当前位置:文档之家› ANSI C136.10-2006 For Roadway and Area Lighting Equipment – Locking-type Photocontrol Devices and M

ANSI C136.10-2006 For Roadway and Area Lighting Equipment – Locking-type Photocontrol Devices and M

ANSI C136.10-2006 For Roadway and Area Lighting Equipment – Locking-type Photocontrol Devices and M
ANSI C136.10-2006 For Roadway and Area Lighting Equipment – Locking-type Photocontrol Devices and M

ANSI

C136.10-2006

Revision of ANSI C136.10-1988 (R1996)

American National

Standard

For Roadway and Area Lighting Equipment –

Locking-type Photocontrol Devices and Mating

Receptacles – Physical and Electrical

Interchangeability and Testing

Approved April 27, 2006 Secretariat: National Electrical Manufacturers Association

An American National Standard implies a consensus of those substantially concerned with its scope and provisions.

An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public.

The existence of an American National Standard does not in any respect preclude anyone, whether he has approved

the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not

conforming to the standard. American National Standards are subject to periodic review and users are cautioned to

obtain the latest editions.

The American National Standards Institute does not develop standards and will in no circumstances give an

interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an

interpretation of an American National Standard in the name of the American National Standards Institute.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of

the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no

later than five years from the date of approval. Purchasers of American National Standards may receive current

information on all standards by calling or writing the American National Standards Institute.

Published by:

National Electrical Manufacturers Association

1300 North 17th Street, Rosslyn, VA 22209

Copyright 2006 by National Electrical Manufacturers Association.

All rights including translation into other languages are reserved under the Universal Copyright

Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International

and Pan American Copyright Conventions.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written

permission of the publisher.

Printed in the United States of America.

DISCLAIMER: The standards or guidelines presented in a NEMA standards publication are considered technically

sound at the time they are approved for publication. They are not a substitute for a product seller’s or user’s own

judgment with respect to the particular product referenced in the standard or guideline, and NEMA does not

undertake to guarantee the performance of any individual manufacturer’s products by virtue of this standard or guide.

Thus, NEMA expressly disclaims any responsibility for damages arising from the use, application, or reliance by

others on the information contained in these standards or guidelines.

CONTENTS

1 Scope (2)

2 References (2)

3 Definitions (3)

requirements (4)

4 Mechanical

requirements (5)

5 Electrical

requirements (6)

6 Environmental

performance requirements (6)

7 Dielectric

8 Marking,

materials, and finishes (7)

9 Ratings (7)

requirements (8)

10 Operating

test procedures (9)

11 Qualification

1 Scope

This standard covers the following roadway and area lighting equipment, which may be physically and electrically interchanged to operate within established values:

a) Locking-type photocontrol, herein referred to as “photocontrol.”

b) Locking-type mating receptacle, herein referred to as “receptacle.”

c) Shorting and non-shorting caps.

2 References

references

2.1 Normative

This standard incorporates by undated reference provisions from other publications. These normative references are cited at the appropriate places in the text, and the publications are listed below. For undated references, the latest edition of the publication referred to applies (including amendments). ANSI C136.2-2004, American National Standard for Roadway and Area Lighting Equipment – Luminaire Voltage Classification.

ANSI/IEEE C62.41-1991, IEEE Recommended Practice on Surge Voltages in Low-voltage Power Circuits.

ANSI/UL 773-1987, Standard for Plug-in, Locking-type Photocontrols for Use with Area Lighting.

IESNA LM-48-01, IESNA Guide for Testing the Calibration of Locking-type Photoelectric Control Devices Used in Outdoor Applications.

Journal of the Illuminating Engineering Society, Vol. 21, No. 2, Summer 1992, pp 54-56.

UL 94-1996, Test for Flammability of Plastic Materials

NOTE—ANSI Standards are available from Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112-5776 Phone: 303/397-7956, Fax 303/397-2740, e-mail: global@https://www.doczj.com/doc/f69617896.html, or https://www.doczj.com/doc/f69617896.html,.

references

2.2 Informative

This standard is to be used in conjunction with the following publication. The latest edition of the publication applies (including amendments).

IESNA DG-13-1998, Guide for the Selection of Photocontrols for Outdoor Lighting Applications.

3 Definitions

3.1 fail-off photocontrol: A photocontrol that is designed so that the load remains off when the most likely failure occurs.

3.2 fail-on photocontrol: A photocontrol that is designed so that the load remains on when the most likely failure occurs.

3.3 fast acting: Turn-off and/or turn-on response time between 0.5 and 5.0 s.

3.4 follow

current:

The current from the connected power source that flows through an arrester during and following the passage of discharge or surge current.

3.5 horizontal illuminance (HI): Luminous flux per unit area (density) normal to a horizontal plane.

3.6 instant acting: Turn-off and/or turn-on response time of less than 0.5 s.

3.7 inverse ratio photocontrol: A photocontrol with the turn-off at a lower value than the turn-on.

3.8 maximum surge energy absorbed (for rating purposes only): The maximum allowable surge energy that the photocontrol can absorb without changing its operating characteristics. This is based on

a single 10 x 1000 μs current waveform.

3.9 non-shorting cap: A device that provides an open circuit between line and load when a photocontrol is not used. Also called an “open cap.”

3.10 plug:

A cluster of blades fixed to a photocontrol, shorting cap, or non-shorting cap to establish an electrical and mechanical connection when inserted into a mating receptacle.

3.11 plug-receptacle interface temperature: The temperature at the top of the receptacle, between the line and the load contacts, with a control mounted in a horizontally oriented receptacle in an ambient of 25°C.

3.12 receptacle:

An outlet that is intended to be equipped electrically and mechanically to receive the plug.

3.13 shorting cap: A device that provides a closed circuit between line and load when a photocontrol is not used.

3.14 slow acting: Turn-off and/or turn-on response time of greater than 5.0 s.

3.15 surge current: The peak current in Figure 13 of ANSI/IEEE C62.41, 8/20 μs discharge current waveform.

3.16 surge

energy:

The energy (in joules) contained in a surge. It can be calculated if the current and voltage are known from the following equation.

∫=T dt t I t V E

)( )(

Where

E is the energy

t is the time

I is the instantaneous current

V is the instantaneous voltage

T is the time duration of the pulse

∫ dt is the time integral

3.17 surge voltage: The peak open-circuit voltage in Figure 12 of ANSI/IEEE C62.41, for a 1.2/50 μs waveform.

3.18 turn-off and/or turn-on response time: The time between a rapid change in light level and the switching of the load. Turn-off delay may be different than turn-on delay. The response time is measured at 25°C and rated voltage.

3.19 turn-off/turn-on ratio: The turn-off light level divided by the turn-on light level.

3.20 upward sensing type photocontrol: A photocontrol so designed that it is primarily sensitive to horizontal illuminance.

3.21 vertical illuminance (VI): Luminous flux per unit area (density) normal to a vertical plane.

requirements

4 Mechanical

type

4.1 Plug

The plug used in the photocontrol, shorting cap, or non-shorting cap shall be of the 3-pole, locking type. Its configuration, blades, and limiting dimensions shall be in accordance with Figure 1.

type

4.2 Receptacle

The receptacle shall be of the 3-pole, 3-wire locking type. Its configuration, contacts, and limiting dimensions shall be in accordance with Figure 2.

4.3 Sealing

A sealing means shall be provided as part of the photocontrol, shorting cap, or non-shorting cap to form a rain tight seal on the “required seat” of the receptacle. The “required seat” of the receptacle, shown in Figure 3(b) shall be a smooth flat surface. With the photocontrol, shorting cap, or non-shorting cap installed in its locking position, the sealing means shall not encroach on the area within the limiting profile of the mounting shown in Figure 3(b). No obstructions or projections other than the electrical contacts and sealing means shall project below the limiting profile shown in Figure 3(a). The configuration and limiting dimensions of the device shall be in accordance with Figure 3(a).

NOTE—In Figure 3(a), the limiting dimension of 88.9 mm max (3.5 in. max) may be extended to 127.0 mm max (5.0 in. max) to allow for add-on items.

dimensions

4.4 Receptacle

The receptacle shall be so designed that, when installed on a luminaire or other equipment, its configuration and limiting dimensions will be in accordance with Figure 3(b).

mounting

4.5 Receptacle

4.5.1 Orientation

When mounted on a luminaire, the receptacle shall be designed and mounted so that it can be turned 350 degrees, but no more than 360 degrees, and securely positioned at an angular adjustment with ±15

degrees. The means for adjusting orientation shall be externally accessible. Upward sensing controls do

not require rotating receptacles.

mounting

4.5.2 Horizontal

The seat of the receptacle shall be mounted as close to horizontal as possible. If it deviates more than 45

degrees from horizontal, the integrity of the seal may be affected when a control is installed.

marking

4.6 Receptacle

The rotatable receptacle or adjustment assembly shall be permanently marked with a north reference

mark indicated by an arrow and “N” or “NORTH” in the position as shown in Figure 2.

cap

4.7 Shorting

Shorting caps shall be color coded black. The contour of the shorting cap housing shall be as shown in

Figure 4. If the overall dimension “A” is equal to or less than 25.4 mm (1.0 in.) then the upper portion of

the housing may be eliminated. Thus, dimension “B” will be the overall height.

cap

4.8 Non-shorting

Non-shorting caps shall be color coded red. The contour of the non-shorting cap housing shall be as

shown in Figure 4. If the overall dimension “A” is equal to or less than 25.4 mm (1.0 in.), then the upper

portion of the housing may be eliminated. Thus, dimension “B” will be the overall height.

4.9 Enclosure

The enclosure of photocontrols, shorting caps, or non-shorting caps shall have an ingress protection

rating of IP 53.

5 Electrical

requirements

5.1 Photocontrol

The enclosure of the photocontrol shall be colored in compliance with Table 1. The voltage rating,

operating voltage range, failure mode, and corresponding color-coding of photocontrols shall be in

accordance with Table 1. The enclosure of the photocontrol shall be permanently marked with the color-

coding, which shall be visible 360 degrees around the photocontrol.

Table 1 – Photocontrol electrical requirements—voltage rating, operating voltage

Rated volts (60 Hz) Range (V) Failure mode Color coding

clear

or 120 105-130 Fail-on

Gray 120 105-130 Fail-off Orange

240* 185-305 Fail-on Maroon

240* 185-305 Fail-off Green** 120/240 105-285 Fail-on Blue 120/208/240/277 105-305 Fail-on Blue 480 420-530 Fail-on Yellow

*These photocontrols can also be used on 208 or 277-volt systems.

**Color used in Canada for 347-volt systems.

5.2 Receptacle and plug

The receptacle and plug shall be rated 600 Volts, as defined in ANSI C136.2.

5.3 Receptacle heat-cycle test

The receptacle shall be capable of withstanding a heat-cycle test, described in clause 11.1, allowing a maximum temperature rise of 30°C on either line or load contact.

6 Environmental requirements

6.1 Ambient temperature range

Photocontrols, shorting caps, or non-shorting caps and receptacles shall operate over the ambient temperature range of -40°C to 65°C.

6.2 Plug-receptacle interface temperature

The photocontrol, shorting cap, or non-shorting cap shall operate and meet all requirements of this document, when the maximum plug-receptacle interface temperature is 90°C.

6.3 Environmental tests

The photocontrol, shorting cap, or non-shorting cap, when properly installed in its receptacle mounting, shall pass the environmental tests as described in clauses 11.2 and 11.3.

7 Dielectric performance requirements

7.1 Grounding

Provision shall be made for grounding metallic enclosures.

7.2 Dielectric withstand

Electrical insulation between current-carrying components and any metallic portion of the photocontrol, shorting cap, or non-shorting cap enclosure or the receptacle with its mounting shall meet the dielectric withstand test requirements given for the 600 Volt Class in ANSI C136.2. Photocontrols, shorting caps, or non-shorting caps utilizing polymeric enclosures shall be design tested with all accessible parts (as installed) wrapped in a metallic foil. The dielectric withstand voltage shall be applied between the current-carrying components and the metal foil.

7.3 Surges

7.3.1 Photocontrol

When surge protection is provided, the photocontrol shall withstand surges as outlined in subclauses 11.4.3 and 11.4.4. If user specified, the photocontrol may be tested to higher-level surges as outlined in subclause 11.4.5. Damage that results in the photocontrol not meeting the test requirements specified in clauses 7.2, 10.1, and 11.3 shall indicate a failure of the device.

7.3.2 Shorting and non-shorting cap

When surge protection is provided, the shorting or non-shorting cap shall withstand surges as outlined in subclauses 11.4.3 and 11.4.4. If user specified, the shorting or non-shorting cap may be tested to higher-level surges as outlined in subclause 11.4.5. Damage that results in the shorting or non-shorting cap not meeting the test requirements specified in clauses 7.2 and 11.3 shall indicate a failure of the device. Unless otherwise specified, surge protection for shorting and non-shorting caps shall be designed to operate at 120 V, 208 V, 240 V, 277 V, and 480 V line voltages.

8 Marking, materials, and finishes

8.1 Marking

The photocontrol enclosure shall be color-coded in accordance with clause 5.1 and shall be clearly and permanently marked with its voltage rating, load rating, north orientation, rotation of installation and removal, and the name of the manufacturer, and the model number. The color-coding of the photocontrol enclosure shall be permanent for the life of the control. North orientation marking is not required on upward sensing type photocontrols.

impact

8.2 Low

temperature

A polymeric enclosure of a photocontrol, shorting cap, or non-shorting cap shall be capable of withstanding exposure to low temperature. This capability is tested by exposing a complete device to an ambient temperature of -29.0°C for 24 hours minimum. Within 10 seconds of removal from the cold chamber, the device is to be mounted into a receptacle and subjected to an impact of 1.36 N-m (1 ft-lb) by means of a solid, smooth, steel sphere, weighing 0.54 kg (1.2 lb), 50.8 mm (2 in.) in diameter, dropped from 0.254 m (10 in.) and applied to external surfaces, excluding the vertically mounted window. The photocontrol, shorting cap, or non-shorting cap shall meet all the requirements of this document after being subjected to the impact test.

conditions

8.3 Atmospheric

Materials and protective coatings used in the construction of the photocontrol, shorting cap, non-shorting cap, receptacle, and related components shall individually and as a system be resistant to atmospheric conditions, including the corrosive and erosive action of conditions of service encountered in industrial and seaboard areas.

rise

8.4 Temperature

When the photocontrol, shorting cap, or non-shorting cap is operated at its rated load, voltage, and frequency, within its ambient temperature range and subjected to a wind of 3.2 km/h (2 mi/h), the temperature rise of any component shall not injure or render inoperative any material or component part.

8.5 Flammability

The polymeric enclosure of a photocontrol, shorting cap, or non-shorting cap shall have a minimum flammability rating of UL 94 HB.

9 Ratings

ratings

9.1 Load

The photocontrol shall have a minimum load rating of both 1,000 watts incandescent lamp load and 1,800 VA high-intensity discharge (HID) load.

NOTE—Photocontrol VA rating is based on total load of ballast and lamp. On HID luminaires, lamp wattage does not equal luminaire volt-ampere load. Starting or running luminaire volt-amperes (whichever is higher) of the ballast(s) controlled should not exceed 1800 VA.

9.2 Surge protection rating

Photocontrols, shorting caps, or non-shorting caps designated for luminaire system protection shall limit the maximum surge voltage to 5000 V PEAK when tested with the standard surge described in subclause 11.4.1 or the high-level surge described in subclause 11.4.5.

10 Operating

requirements

calibration

10.1 Photocontrol

The photocontrol shall turn on within the limits of +100% and -50% of its calibrated light level setting at rated voltage and frequency:

a. Over a range of input voltages as indicated in clause 5.1 and an ambient temperature of 25oC +/- 5o

C. Photocontrols designed to operate over several voltages, shall operate within the above limits

when operated at the upper voltage rating.

b. Over a range of ambient temperatures from -40oC to 65oC with relative humidity up through 96%

when operated at nominal voltage. Photocontrols designed to operate at 120/240 V, 208/240/277 V, or 120/208/240/277 V shall operate within the above limits when operated at the upper voltage rating.

levels

10.2 Light

Measurements and calibration for operating light levels shall be in accordance with the following sub clauses.

10.2.1 Measurement procedure

This procedure is used to determine the turn-on and turn-off light levels of locking type photocontrols. The light level test equipment described in subclause 10.2.3 shall be used to determine the operating light levels. The test equipment shall be set for an operating range between 150 lux (15 fc) and 0 lux (0 fc), and the rate of change of illuminance levels shall be set to the natural outdoor rate. The test time may be shortened by decreasing the light level operating range and by increasing the illuminance level rate if it is determined that the particular photocontrol does not exhibit a change of more than +/- 5% in either turn-on or turn-off light levels when tested in the accelerated mode. The test shall be performed at 25oC ± 5oC (77oF ± 9oF). This procedure is not a production test procedure, but a verification tool. When checking inverse ratio controls, the operating range must be greater than the turn-on and turn-off levels.

10.2.2 Rate of change of illumination levels

The rate of change of illumination levels for natural outdoor condition is described in the Journal of the Illuminating Engineering Society, Vol. 21 No. 2 Summer 1992, p. 54-56. A good approximation to the natural outdoor rate of change of illumination is a ramp rate of 0.1 lux per second (0.01 fc/sec). A ramp rate change of illumination is suitable for determining the operating levels of photocontrols. For accelerated testing of controls that are instant acting or fast acting, rates of 1.0 lux per second (0.1 fc/sec) or 0.4 lux per second (0.04 fc/sec) respectively can be used.

10.2.3 Light level test equipment

The light level test equipment shall have the general configuration as described in LM-48-01 IESNA Guide for Testing the Calibration of Locking-Type Photoelectric Control Devices Used in Outdoor Applications.

10.3 Specifications

Light levels shall be measured according to the procedure outlined in subclause 10.2.1. Standard light levels commonly used are the following:

a. The photocontrol is to be adjusted to turn on at 16 lux ± 6 lux (1.5 fc ± 0.5 fc) and a maximum turn-off

at 65 lux (6 fc), as measured in accordance with subclause 10.2.3; or

b. For areas with average night pavement illumination greater than 10.7 lux (1 fc) a north facing

photocontrol should turn on at 1.6 times the average design pavement illumination with the turn-off not to exceed three times the turn-on light level; or

c. As specified by the user.

11 Qualification test procedures

11.1 Receptacle heating test

11.1.1 Setup

The temperature on the line or load receptacle contact shall be measured by means of a thermocouple attached to the outside surface of the inner blade opposite the detent of the receptacle contact. The receptacle shall be securely mounted in a horizontal position on an aluminum plate that is 38.7 cm2 (6 in.2), 0.317 cm (1/8 in.) thick. The test shall be performed at an ambient temperature of 25oC.

11.1.2 Conditioning

A shorting cap with brass blades shall be inserted, locked, and removed five times before starting the test.

11.1.3 Procedure

The same shorting cap that was used in subclause 11.1.2 shall be inserted and locked into the test receptacle. A current of 15 A shall be applied to the line and load contacts of the test receptacle. The current shall be applied for 15 cycles, each consisting of a 20-hour “on” period and a 4-hour “off” period.

11.1.4 Pass—fail criteria

The receptacle shall be considered to have failed if the temperature rise on the receptacle contact at the end of a 20-hour period is greater than 30oC.

11.2 Humidity

test

The assembly of the photocontrol, shorting cap, or non-shorting cap and receptacle shall be exposed to 96% relative humidity at 50oC for 168 hours when operating at rated voltage and load. The photocontrol shall be illuminated for 12 hours at 1,075 lux (100 fc) and 12 hours below 1.075 lux (0.1 fc) for 7 cycles. Within 1 minute of its removal from the humidity chamber, the assembly shall be subjected to the dielectric voltage-withstand requirements described in clause 7.2. Within 10 minutes after the removal from the humidity chamber, the photocontrol shall meet the light level requirements of clause 10.1.

test

11.3 Rain

The assembly of the photocontrol, shorting cap, or non-shorting cap and receptacle shall be subjected to the rain tightness test described in UL 773. Within 5 minutes after completion of the rain test, the device shall be tested and shall meet the dielectric voltage-withstand requirements of clauses 7.2 and 10.

test

11.4 Surge

11.4.1 Standard surge

The open-circuit surge voltage shall have a 6,000-volt ±5% peak amplitude and a 1.2 x 50 μsec wave shape. The voltage wave shall be synchronized with the ac power line and shall be initiated 30o to 60o or 255o to 285o after the instantaneous 60-hertz voltage has changed from negative to positive polarity. Positive voltage polarity is defined to be the same polarity as the surge voltage. The short-circuit surge

current shall have a 3,000-ampere ± 5% peak amplitude and an 8 x 20 μsec wave shape. The minimum available follow current shall be 1,000 ampere-rms and have a minimum duration of 1 cycle.

11.4.2 Test equipment calibration

During calibration, the photocontrol shall be removed from the test receptacle. All test points shall be less than 15.24 cm (6 in.) from the test receptacle. The follow current shall be measured by shorting the line and neutral test points. The back filter shall be connected when determining follow current. The open-circuit surge voltage shall be measured between the line and neutral test points with the back filter and ac power line connected. The short-circuit surge current shall be determined by shorting the line and neutral test points. The ac power lines and back filter shall not be connected for the short-circuit surge current measurement.

11.4.3 Test procedure (standard surge, 6000 volts)

The test procedure shall be performed after the test equipment has been calibrated according to subclause 11.4.2 to give the value specified in subclause 11.4.1. The photocontrol shall be inserted into the test fixture, energized at highest rated voltage, and shall be placed in darkness. Two surges as specified in subclause 11.4.1 with a phase angle of 30 degrees to 60 degrees shall be applied to the photocontrol, followed by one surge with a phase angle of 255 degrees to 285 degrees. These three surges shall be repeated with the photocontrol illuminated to a minimum of 322 lux (30 fc). The minimum time between surges shall be 5 minutes.

11.4.4 Test procedure (low voltage)

The procedure outlined in subclause 11.4.3 shall be repeated, using a new photocontrol, except that the surge voltage shall have a peak value equal to the sum of 350-volts peak plus the rated root-mean-square (rms) voltage of the photocontrol. The surge current will be proportionally lower.

11.4.5 Test procedure (high-level surge, 10,000 volts)

For products rated for high-level surges (10,000 V), the procedure outlined in subclause 11.4.3 shall be used, except that the open-circuit surge voltage shall be 10,000-volts peak, ±5%, the short-circuit surge current shall be 6,500-amperes peak, ±5%, and the minimum available follow current shall be 3,000 amperes.

11.5 Continuous current load test

The photocontrol shall carry a continuous current of 15 amperes at an ambient temperature of 25oC and a plug-receptacle interface temperature of 90oC for 4 hours. After the test, the control shall meet the requirements of clauses 10.3, 11.2, 11.3, 11.4, 11.6.5 and 11.6.6. This test shall be performed in a draft free environment.

11.6 Load

test

11.6.1 Load test supply

The load test supply shall be capable of providing an instantaneous inrush current of 95-, 55-, 48-, 41-, and 24-amperes peak for 120-, 208-, 240-, 277-, and 480-volt tests respectively.

11.6.2 Test cycle

The photocontrol shall be cycled at a rate no faster than 1 cycle in 6 min as described, with the following time period: dark for 1.5 min, gradually illuminated to 215 lux (20 fc) over 1 min, then maintained at 215 lux (20 fc) minimum for 2.5 min, then gradually decreasing the illumination from 215 lux (20 fc) to dark over 1 min.

11.6.3 Incandescent lamp load

The lamp load shall be a single 1,000-watt, 120-volt mogul-base tungsten-filament lamp for photocontrols rated at 120 volts. For photocontrols rated at 208 volts, 240 volts, 277 volts, and/or 480 volts, a suitable series/parallel combination of tungsten-filament lamps shall be used that provide a 1,000-watt load.

11.6.4 Capacitor load

The load capacitor shall be 41 microfarads, 20 microfarads, and 10 microfarads for photocontrols rated 120 volts, 240 volts, and 480 volts, respectively. The load capacitor shall be an oil filled, film type with a parallel bleeding resistor.

11.6.5 Incandescent lamp load test

The photocontrol shall be connected to a supply as described in subclause 11.6.1 and a load as described in subclause 11.6.3. The photocontrol shall complete a minimum of 3,650 cycles as per subclause 11.6.2 with no failure to transfer the load. Photocontrols rated at multi-voltages need only to be tested at the lowest and highest voltage rating.

11.6.6 Capacitor load test

The photocontrol shall be connected to a supply as described in subclause 11.6.1 and a load as described in subclause 11.6.4. The photocontrol shall complete a minimum of 3,650 cycles as per subclause 11.6.2 with no failure to transfer the load. Photocontrols rated at multi-voltages need only to be tested at the lowest and highest voltage rating.

GASKET OR SEALING MEANS MUST BE COMPRESSIBLE TO PROVIDE AN EFFECTIVE RAINTIGHT SEAL OVER

3.277 TO 1.727

(0.129 TO 0.068

第10章类和对象

第10章 类和对象 本章工作任务 实现学校类,并描述学校的信息 实现教员类,并输出教员的信息 实现学生类,并输出学生的信息 本章技能目标 掌握类和对象的特征 理解封装 会创建和使用对象

使用Java理解程序逻辑 本章单词 请在预习时学会下列单词的含义和发音,并 填写在横线处。 1.class: 2.object: 3.OOP: 4.return: 5.encapsulation: 6.null: 7.initial: 8.type:

类和对象 本章简介 在前面章节中,我们学习了程序设计的基本知识和流程控制语句。通过这些内容的学习,大家能够用Java语言进行程序设计,但这些程序的规模都很小,一般只有几十行代码。假设我们要编程解决一个很大的问题,需要写几万行代码,如果按照以前的做法,将这些代码都放在一个Java文件中,可以想象这个文件会非常冗长,而且很难维护。 因此,在下面的课程中,你将看到Java程序设计的另一道风景——面向对象程序设计,英语缩写为OOP。面向对象程序设计是一个里程碑,Alan Kay因为设计了世界上第一个面向对象语言Smalltalk而获得图灵奖。Java之父James Gosling结合Internet背景设计了完全面向对象的Java语言。本章将带领你进入面向对象的世界,学习什么是对象和类,以及如何创建和使用类的对象。 10.1 对象 首先问你一个问题,“世界是由什么组成的?”。如果你是一个化学家,你可能会说,“世界是由分子、原子、离子等这些化学物质组成的”。如果你是一个画家,你可能会说,“世界是由不同的颜色组成的”。不同的人会有不同的回答。但如果你是一个分类学家,你会说,“这个世界是由不同类别的事物组成的”,如图10.1所示。 图10.1 世界的组成 其实,这个问题本身就比较抽象,我们说物以类聚,所以可以说世界是由不同类别的事物构成,如图10.1中所示,世界由动物、植物、物品、人和名胜等组成。动物可以分为脊椎动物和无脊椎动物。脊椎动物又可以分为哺乳类、鱼类、爬行类、鸟类和两栖类。 爬行类又可以分为有足类和无足类……,就这样可以继续分下去。当我们提到某一个分类时,就可以找到属于该分类的一个具体的事物。比如乌龟就属于爬行类中的有足类,

字体读音的辨认

字体读音的辨认 觊觎(读音:jì继yú鱼):非分的希望或企图;例句-亚洲车商“觊觎”美国人才。 耄耋(读音:mào茂di?叠):八九十岁的年龄;饕餮(读音:tāo涛tia帖):古代传说中一种凶恶的兽; 诟(读音:g?u够)耻辱;辱骂:~骂。~病(指责,辱骂)。~谇(辱骂指斥)。~厉。~詈。~辱。囹圄(读音:líng灵yǔ于)古代的监狱;例句:身陷囹圄; 蹇(读音:jiǎn简)人名;正直的样子 桎梏(读音:zhì制gù固)脚镣和手铐,比喻束缚人的东西 攫(读音:ju?绝):掠夺;抓取:~取(掠夺)。~夺。 皈(读音:guī归)原指佛教的入教仪式,后泛指信奉佛教或参加其他宗教组织。皈依佛门 昶(读音:chǎng厂)舒畅,畅通。 谞(读音:xū需)才智;计谋 赍(读音:jī犄)怀着,抱着 儁(读音:jùn俊)才智出众的人 酎(读音:zh?u宙)酎金:古代诸侯给皇帝的贡金,供祭祀之用。 髯(读音:rán然)两腮的胡子 戮(读音:lù录):杀,杀戮 镔(读音:bīn宾)镔铁:精炼的铁 偃(读音:yǎn演)停止;停止:~息。~武修文。仰面倒下,放倒 兖(读音:yǎn演)县名,在山东 桓(读音:huán环)姓 邕(读音:yōng拥)〔~江〕水名,在中国广西壮族自治区;是南宁的简称 蜺(读音:ní尼)寒蝉,寒蝉,一种体形较小的蝉。珪(读音:guī规)同圭,古代帝王诸侯举行仪式时所有的玉器。 藜(读音:lí黎)植物;嫩叶可吃。茎可以做拐杖(亦称“灰条菜”): 顒(读音:y?ng永二音)大,仰慕 颍(读音:yǐng影)颖河,在河南 盱眙(读音:xū需yí怡)县名,在江苏 邳(读音:pī批)邳县,在江苏 鬻(读音:yù驭)卖 喏(读音:nu?懦)叹词 鸾(读音:luán栾)传说中凤凰的一种 槊(读音:shu?硕)矛,古代的一种兵器 鳌(读音:áo獒)传说中的海里面的大鳖傕(读音:qua绝)用于人名 汜(读音:sì四)水名,在河南省 痈(读音:yōng拥)一种毒疮 齑(读音:jī激)捣碎的姜、蒜等的。 擐(读音:huàn换)穿 邙(读音:máng忙)山名,在洛阳北 掾(读音:yuàn愿)古代官署属员的统称 谶(读音:chan趁)迷信的人指将来要应验的预言、预兆 狻猊(读音:suān酸ní霓)传说中的一种猛兽 贲(读音:bēn奔)虎贲:古代称勇士 辔(读音:pai佩)驾驭牲口的嚼子和缰绳 鄠(读音:hù户)户县,在陕西省 隗(读音:kuí奎或wěi委)姓 袅(读音:niǎo鸟)炊烟上升的样子 弑(读音:shì是)古时候指臣杀君、子杀父母的行为 潸(读音:shān珊)流泪的样子 茕(读音:qi?ng穷)没有弟兄 轸(读音:zhěn诊)古代车后面的横木 遽(读音:jù锯)急忙 谯(读音:qiáo桥)谯楼:古代城墙上建筑的楼,可以瞭望 戾(读音:lì利)罪过 馥(读音:fù复)香气 匡(读音:kuāng筐)扶正 玳瑁(读音:dài带mào冒):异种爬行动物,跟龟相似 旄(读音:máo矛)古代用牦牛尾马做成的旗子 钺(读音:yua越)古代的一种兵器,比斧子大些岑(读音:c?n参差的参的读音)小而高的山 搦(读音:nu?懦)挑惹 帻(读音:z?责)古代的一种头巾 酾(读音:shī施)斟酒 飐(读音:zhǎn展)风吹物体使颤动 崤(读音:xiáo淆)山名,在河南省 赀(读音:zī咨)计量(多用于否定);同“资”荥(读音:xíng型)荥阳,地名,在河南省 踅(读音:xu?学)折回 轘(读音:huàn换)古代用车分裂人体的一种酷刑 咥(读音:xī细)大笑 蒯(读音:kuǎi快)姓 谌(读音:ch?n臣)相信 羌(读音:qiāng腔)羌族,少数民族 麴(读音:qū渠)同“曲”

JAVA类和对象的关系

1、JAVA中的参数传递问题(理解内存图) 基本类型:形式参数的改变对实际参数没有影响 引用类型:形式参数的改变直接影响实际参数 2、面向对象(理解,升就业班问说说什么是面向对象和思想特点) 1、面向对象(从三点回答) A面向过程是以函数为基础,完成各种操作,强调的是过程 B面向对象以对象为基础,完成各种操作,强调的是对象,结果 C面向对象是基于面向过程的 2、面向对象的思想特点: a)是一种更符合人们思考习惯的思想 b)把复杂的事情简单化 c)把我们从执行者变成了指挥者 3、举例: a)买电脑 b)洗衣做饭 c)旅游 d)把大象装进冰箱(伪代码体现) 4、事物是如何体现的 a)属性有哪些特征名词提取法 b)行为有哪些功能 5、类与对象的关系(掌握) 把事物转换成类 A:成员变量 定义在类中,方法外 B:成员方法 和以前的区别是去掉static 把这个说完还没有说道类与对象的概念,对不对 类:是相关的属性和行为的集合,集合就是一堆东西,是一个抽象的概念 对象:是某种事物的具体的存在,具体的表现形式 举例: 学生:类 对象:小明 6、案例 A学生类 B手机类 C汽车类(在这里画了内存图,有空看一下) 7、如何使用呢 a)创建对象 i.格式 a)类名变量= new 类名() b)使用成员变量和成员方法

i.对象名.成员变量 ii.对象名.成员方法 8、成员变量和局部变量的区别(理解) A 定义位置 成员变量:在类中方法外 局部变量,在类中方法中,或者方法上的形式参数 B 初始化的区别 成员变量:有默认的初始化值 局部变量:无 C 存储位置 成员变量:堆随着对象的存在而存在 局部变量:栈随着方法的存在而存在 9、匿名对象 a)概念:没有名字的对象 b)使用场景 i.当对象中的方法只掉用一次的情况下使用(一般不用,测试时使用)new Student().sayHello(); ii.匿名对象作为实际参数传递

类与类之间的关系

类与类之间存在以下关系: (1)泛化(Generalization) (2)关联(Association) (3)依赖(Dependency) (4)聚合(Aggregation) 1.泛化(Generalization) [泛化] 表示类与类之间的继承关系,接口与接口之间的继承关系,或类对接口的实现关系。一般化的关系是从子类指向父类的,与继承或实现的方法相反。 父类父类实例=new 子类() [UML图](图1.1) 2.依赖(Dependency) [依赖] 对于两个相对独立的对象,当一个对象负责构造另一个对象的实例,或者依赖另一个对象的服务时,这两个对象之间主要体现为依赖关系。 依赖关系表现在局部变量,方法的参数,以及对静态方法的调用 [现实例子] 比如说你要去拧螺丝,你是不是要借助(也就是依赖)螺丝刀(Screwdriver)来帮助你完成拧螺

丝(screw)的工作 [UML表现](图1.2) 3.关联(Association) [关联] 对于两个相对独立的对象,当一个对象的实例与另一个对象的一些特定实例存在固定的对应关系时,这两个对象之间为关联关系。[具体表现] 关联关系是使用实例变量来实现[现实例子] 比如客 3.关联(Association) [关联] 对于两个相对独立的对象,当一个对象的实例与另一个对象的一些特定实例存在固定的对应关系时,这两个对象之间为关联关系。 [具体表现] 关联关系是使用实例变量来实现 [现实例子] 比如客户和订单,每个订单对应特定的客户,每个客户对应一些特定的订单;再例如公司和员工,每个公司对应一些特定的员工,每个员工对应一特定的公司 [UML图] (图1.3) (4)聚合(Aggregation) [聚合] 当对象A被加入到对象B中,成为对象B的组成部分时,对象B和对象A之间为聚集关系。聚合是关联关系的一种,是较强的关联关系,强调的是整体与部分之间的关系。 [具体表现] 与关联关系一样,聚合关系也是通过实例变量来实现这样关系的。关联关系和聚合关系来语

常用法兰规格尺寸表

常用法兰规格尺寸表(国标) 发布时间:2010.07.13 新闻来源:法兰-法兰盘-法兰毛坯-弯头-三通-无缝钢管-聊城荣丰法兰制造厂浏览次数: 593 常用法兰规格尺寸表(国标) GB9119,2—88GB9119,2—88 in 法兰公称 通径 10kg=1.0MPa 公称通径 16kg=1.6MPa 法兰外 径 螺栓孔 距 螺栓直 径 螺栓孔数法兰厚度法兰外径螺栓孔距螺栓直径螺栓孔数法兰厚度 3/8 DN10 50 60 14 4 14 DN10 90 60 14 4 14 1/2 DN15 59 65 14 4 14 DN15 95 65 14 4 14 3/4 DN20 105 75 14 4 16 DN20 105 75 14 4 16 1 DN25 115 85 14 4 16 DN25 115 85 14 4 16 11/4DN32 140 100 18 4 18 DN32 140 100 18 4 18 11/2DN40 150 110 18 4 18 DN40 150 110 18 4 18 2 DN50 165 125 18 4 20 DN50 165 125 18 4 20 21/2DN65 185 145 18 4 20 DN65 185 145 18 4 20 3 DN80 200 160 18 8 20 DN80 200 160 18 8 20 31/2DN100 220 180 18 8 22 DN100 220 180 18 8 22 4 DN12 5 250 210 18 8 22 DN125 250 210 18 8 22 5 DN150 285 240 22 8 24 DN150 285 240 22 8 24 6 DN200 340 295 22 8 24 DN200 340 295 22 8 26 8 DN250 395 350 22 12 26 DN250 405 355 26 12 29 10 DN300 445 400 22 12 28 DN300 460 410 26 12 32 12 DN350 505 460 22 16 30 DN350 520 470 26 16 35 14 DN400 565 515 26 16 32 DN400 580 525 30 16 38 16 DN450 615 565 26 20 35 DN450 640 585 30 20 42 18 DN500 670 620 26 20 38 DN500 715 650 33 20 46 20 DN600 780 725 26 20 42 DN600 840 770 36 20 52

各种字体特点及作用

各种字体特点及作用 方正琥珀简: 字型圆润饱满,新颖活泼,结构错落有序,粗而不重,胖而不臃,适用于书、报、杂志和各类印刷品的标题及装饰用字。 方正胖头鱼简: “胖头鱼”体丰圆柔润,结体端庄,骨络分明,即风格独特,又符合字体构形规律,适合排各类标题及广告设计。方正黄草简: 商品详细信息 虽然是一款草书风格的字体,但尽量保持字体原形,对笔划适当减少,做到易写易识,且融简、繁写法于一体,匠心独具。可用于文章 标题、广告制作、装饰装帧等。 方正报宋简: 笔划纤细,字体清秀工整,结构均匀,印刷效果清晰明快,适用于报 纸、杂志的正文。 方正粗倩简: 精致、华贵、大气、端庄,笔形富于变化,浪漫而又温馨。宜作排版 文章标题,以及一切广告用字。 方正古隶简: 字体神采俊俏,雄浑中流露天真稚拙,典雅中蕴含时代风采,静中寓

动、稳中求险、巧拙相生、变化自然,结体严谨,笔法古朴典雅,又极富装饰意趣。适用于书、报、杂志的各类标题字和装饰、宣传用字。 方正美黑简: 字体修长端正,庄重大方,适于书、报刊的大标题。 方正卡通简: 在字形设计上采用了“黑体”的基本笔形,参以行书的笔意、形态,婉转有度,斜正相倚,于传统美中见时代气息。主要用于“卡通”书和一 些儿童出版物上的新型印刷字体。 方正粗宋简: 粗壮浑厚、庄重严肃,表现力强。宜用于文章、报刊的大标题,也可 作广告用字。 方正康体简: 又称“康有为碑体”,是一款以古贤传统书法艺术为基础的印刷字体,风格上突出“重、拙、大”的特点,流畅洒脱,气势雄健,用于书、报刊印刷以及广告宣传、包装装饰和匾额招牌等效果都很好,横排竖列 俱佳,体现出传统书法艺术韵味。 方正超粗黑简: 字型方正饱满,笔划粗重坚实,壮重醒目,号召力强,适用于报纸及 书籍、画报的标题及宣传用字

法兰 钢圈等

法兰、垫环、螺栓的正确使用与管理 一、法兰 按API标准把石油井口法兰分为两大类。 1、6B型法兰:适用于压力等级为35Mpa以下,含35Mpa的各种规格的法兰,所使用垫环为R型或RX型,在通径135/8″以内的适应这一规律。135/8″以上的通径35Mpa以上的压力等级的法兰所用垫环是BX型。 2、6BX型法兰:适用于压力等级为70Mpa以上,含70Mpa各种规格的法兰,所使用垫环为BX型,该规律不适应135/8″以上的通径和35Mpa的压力等级,也就是135/8″以上的通径,压力为35Mpa 以上的法兰,所使用的垫环也是BX型的。 法兰和管体从联接形式讲,有三种:一是丝扣联接;二是焊接;三是整体锻件。 法兰和法兰联接形式有载丝联接和双头螺栓联接. 6B型法兰和6BX型法兰所对应用的垫环见下表

31/8″(80)—35 R35 41/16″(103)—70(105) B×155 41/16″(103)— R37 71/16″(18)—70(105) B×156 14(21) 41/16″(103)—35 R39 9″(23)—70(105) B×157 71/16″(18)—14(21) R45 11″(28)—70(105) B×158 71/16″(18)—35 R46 135/8″(35)—35 B×160 9″(23)—14(21) R49 135/8″(35)—70(105) B×159 9″(23)—35 R50 163/4″(43)—35(70) B×162 11″(28)—14(21) R53 183/8″(48)—35(70) B×163 11″(28)—35 R54 211/4″(54)—35 B×165 135/8″(35)—14(21) R57 211/4″(54)—70 B×166 211/4″(54)—14 R73 211/4″(54)—21 R74 二、垫环 1、垫环的环号有如下三种: (1)R型垫环剖视图 适用于法兰为6B型法兰。 R型垫环在现场使用中可以重复使用 (在外观无损坏的情况下)。 (2)RX型垫环,剖视图 适用于法兰为6B型法兰

如何区别、形声字、象形字、会意字、指事字

象形文字 象形文字(Hieroglyphic)来自于图画文字,是一种最原始的造字方法,图画性质减弱,象征性质增强。因为有些实体事物和抽象事物是画不出来的,它的局限性很大。埃及的象形文字、苏美尔文、古印度文以及中国的甲骨文,都是独立地从原始社会最简单的图画和花纹产生出来的。约5000 年前,古埃及人发明了象形文字。这种字写起来既慢又很难看懂。 会意字 会意是用两个或两个以上的独体字根据意义之间的关系合成一个字,综合表示这些构字成分合成的意义,这种造字法叫会 意。用会意法造出的字是会意字。 类型 异体会意字 用不同的字组成。如“武”,从戈从止。止是趾本字,戈下有脚,表示人拿着武器走,有征伐或显示武力的意思。 同体会意字 用相同的字组成。如“从”字是一个人跟着另一个人向前走,表示跟从。“比”,表示两人接近并立。 简介

指事字 指事字是一种抽象的造字方法,也就是当没有、或不方便用 指事字 具体形象画出来时,就用一种抽象的符号来表示,例如「上」、 下」、「凶」……等等。「上」、「下」两个字是用横线「一」为 界,在横线上用一点或较短的短线指出上方的位置,写成「二」, 也就是「上」字;而在横线下面画符号为「」,则是「下」字。 凶」字是指地上有一个深坑,走路的人没看见而踏空掉进 坑里,「ㄩ」代表深坑,中间的「×」符号就是象征在陷阱里放置 的致命的危险物(交叉而置的箭)。 说文解字》“指事者,视而可识,察而现意,上下是也。” 说文解字》释字9353 个,除了在对“上”、“下”二字诠释 时,明确其为指事外,其他即便是后世公认的指事字,均以象形、 会意例释之,再加上其《叙》中关于指事字之界说,言辞简约, 语焉不详,故导致了古今对指事字结构类型认识上的分歧。如段

各种字体的不同特点

1/宋体:客观、雅致、大 F70DCEC1F6AF7B68A35800C16238E541E455A09B9D3A37E9FB7EA8195AD41CDBAD气、通用。宋体是与印刷术同龄的出版字体,最适用于包括电视字幕在内的任何媒体。当你不知道选择哪种字体的时候,就选择宋体。西方拼音文字印刷体都沿用了中文宋体的韵味并公认为是国际化字体。这种最普通、最平淡的字体其实是最美、最永恒的字体。宋体细分当中书宋和报宋尤为常用,跟拉丁字母的印刷体风格完全一致;大标宋古风犹存,给人古色古香的视觉效果。 2/黑体:厚重、抢眼。多用于 6B58FEB4E5E5A8935AEE649EEB8D718361AE1926B56C094C1A132AB17996BC17D2 标题制作,有强调的效果。但电影、电视唱词字幕字号较小,用宋体有时容易让人看了眼花,用清瘦型的黑体做唱词已被普遍接受。 3/楷体:清秀、平和,带书卷味。它是近、现代印刷品中追求书卷味的产物,多用于启蒙教材。在专业书籍中多用于主观文字当中。唱词制作也可接受。 4/仿宋:权威、古板。是早期中文打字机的专用字体,由于那种打字机多用于国家机关,因此仿宋体至今仍是红头文件的专用字体。印刷品中使用仿宋体给人某种权威的感觉,一般用于观点提示性阐述,电视字幕不多用。 5/圆体:小资、势利、商业味。这种字体最初出现在海外商业场合,也称线性。内地版本的圆体字比较僵硬,缺乏美感,电视屏幕上还经常笔画粘在一起,变成一块一块的,看了费劲,不用也罢。 6/综艺:艺术、专业、现代感。一种设计味较浓的字体,少用可表现一种艺术的时尚,滥用则嫌矫揉造作。 7/魏碑:刚劲、正气、强硬。电视字幕中顶多适用于法律节目的标题制作。喜欢魏碑体的同学最好拿书法作品来欣赏,电视节目还是多表现客观,不宜用魏碑。 8/行楷:粗俗。作为手写文书,行楷本来是最常用,也是最能出彩的字体,但电脑中的行楷字体书法功底欠佳,书法最讲究变化,电脑却同一个字千篇一律,犯了书法的一大忌。行楷在上世纪八九十年代末的报刊标题中风行一时,现在已逐渐被抛弃,降格为县级以下报刊或一些单位内部刊物中使用。电视节目中如果一定要用的话,一个片子最多使用一两个字就够了,用在一句话以上就要考虑会不会影响片子的品味了。 9/隶书:好的书法作品中,隶书含中有露、刚柔并济,是很雅的一种,表现力十分丰富,可惜在中国内地活字印刷年代制造的隶书字圆润有余、力度和变化不足,电脑排版时代的隶书字体完全沿用了那种隶书,后来才出现的毛隶、隶变(小隶)等隶书字体书法韵味有所改进,但仍缺乏变化。不适合大篇幅使用。 10/舒体:软弱、猥琐、轻浮。由于其制作与舒同的书法韵味有很大出入,电脑打出来便过于柔弱,失去了它原有的韧劲,少用为妙。 计算机字库汉字体系风格论 【摘要】汉字,是一个阵容庞大的媒体体系。它的字体字型多种多样,但使用起来往往容易择选不当或陷入盲目。本文以科学的态度和严谨的理论,较系统全面地论述了汉字媒体的字体造型特点与艺术风格。以鲜明的观点和新颖的思路,提出了五种风格体系论,认真强调和积极倡导发挥汉字字体形象艺术感染力的必要性,对正确、全面、合理地使用汉字字体,具有积极意义。 【关键词】字体体系、字体艺术风格(审美特征)、汉字使用

类与类之间的关系及代码表现

类与类之间的关系对于理解面向对象具有很重要的作用,以前在面试的时候也经常被问到这个问题,在这里我就介绍一下。 类与类之间存在以下关系: (1)泛化(Generalization) (2)关联(Association) (3)依赖(Dependency) (4)聚合(Aggregation) UML图与应用代码例子: 1.泛化(Generalization) [泛化] 表示类与类之间的继承关系,接口与接口之间的继承关系,或类对接口的实现关系。一般化的关系是从子类指向父类的,与继承或实现的方法相反。 [具体表现] 父类父类实例=new 子类() [UML图](图1.1) 图1.1Animal类与Tiger类,Dog类的泛化关系 [代码表现] 1.class Animal{} 2.class Tiger extends Animal{} 3.public class Test 4.{ 5. public void test() 6. { 7. Animal a=new Tiger(); 8. } 9.} 2.依赖(Dependency) [依赖] 对于两个相对独立的对象,当一个对象负责构造另一个对象的实例,或者依赖另一个对象的服务时,这两个对象之间主要体现为依赖关系。 [具体表现]

依赖关系表现在局部变量,方法的参数,以及对静态方法的调用 [现实例子] 比如说你要去拧螺丝,你是不是要借助(也就是依赖)螺丝刀(Screwdriver)来帮助你完成拧螺丝(screw)的工作 [UML表现](图1.2) 图1.2 Person类与Screwdriver类的依赖关系 [代码表现] 1.public class Person{ 2. /** 拧螺丝 */ 3. public void screw(Screwdriver screwdriver){ 4. screwdriver.screw(); 5. } 6.} 3.关联(Association) [关联] 对于两个相对独立的对象,当一个对象的实例与另一个对象的一些特定实例存在固定的对应关系时,这两个对象之间为关联关系。 [具体表现] 关联关系是使用实例变量来实现 [现实例子] 比如客户和订单,每个订单对应特定的客户,每个客户对应一些特定的订单;再例如公司和员工,每个公司对应一些特定的员工,每个员工对应一特定的公司 [UML图] (图1.3) 图1.3 公司和员工的关联关系 [代码表现] 1.public class Company{ 2. private Employee employee;

【免费下载】各种字体的不同特点

1/宋体:客观、雅致、大气、通用。宋体是与印刷术同龄的出版字体,最适用于包括电视字幕在内的任何 媒体。当你不知道选择哪种字体的时候,就选择宋体。西方拼音文字印刷体都沿用了中文宋体的韵味并公认为是国际化字体。这种最普通、最平淡的字体其实是最美、最永恒的字体。宋体细分当中书宋和报宋尤为常用,跟拉丁字母的印刷体风格完全一致;大标宋古风犹存,给人古色古香的视觉效果。 2/黑体:厚重、抢眼。多用于标题制作,有强调的效果。但电影、电视唱词字幕字号较小,用宋体有时容 易让人看了眼花,用清瘦型的黑体做唱词已被普遍接受。 3/楷体:清秀、平和,带书卷味。它是近、现代印刷品中追求书卷味的产物,多用于启蒙教材。在专业书 籍中多用于主观文字当中。唱词制作也可接受。 4/仿宋:权威、古板。是早期中文打字机的专用字体,由于那种打字机多用于国家机关,因此仿宋体至今 仍是红头文件的专用字体。印刷品中使用仿宋体给人某种权威的感觉,一般用于观点提示性阐述,电视字幕不多用。 5/圆体:小资、势利、商业味。这种字体最初出现在海外商业场合,也称线性。内地版本的圆体字比较僵硬,缺乏美感,电视屏幕上还经常笔画粘在一起,变成一块一块的,看了费劲,不用也罢。 6/综艺:艺术、专业、现代感。一种设计味较浓的字体,少用可表现一种艺术的时尚,滥用则嫌矫揉造作。 7/魏碑:刚劲、正气、强硬。电视字幕中顶多适用于法律节目的标题制作。喜欢魏碑体的同学最好拿书法 作品来欣赏,电视节目还是多表现客观,不宜用魏碑。 8/行楷:粗俗。作为手写文书,行楷本来是最常用,也是最能出彩的字体,但电脑中的行楷字体书法功底 欠佳,书法最讲究变化,电脑却同一个字千篇一律,犯了书法的一大忌。行楷在上世纪八九十年代末的报刊标题中风行一时,现在已逐渐被抛弃,降格为县级以下报刊或一些单位内部刊物中使用。电视节目中如果一定要用的话,一个片子最多使用一两个字就够了,用在一句话以上就要考虑会不会影响片子的品味了。 9/隶书:好的书法作品中,隶书含中有露、刚柔并济,是很雅的一种,表现力十分丰富,可惜在中国内地 活字印刷年代制造的隶书字圆润有余、力度和变化不足,电脑排版时代的隶书字体完全沿用了那种隶书,后来才出现的毛隶、隶变(小隶)等隶书字体书法韵味有所改进,但仍缺乏变化。不适合大篇幅使用。 10/舒体:软弱、猥琐、轻浮。由于其制作与舒同的书法韵味有很大出入,电脑打出来便过于柔弱,失去 了它原有的韧劲,少用为妙。 计算机字库汉字体系风格论 【摘要】汉字,是一个阵容庞大的媒体体系。它的字体字型多种多样,但使用起来往往容易择选不当或陷入盲目。本文以科学的态度和严谨的理论,较系统全面地论述了汉字媒体的字体造型特点与艺术风格。以鲜明的观点和新颖的思路,提出了五种风格体系论,认真强调和积极倡导发挥汉字字体形象艺术感染力的必要性,对正确、全面、合理地使用汉字字体,具有积极意义。 【关键词】字体体系、字体艺术风格(审美特征)、汉字使用

宋体、仿宋体、楷体字的辨认

一、仿宋体 仿宋体是一种采用宋体结构、楷书笔画的较为清秀挺拔的字体,笔画横竖粗细均匀,常用于排印副标题、诗词短文、批注、引文等,在一些读物中也用来排印正文部分。 仿宋体的书写比宋体和黑体都方便快捷,因为只要计算好字格就可以用钢笔或毛笔(需用较硬的狼毫笔)直接书写。另一方面,仿宋体注重结构造型,与楷书比较接近,多练习仿宋体有利于准确地掌握汉字的基本结构,在此基础上再学习其它美术字体就更为方便快速。因而,有的同志主张学习美术字先从学习仿宋体开始,这也是很有道理的。 仿宋体是由楷体发展演变而来,我国宋代经济有了一定的发展,我们的祖先首先发明了印刷术。为适应雕版印刷的需要,刻工们要求有一种比楷书更为整齐规范的字体,他们经过不断探索,创造了一种横平竖直,较为规范的雕版字体它很接近楷体,横坚笔画也没有太大的差别。到了明代,这种雕版字体发展得更为规范,成为横轻竖重,略带棱角的字体,后人称之为老宋体。二十世纪初,钱塘丁辅之,丁善之等人集宋代刻本字体,仿刻了一种印刷活字字体,这种字体横竖粗细相等,笔画秀丽,字形呈长方(上下比左右长),清秀美观。 二、宋体 宋体,是为适应印刷术而出现的一种汉字字体。笔画有粗细变化,而且一般是横细竖粗,末端有装饰部分(即「字脚」或「衬线」),点、撇、捺、钩等笔画有尖端,属于衬线字体(serif),常用于书籍、杂志、报纸印刷的正文排版。 宋朝文化兴盛,印刷业有了巨大发展,从南宋时期,在临安等地的印刷作坊里就开始出现了类似印刷体的字体,后世称之为仿宋体。明朝时期,文人追捧宋刻本书籍,于是刻匠们加粗仿宋体的竖线和壁画的端点以抵抗刻版磨损,却依旧称之"宋体"。现代的所谓宋体基本上就是这样成型的。 宋体是中国明代木版印刷中出现的字体。最初是在复刻临安书棚本时将笔划加以直线化,呈现出硬朗表情的一种字体。嘉靖三十二(1553年)刊刻的《墨子》中宋体的基础已经成型。明朝后期的万历年间刊本数量急速增加,促进了书籍制作的分工化。[1] 清人蒲松龄说:「隆、万时有书工专写肤郭字样,谓之宋体。刊本有宋体字,盖盼于此」。钱泳则云:「有明中叶写书匠改为方笔,非颜非欧,已不成字」。钱大镛的《明文在》凡例中有言:「古书俱系能书之士,各随其字体书之,无所谓『宋字』也,明季始有书工,专写肤廓字样谓之宋体」。由清人的言语可知宋体字并非源于宋代

法兰尺寸标准表

法兰尺寸标准表 产品符合中华人民共和国机械工业部标准《JBT81-1994凸面板式平焊钢制管法兰》与《JBT86.1-1994凸面钢制管法兰盖》 钢制法兰尺寸、重量及价格表 公称压力1.0MPa 材质:Q235钢板 螺栓(mm) 规格 DN(mm) 内径 (mm) 外径 (mm) 厚度 (mm) 孔径数量直径重量 (KG) 50 57 160 18 18 4 M16 2.09 70 73 180 20 18 4 M16 2.84 80 89 195 20 18 4 M16 3.24 100 108 215 22 18 8 M16 4.01 125 133 245 24 18 8 M16 5.40 150 159 280 24 23 8 M20 6.67 200 219 335 24 23 8 M20 8.24 250 273 390 26 23 12 M20 10.7 300 325 440 28 23 12 M20 12.9 350 377 500 28 23 16 M20 16.9 400 426 565 30 25 16 M22 21.8 450 480 615 30 25 20 M22 24.4 500 530 670 32 25 20 M22 27.7 600 630 780 36 30 20 M27 39.4 700 720 895 36 30 24 M27 53 800 820 1010 38 34 24 M30 67 900 920 1110 42 34 28 M30 85 1000 1020 1220 44 34 28 M30 106 1200 1220 1450 48 41 32 M36 155 **** **** 1675 54 48 36 M42 221 1600 1620 1915 62 54 40 M48 335 1800 1820 2115 66 54 44 M48 399 2000 2020 2325 72 54 46 M48 505 钢制法兰尺寸、重量及价格表 公称压力0.6Mpa 材质:Q235钢板 螺栓(mm) 规格 (mm) 内径 (mm) 外径 (mm) 厚度 (mm) 孔径 数量直径 重量(KG) 250 273 370 24 18 12 M16 8.03 300 325 435 24 23 12 M20 10.3 350 377 485 26 23 12 M20 12.59 400 426 535 28 23 16 M20 15.2 450 480 590 28 23 16 M20 17.59 500 530 640 30 23 16 M20 20.67 600 630 755 30 25 20 M22 26.57

类与对象答案

类与对象 知识要点 1.掌握类与对象的概念和定义方法,掌握类成员的访问属性。 2.掌握构造函数的概念、定义方法和使用方法。 3.掌握析构函数的概念、定义方法和使用方法。 4.掌握拷贝构造函数的概念、定义方法和使用方法。 5.掌握包含对象成员的类构造函数的定义方法。 6.掌握静态成员的概念、定义方法、作用和特点。 7.掌握友元的概念、定义方法、作用和特点。 8.掌握类模板的定义格式与使用方法。 典型例题分析与解答 例题1:下列有关类的说法不正确的是()。 A.对象是类的一个实例 B.任何一个对象只能属于一个具体的类 C.一个类只能有一个对象 D.类与对象的关系和数据类型与变量的关系相似 答案:C 分析:对象是类的一个实例,类与对象的关系和数据与变量的关系相似,所以一个类可以有多个对象。 例题2:下面()项是对构造函数和析构函数的正确定义。 A.void X::X(), void X::~X() B.X::X(参数), X::~X() C.X::X(参数), X::~X(参数) D.void X::X(参数), void X::~X(参数) 答案:B 分析构造函数无返回类型、可带参数、可重载;析构函数无返回类型、不可带参数、不可重载。 例题3:()的功能是对象进行初始化。 A.析构函数 B. 数据成员 C.构造函数 D.静态成员函数 答案:C 分析:当一个对象定义时,C++编译系统自动调用构造函数建立该对象并进行初始化;当一个对象的生命周期结束时,C++编译系统自动调用析构函数注销该对象并进行善后工作; 例题4:下列表达方式正确的是()。 A.class P{ B. class P{ public: public: int x=15; int x; void show(){cout<

JAVA中类和对象的理解

JAVA中类和对象的理解 Java是面向对象的编程语言,哪么什么是对象?一句话,万物皆对象。只要你想得到,无论是实体,还是一些虚拟的事物,都可以称之为对象。换言之,Java作为面向对象的编程语言,意味着可以把任何形式的内容转化为编程语言进行软件开发。 先说什么是类,什么是对象,这样在进行面向对象编程中,才能有比较完备的面向对象的编程思想。 既然万物皆对象,我们编程,用编程语言来描述对象,不能为浩繁纷杂每一个对象进行相应描述,这就涉及到一个具体到抽象的过程了。其实我们的语言已经做到这一点了。我们平时说道的每一个名词,其实都是对现实世界中的一个个具体的“物体”(或称为“实体(Entity)”)相应的特征和行为抽象出来,并且将各种具有相同特征的“物体”分为一个个的“类(class)”,就是我们为每一类事物起的名字。比如:汽车、食物、狗、人这些词等等。 我们用一个具体的例子来进一步说明“类”和“对象”之间的联系与区别。以汽车为例,只要是汽车,都应该有以下一些“属性”:轮子、引擎、方向盘、刹车等等组件,可以通过一些“方法”来操作汽车,改变汽车的状态,如加速、转向、减速等,这些都是汽车的共性。具体到某辆汽车,它可能有80cm的轮子、40cm的方向盘、A6引擎,它是一个确定的实例。“汽车”这个名词就是“类”,一辆辆真实的汽车就是“汽车”这个类的实例化。 我们每天的生活、工作,无时无刻不在和“对象”打交道----衣服、食物、房子、汽车等。我们仔细想想,就会发现,当我们处理这些对象时,我们不会将这些对象的属性(对象所具有的特点)和操作分开。如我们进出“房间”时,我们不会将“房门”这个属性和“开门”这个操作分开,它们是联系在一起的。那么,面向对象编程思想力图使得程序和现实世界中的具体实体完全一致。这样,可以让程序员乃至非专业人员更好的理解程序。所以Java 语言还是很好阅读的。 类和对象是面向对象编程思想中的核心和基础。类是作为对象的抽象而存在的,所有的对象都依据相应的类来产生,在面向对象的术语中,这个产生对象的过程称为“实例化”。 前面说了,类可以看做是对象的抽象,它是用来描述一组具有相同特征对象的。那么,对象中,最重要的两种特征内容,就是: 1.数据:数据就是描述对象的信息的静态信息了。比如一辆汽车,它的型号,价格,出厂日期等等,都是这个汽车对象的静态信息数据。 2.行为:行为就是这个对象可以完成的动作、操作等,是对象的动态特征。接上个例子,汽车可以启动,行驶,刹车等等,都是这辆汽车的动态特征。 通过这两方面的特征内容,基本上这个对象就可以描述清楚了。 Java中类就是完全模拟了类的特征内容。在Java类的定义规范里面,有两方面内容来对应类中的数据和行为: 1.属性:用来描述对象的数据元素称为对象的属性(也称为数据/状态) 2.方法:对对象的属性进行的操作称为对象的方法(也称为行为/操作) Java中类的声明语法规范(即如何定义一个标准的Java类) 语法规则:

如何区别、形声字、象形字、会意字、指事字知识讲解

如何区别、形声字、象形字、会意字、指 事字

象形文字 象形文字(Hieroglyphic)来自于图画文字,是一种最原始的造字方法,图画性质减弱,象征性质增强。因为有些实体事物和抽象事物是画不出来的,它的局限性很大。埃及的象形文字、苏美尔文、古印度文以及中国的甲骨文,都是独立地从原始社会最简单的图画和花纹产生出来的。约5000年前,古埃及人发明了象形文字。这种字写起来既慢又很难看懂。 会意字 会意是用两个或两个以上的独体字根据意义之间的关系合成一个字,综合表示这些构字成分合成的意义,这种造字法叫会意。用会意法造出的字是会意字。 类型 异体会意字 用不同的字组成。如“武”,从戈从止。止是趾本字,戈下有脚,表示人拿着武器走,有征伐或显示武力的意思。 同体会意字 用相同的字组成。如“从”字是一个人跟着另一个人向前走,表示跟从。“比”,表示两人接近并立。 简介

指事字 指事字是一种抽象的造字方法,也就是当没有、或不方便用 指事字 具体形象画出来时,就用一种抽象的符号来表示,例如「上」、「下」、「凶」……等等。「上」、「下」两个字是用横线「一」为界,在横线上用一点或较短的短线指出上方的位置,写成「二」,也就是「上」字;而在横线下面画符号为「」,则是「下」字。 「凶」字是指地上有一个深坑,走路的人没看见而踏空掉进坑里,「ㄩ」代表深坑,中间的「×」符号就是象征在陷阱里放置的致命的危险物(交叉而置的箭)。 《说文解字》“指事者,视而可识,察而现意,上下是也。” 《说文解字》释字 9353个,除了在对“上”、“下”二字诠释时,明确其为指事外,其他即便是后世公认的指事字,均以象形、会意例释之,再加上其《叙》中关于指事字之界说,言辞简约,语焉不详,故导致了古今对指事字结构类型认识上的分歧。如段玉裁《说文解字·叙》注云:“指事之别与

实验四 类和对象定义

实验四类和对象定义 一、实验类型 设计型 二、实验目的 1、实验目的 (1) 掌握类的声明、定义和使用方法。 (2) 掌握对象的定义和使用方法。 (3) 掌握具有不同访问属性的类中成员的使用方法。 三、上机准备 1、实验室安装VC++6.0软件。 2、类的基本概念、对象的基本概念。 四、实验内容与步骤 1、在Rect.cpp中,定义一个矩形(Rect)类,包括矩形的左上角坐标(X1,Y1),矩形右下角坐标(X2,Y2)四个数据成员;包括计算矩形面积(getArea),计算矩形周长(getPerimeter),设置矩形数据成员(setRect)和输出矩形数据成员(print)四个成员函数。数据成员为私有成员,成员函数为公有成员且在类说明内定义实现。在main()函数中建立Rect类对象并进行测试。 提示与分析: (1) 分析类中数据成员的类型并定义对应的变量,如double X1,X2,Y1,Y2; (2) 分析成员函数的函数原型,即返回值及其类型以及相关参数,如: double getArea(); double getPerimeter(); void setRect(double,double ,double,double); void print(); (3) 思考成员函数的函数体实现代码。 计算矩形面积和周长的方法: Area=fabs(X2-X1)*fabs(Y2-Y1); Perimeter=(fabs(X2-X1)+fabs(Y2-Y1))*2; (4) 根据要求设定类成员的访问权限,如成员函数为公有成员(public),数据成员为私有成员(private)。 (5) 将成员函数的函数体代码放到类说明中。 (6) 在main()函数中建立Rect类的实例并调用对象的方法进行测试,如

各种字体特点

小篆 小篆又名秦篆,指秦始皇帝统一文字所用的书体,汉代沿用。后世称篆书,一般皆指小篆 文字已规范化,偏旁都有固定的形式和位置,形体竖长方,其空虚不足之处尽量用笔画填满 这也是我国历史上第一次运用行政手段大规模地规范文字的产物。秦王朝使用经过整理的小篆统一全国文字,不但基本上消灭了各地文字异行的现象,也使古文字体异众多的情况有了很大的改变,在中国文字发展史上有著重要的角色。 除了小篆,包含甲骨文、金文,被统称为中国字的古文字 隶书 隶书也叫“隶字”、“古书”。是在篆书基础上,为适应书写便捷的需要产生的字体。就小篆加以简化,又把小篆匀圆的线条变成平直方正的笔画,便于书写。分“秦隶”(也叫“古隶”)和“汉隶”(也叫“今隶”),隶书的出现,是古代文字与书法的一大变革。 隶书是汉字中常见的一种庄重的字体,书写效果略微宽扁,横画长而直画短,讲究“蚕头雁尾”、“一波三折”。它起源于秦朝,在东汉时期达到顶峰,书法界有“汉隶唐楷”之称。也有说法称隶书起源于战国时期。 草书 草书的特点是“缩减笔画、多加萦带、笔断意连,自然天成。书的特点是“缩减笔画、多加萦带、笔断意连,自然天成。 形成于汉代,是为书写简便在隶书基础上演变出来的。有章草、今草、狂草之分。 行书 行书在楷书的基础上产生,是介于楷书、草书之间的一种字体,是为了弥补楷书的书写速度太慢和草书的难于辨认而产生。“行”是“行走”的意思,因此它不像草书那样潦草,也不像楷书那样端正。实质上它是楷书的草化或草书的楷化。楷法多于草法的叫“行楷”,草法多于楷法的叫“行草”。 ?十九世纪末,学者们发现并认识了甲骨文。甲骨文的发现,象璀璨的群星,把学者们目光集聚到了甲骨文的研究方面来。这种古老而系统的文字,与埃及的纸草文字、巴比伦的楔形文字和印度的哈拉伯文字并称为世界四大文字体系。 甲骨文经过搜集、整理之后,在罗振玉、王国维的大力宣传与精心研究下,一时成为国内外学术界高度重视的学问。 在罗、王的极力倡导下,逐渐成长起来以甲骨文来研究中国古代文化的甲骨学派。甲骨学的发展与深入,为中国古代史的研究奠定了基础。 关于甲骨文的发现最为流行的说法

相关主题
文本预览
相关文档 最新文档