 二、经验分享 1. 与圆有关的最值问题的常见类型及解题策略 (1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解. (2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -b x -a 型的最值问题,可转化为过点(a , b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题. 2.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化 三、知识拓展 1.圆外一点P 到圆C 上点的距离距离的最大值等于,最小值等于PC r -. 2.圆C 上的动点P 到直线l 距离的最大值等于点C 到直线l 距离的最大值加上半径,最小值等于点C 到直线l 距离的最小值减去半径. 3.设点M 是圆C 内一点,过点M 作圆C 的弦,则弦长的最大值为直径,最小的弦长为四、题型分析 (一) 与圆相关的最值问题的联系点 1.1 与直线的倾斜角或斜率的最值问题 利用公式k =tan α(α≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值. 处理方法:直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,

第11讲阿氏圆最值模型(解析版)

中考数学几何模型11:阿氏圆最值模型 名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. B P O

【模型建立】 如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=2 5 OB, 连接PA、PB,则当“PA+2 5 PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段OB 上截取OC使OC=2 5 R,则可说明△BPO与△PCO相似,则有 2 5 PB=PC。 故本题求“PA+2 5 PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、 P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算PA k PB +g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得PA k PB +g的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值 典题探究 启迪思维 探究重点 例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则1 2 PA PB +的最小值为__________. E A B C D P 【分析】这个问题最大的难点在于转化1 2 PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,

(完整word版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

专题:阿氏圆与线段和最值问题 以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要. 具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、 B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m 内分和外分定线段 AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆. 定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型. PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型 阿氏圆基本解法:构造母子三角形相似 例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP +BP 的最小值. (1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有 = =,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴ =,∴PD =BP ,∴AP +BP =AP +PD . 请你完成余下的思考,并直接写出答案:AP +BP 的最小值为 . (2)自主探索:在“问题提出”的条件不变的情况下,AP +BP 的最小值为 . (3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A +PB 的最小值. 【分析】(1)利用勾股定理即可求出,最小值为AD = ;

“与圆有关的最值问题”教案(最新)

“与圆有关的最值问题”教学案例 余浩平 教学背景: 本节课是与圆有关的一节复习课,由于在初中学习中接触过圆的一些基本知识,因而课前安排了两道有关圆的最值问题让学生练,为后面的教学奠定了基础。在随后的教学中,采取变式教学、一题多解、自主探索的教学方式,培养学生研究性学习。 教学目标: 从学生的实际出发,依据数学思维规律,提出恰当的富于启发性的问题,去启迪和引导学生积极思维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。 重点与难点: 学生通过观察、分析、猜想、类比等思想方法主动地发现问题和解决问题。 教学过程: 一、 引入新课 练习: 已知圆0122822=+--+y x y x 内一点)0,3(A ,求经过点A 的最长弦和最短弦所在的直线方程。 二、 新课 例: 已知圆的方程222=+y x 及一点P(2,4),求圆上的动点与点P 连线斜率 的最值? 题变: 将上面例题中的点P(2,4)改为)4,0(P ,则圆上的动点与点P 连线斜率的 最值是否存在?若存在求出最值,若不存在,请说明理由。 讨论问题1: 已知圆的方程222=+y x 及一点P(2,4) 试试看: 根据以上条件,你还能设计出哪些与圆有关的最值问题? 讨论问题2: 已知圆的方程422=+y x 及一条直线05=--y x 试试看: 根据以上条件,你能设计出哪些与圆有关的最值问题? 三、 练习 1、 从直线y=3上找一点,向圆1)2()2(22=+++y x 作切线,切线长度的最 小的值是多少?

2、 实数满足01422=+-+y y x ,求(1)x y 的取值范围。 (2)x y 2-的取值范围 四、 小结 最值问题常见的解法有两种:几何法和代数法. 若题目的条件和结论能明显体现几何特征及意义, 则考虑利用图形来解决,这就是几何法——数形结合的方法; 若题目的条件和结论能体现一种明确的函数关系, 则可首先建立目标函数,再求这个函数的最值. 五、 思考题 过点M (3,0)作直线l 与圆1622=+y x ,交于A,B 两点, 求: 直线l 的倾斜角θ,使△AOB 面积最大,并求此最大值(O 为坐标原点)。

圆中的最值问题

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,+的最大值.(有修改) 求a b 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为_________. 题4 (2013年武汉五模)在△ABC中,120 A BC=.若△ABC的内切圆半径为r,则r的最大值为 ∠=?,6 _________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_________. 题1图题2 图题3 图

题4图题5图 【典题讲练】 类型1(相关题:题5) 1.1 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是_________. 1.2在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件. 1.3 如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y 轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动. (1)当A在原点时,求点B的坐标; (2)当OA=OC时,求原点O到点B的距离OB; (3)在运动的过程中,求原点O到点B的距离OB的最大值,并说明理由.

“PA+kPB”最值探究(胡不归+阿氏圆)

“PA+k·PB”型的最值问题 【问题背景】 “PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理。 而当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。 此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。即点P在直线上运动和点P在圆上运动。 其中点P在直线上运动的类型称之为“胡不归”问题; 点P在圆周上运动的类型称之为“阿氏圆”问题。 本文将分别从这两类入手与大家共同探究线段最值问题的解决方案。 【知识储备】 线段最值问题常用原理: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短;

【模型初探】 (一)点P在直线上运动“胡不归”问题 如图1-1-1所示,已知sin∠MBN=k,点P为角∠MBN其中一边BM上的一个动点,点A在射线BM、BN的同侧,连接AP,则当“PA+k·PB”的值最小时,P点的位置如何确定? 分析:本题的关键在于如何确定“k·PB”的大小,过点P作PQ⊥BN垂足为Q,则k·PB=PB·sin∠MBN=PQ, ∴本题求“PA+k·PB”的最小值转化为求“PA+PQ”的最小值(如图1-1-2),即A、P、Q三点共线时最小(如图1-1-3),本题得解。 图1-1-1 图1-1-2 图1-1-3 动态展示:见GIF格式! 思考:当k值大于1时,“PA+k·PB”线段求和问题该如何转化呢? 提取系数k即可哦!!!

与圆有关的最值问题,附详细答案

与圆有关的最值(取值范围)问题,附详细答案 姓名 1.在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一 点,且AC=2.设tan∠BOC=m,则m的取值范围是____ _____. 2.如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作圆 O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b. (1)求证:AE=b+a; (2)求a+b的最大值; (3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围. 3.如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切, P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE, D. 则线段DE长度的最大值为( ). A.3 B.6 C. 2

4.如图,A点的坐标为(﹣2,1),以A为圆心的⊙A切x轴于点B,P(m,n)为⊙A上的一个动点,请探索n+m的最大值. 5.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M 为BD的中点,在D点运动过程中,线段CM长度的取值范围是 . 6.如图是某种圆形装置的示意图,圆形装置中,⊙O的直径AB=5,AB的不同侧有定点C和动点P,tan∠CAB=.其运动过程是:点P在弧AB上滑动,过点C作CP的垂线,与PB的延长线交于点Q. (1)当PC= 时,CQ与⊙O相切;此时CQ= . (2)当点P运动到与点C关于AB对称时,求CQ的长; (3)当点P运动到弧AB的中点时,求CQ的长. (4)在点P的运动过程中,线段CQ长度的取值范围为。 7.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=D是线段BC上的一个动点,以AD 为直径作⊙O分别交AB,AC于E,F两点,连接EF,则线段EF长度的最小值为.

与圆有关的最值问题.doc

与圆有关的最值问题 共线且P 和Q 在点O 的同侧(异侧)时,PQ 长度最小(大).(通过定点与圆心连线与圆的 交点求出定点到圆上动点距离之最值) 3.过圆内一点的最短弦为过这点且与过该点的直径垂 直的弦; 4.通过切切点求有关角度之最值;5;通过弧的中点求弧上动点到弧所对弦距离最 短 例 1 (2014?无锡)如图,菱形ABCD 中,∠A =60°,AB=3,⊙A、⊙B 的半径分别为 2 和1,P、E、F 分别是边CD、⊙A 和⊙B 上的动点,则PE+PF 的最小值是3 . (固定点P,则PE+PF 的最小值可转化为PA+PB-3 再结合“饮马问题”确定PA+PB 的最 小值) 例2(2014?成都)如图,在边长为 2 的菱形ABCD 中,∠ A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A′M,N 连接A′C,则A′C长度的最小值是﹣1 . (点A'在以M 为圆心,MA 为半径的圆上) 例3(2014·烟台)在正方形ABCD 中,动点E、F 分别从D、C 两点同时出发,以相同的速 度在直线DC、CB 上移动. (1)如图①,当点 E 自 D 向C,点 F 自 C 向 B 移动时,连接AE 和DF 交于点P,请你写 出AE 与DF 的位置关系,并说明理由; (2)如图②,当E、F 分别移动到边DC、CB 的延长线上时,连接AE 和DF ,(1)中的结 论还成立吗?(请你直接回答“是”或“否”,不需证明) (3)如图③,当E、F 分别在边CD、BC 的延长线上移动时,连接AE 和DF ,(1)中的结 论还成立吗?请说明理由; (4)如图④,当E、F 分别在边DC、CB 上移动时,连接AE 和DF 交于点P,由于点E, F 的移动,使得点P 也随之运动,请你画出点P 运动路径的草图.若AD =2,试求出线段 CP 的最小值.

2016年中考压轴题专题:与圆有关的最值问题(附答案)

与圆有关的最值(取值范围)问题 引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧上的一个动点(不与A、B两点重合),射线AC交⊙O于点E, ?AB BC=,AC=,求的最大值. a b a b 引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE 长度的最大值为( ). A.3 B.6 C D. 一、题目分析: 此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接 1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用; 2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用; 3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用; 综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透. 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

苏科版九年级数学上册《圆有关的最值问题》专题(解析版)

圆有关的最值问题 一、求解方法: 1.根据“三角形三边关系”求解: -≤≤+ a b c a b 2.动中有静,抓住不变量求解. 3.旋转必产生圆,很多情况在相切位置产生最值. 4.四点共圆(补充). 五个基本判断方法: (1)若四个点到一个定点的距离相等,则这四个点共圆. (2)若一个四边形的一组对角互补(和为180。),则这个四边形的四个点共圆. (3)若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆. (4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆. (5)同斜边的直角三角形的顶点共圆, 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

三、中考展望与题型训练 例一、圆外一点与圆的最近点、最远点 1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是. 例二、正弦定理 2.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为. 3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD 的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.例三、不等式、配方法 4.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接P A、PB,设PC的长为x(2<x<4).当x为何值时,PD?CD的值最大?最大值是多少?

九年级上册数学圆中的最值问题

拔高专题 圆中的最值问题 图(1) 探究点一:点与圆上的点的距离的最值问题 例1:如图,A 点是⊙O 上直径MN 所分的半圆的一个三等分点,B 点是弧AN 的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。 解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点, ∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′. 【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。

探究点二:直线与圆上点的距离的最值问题 例2:如图,在Rt△AOB中, ,⊙O的半径为1,点P是AB边上的动点, 过点P作⊙O的一条切线PQ(点Q为切点),求切线PQ的最小值 解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2-OQ2, ∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中, OA=OB=3 , ∴ OA=6,∴OP= ? OA OB AB =3,∴ . 【变式训练】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.求线段AB的最小值. 解:(1)线段AB长度的最小值为4, 理由如下: 连接OP, ∵AB切⊙O于P, ∴OP⊥AB, 取AB的中点C, ∴AB=2OC; 当OC=OP时,OC最短, 即AB最短, 此时AB=4.

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆) 【知识背景】 阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。 【定 义】 阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。即: )1(≠=k k PB PA ,如下图所示: 上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。 【几何证明】 证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理

若AD 是∠BAC 的角平分线,则有: CD BD AC AB = 。即“两腰之比”等于“两底边之比”。 其逆定理也成立:即CD BD AC AB = ,则有:AD 是∠BAC 的角平分线。 知识点2:外角平分线定理及其逆定理 若AD 是△ABC 外角∠EAC 的角平分线,则有 CD BD AC AB = 。即“两腰之比”等于“两底边之比”。 其逆定理也成立:即CD BD AC AB = ,则有:AD 是外角∠EAC 的角平分线。 【阿氏圆的证明】 有了上述两个知识储备后,我们开始着手证明阿氏圆。

2020中考数学专题10——最值问题之阿氏圆

2020中考专题10——最值问题之阿氏 班级 ________姓名 ____________ . 【模型解析】 “阿氏圆”樓型——u PA + k PB M 型最值 ?条件:A 、B 为定点,P 为ΘO±一个动A, — = k (0

√2 2 尝试解决,为了解决这个问題,下面给出一种耘題思路:如图2,连按CP,在CB 上取点D,使 CD CP 1 PD 1 1 CD=I,则有一=—=-,Xv ZPCD=ZBCP, ΛΔPCDS≤ΔJCP, — = -, APD=-BP, CP CB 2 BP 2 2 :.AP--BP^AP^PD. 2 请你芫成余下的思考,芥直按写出答案,AP +I BP 的最小值为 ______________ . 2 自主探索:在“问题提出"的条件不变的情况下,^AP^BP 的最:、值为 ______________ . 拓展延伸:己知扇形CoD 中,ZCOD=90°, OC=6, 0Λ=3f 0B≡5f 点P 是弧CD 上一点,求 的最小值. 【巩固训练】 2?如BB 2,在Rt?ABC 中? ZB=90t ? AB=CB=2,以点B 为圆心作HIB 与AC 相切.点P 为OaB 上任 3?如图3,己知点P 是边长为6的正方形ABCD 内SC —动点?PA=3■求PC÷- PD 的量小值为 .—动点.则PA? PC 的最小值是 __________ 1 ?如图 1,在 Rt?ABC 中,ZACB=90? , CB=4, CA=6, HIC 半径为 2,点 P 为21上一动点,连按 AP,

1、与直线和圆有关的最值问题理(解析版)详解

圆锥曲线专题突破一:与直线和圆有关的最值问题 题型一 有关定直线、定圆的最值问题 例1 已知x ,y 满足x +2y -5=0,则(x -1)2 +(y -1)2 的最小值为________. 破题切入点 直接用几何意义——距离的平方来解决,另外还可以将x +2y -5=0改写成x =5-2y ,利用二次函数法来解决. 解析 方法一 (x -1)2+(y -1)2 表示点P (x ,y )到点Q (1,1)的距离的平方. 由已知可知点P 在直线l :x +2y -5=0上,所以PQ 的最小值为点Q 到直线l 的距离, 即d =|1+2×1-5|1+22 =255,所以(x -1)2+(y -1)2的最小值为d 2 =45. 方法二 由x +2y -5=0,得x =5-2y ,代入(x -1)2 +(y -1)2 并整理可得 (5-2y -1)2+(y -1)2=4(y -2)2+(y -1)2=5y 2 -18y +17=5(y -95)2+45,所以可得最小值为45. 题型二 有关动点、动直线、动圆的最值问题 例2 直线l 过点P (1,4),分别交x 轴的正方向和y 轴的正方向于A 、B 两点.当OA +OB 最小时,O 为坐标原点,求l 的方程. 破题切入点 设出直线方程,将OA +OB 表示出来,利用基本不等式求最值. 解 依题意,l 的斜率存在,且斜率为负,设直线l 的斜率为k ,则y -4=k (x -1)(k <0). 令y =0,可得A (1-4 k ,0);令x =0,可得B (0,4-k ). OA +OB =(1-4k )+(4-k )=5-(k +4k )=5+(-k +4 -k )≥5+4=9. 所以,当且仅当-k =4 -k 且k <0,即k =-2时,OA +OB 取最小值.这时l 的方程为2x +y -6=0. 题型三 综合性问题 (1)圆中有关元素的最值问题 例3 由直线y =x +2上的点P 向圆C :(x -4)2 +(y +2)2 =1引切线PT (T 为切点),当PT 的长最小时,点P 的坐标是________. 破题切入点 将PT 的长表示出来,结合圆的几何性质进行转化. 解析 根据切线段长、圆的半径和圆心到点P 的距离的关系,可知PT =PC 2 -1,故PT 最小时,即PC 最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x -4),即y =-x +2,联立方程? ?? ?? y =x +2, y =-x +2,解得点P 的坐标 为(0,2). (2)与其他知识相结合的范围问题 例4 已知直线x +y -k =0(k >0)与圆x 2+y 2 =4交于不同的两点A ,B ,O 是坐标原点,且有|OA →+OB →|≥33 |AB →|,那么 k 的取值范围是________. 破题切入点 结合图形分类讨论.

中考专题---阿氏圆最值问题

1 中考专题---阿氏圆最值问题 阿氏圆又称阿波罗尼斯圆,已知平面上两点A 、B ,则所有满足 PA PB =k (k >0且k 不 等于1)的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆 例、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP , 求AP + 的最小值.尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=1,则有CD/CP=CP/CB=1/2,又∵∠PCD =∠BCP , ∴△PCD ∽△BCP,∴PD/BP=1/2,∴PD=1/2BP,∴ AP + =AP+PD 请你完成余下的思考,并直接写出答案:AP +的最小值为 自主探索:在“问题提出”的条件不变的情况下, AP +BP 的最小为 . 拓展延伸:已知扇形COD 中,∠COD =90o,OC =6,OA =3,OB =5,点P 是CD上一 点,求2PA +PB 的最小值 3 1PB 2 1 PB 2 1PB 2 1

2 向内构造类型 1、如图,已知AC =6,BC =8,AB =10, C 的半径为4,点D 是 C 上的动点,连接AD ,BD ,则的最小值 2、如图,四边形ABCD 为边长为4的正方形, B 的半径为2,P 是 B 上一动点,则 的最小值是, 3、如图, 已知 菱形AB CD 的边长为4,∠B=60 ,⊙B的半径为2,P为⊙B上一动点, 则 的最小值是 4、如图,AB 为 O 的直径,AB =2,点C 与点D 在AB 的同侧,且AD ⊥AB ,BC ⊥AB , AD =1,BC =3,点P 是 O 上的一动点,则 2PD +PC 的最小值为 2 5、在?ABC 中,AB =9,BC =8,∠ABC =60ο A 的半径为6,P 是 A 上的动点,连接PB 、PC ,则3PC +2PB 的最小值为 PC PD 2 1+ PC PD 2 1+ BD AD 2 1+

与圆有关的最值问题

与圆有关的最值问题1 执教:赵 栋 年级学科:高三数学 执教班级:高三(14) 教学思想: 教学目标: 知识与技能:掌握圆的方程、点与圆、直线与圆、圆与圆的位置关系,培养学生的数形结合、函数与方程、转化与化归的数学思想 过程与方法: 情感态度与价值观:通过由特殊到一般的归纳,培养探索、猜想、论证的思维习惯 教学重点:与圆有关的最值问题的求解 教学难点:较合理选择解决相关问题的方法 学情分析:高三(14)为文科班,学生基础一般,学习能力参差不齐。 教学方法:尽可能以学生为主体,教师是为辅的课堂教学方法。 亮点活动:导趣、导思和导行,充分发挥学生的主体性。 教学设计: 问题1:到定点、定直线距离 问题2:构造几何意义 利用圆的几何性质 参数法 1、3sin 2cos x y x -=+ 2、2y x =+ 3、求使方程3cos 4sin 230k k θθ--+=有解时,k 的取值范围 问题3:转化为函数最值问题 题型1、构造几何意义,求关于y x ,的代数式),(y x f 的最值 例2、P ),(y x 在圆22)3()3(-+-y x =6上运动,求:x y 最值 练1、若y x ,满足,422=+y x 求4 3--x y 的最大值和最小值例3、若y x ,满足,422=+y x 求y x +的最大值和最小值 练2、若y x ,满足()()4212 2=++-y x ,求S=y x +2的最大值和最小值 例4、若y x ,满足0204222=-+-+y x y x ,求22y x +的最大值和最小值 练3、 若y x ,满足0204222=-+-+y x y x ,求22)5(y x +-的最大值和最小值 题型 1、已知圆上找点到已知曲线的距离最值问题 1、 已知圆上找点到已知点的距离最值 例1、(1)已知P 为圆()()4152 2=-+-y x 上点,Q 点坐标为(2,-3)

相关主题
文本预览
相关文档 最新文档