当前位置:文档之家› 基于单片机的直流电机控制系统在动态送风装置中的应用

基于单片机的直流电机控制系统在动态送风装置中的应用

基于单片机的直流电机控制系统在动态送风装置中的应用
基于单片机的直流电机控制系统在动态送风装置中的应用

基于单片机的直流电机控制系统

在动态送风装置中的应用Ξ

任小坤 孙淑凤 王 立

(北京科技大学)

摘 要 介绍一种基于单片机的动态送风控制系统。该控制系统以C8051F330单片机为处理器,配合控制电路,采用脉宽调制技术,根据自然风特性,对直流电机的转速进行控制,从而实现风机出风的动态化。关键词 动态送风 单片机 控制电路 脉宽调制 直流电机

Application of control system of DC motor controlled by mono2chip computer to dynamic air supply device

Ren Xiaokun Sun Shufeng Wang Li

(University of Science and Technology Beijing)

ABSTRACT Introduces the control system for dynamic air supply device by mono2chip com2 puter.In this control system,the mono2chip computer of C8051F330is the processor,match2 ing with the control circuit.According to the feature of natural air,the control system regu2 lates the rotational speed of DC motor by PWM(Pulse Width Modulation)method,and real2 izes the dynamic air supply of the fan.

KE Y WOR DS dynamic air supply;mono2chip computer;control circuit;pulse width modu2 lation;DC motor

随着人们生活水平的提高和科技水平的发展,空调已从一种奢侈品变为必需品。由于人们对工作和生活环境的舒适程度要求越来越高,以及节能环保意识的日渐增强,传统稳态空调方式的某些不足逐渐显现出来,如长时间在稳定的中性热环境中,人体自身调节能力下降,以及能耗过大等。基于这些问题,有研究者提出了动态空调策略[124]。动态送风是实现热环境动态化的有效措施。人体实验也表明,动态送风有较高的接受性[526]。

目前动态送风装置的研究主要有两个方向:一是步进电机控制法[728],二是交直流电机转速控制法[9]。

笔者通过分析目前动态送风装置的研究现状,研究基于单片机的动态送风控制系统,并对送风装置的出风特性进行实验研究。

1 直流电动机在动态送风中的应用

1.1 直流电动机的调速方式

直流电动机的机械特性方程式为:

n=

U

C

-

R I

C

(1)其中n为电机转速,U为电枢两端电压,R为电枢电路总电阻,I为电枢电流,C为电动势系数。从该式可知,直流电动机的调速方法可分为两类:对励磁磁通进行控制的励磁控制法和对电枢电压进行控制的电枢控制法。其中励磁控制法在低速时受磁极饱和的限制,在高速时受换向火花和换向器结构强度的限制,并且励磁线圈电感较大,动态响应较差。电枢控制法即在励磁恒定不变的情况下,通过调节电枢电压的大小实现调速。由于调速时

第7卷 第1期 2007年2月

制冷与空调

REFRIGERA TION AND AIR-CONDITION IN G

85288

Ξ收稿日期:2005212215

通讯作者:任小坤,Email:renxiaokun@https://www.doczj.com/doc/fd8995261.html,

机械特性硬度不变,即使在较低转速下,电动机也能稳定运行。此外,电枢控制法可实现无级调速,且控制灵活方便。因此在动态送风控制中采用该方法,可方便实现各种风速尤其是小风速的调节。1.2 直流电动机的驱动方式直流电动机电枢电压的控制和驱动中,半导体功率器件的使用可分为两种方式:线形放大驱动方式和开关驱动方式。线形放大驱动方式控制原理简单,输出波动小,线性好,对邻近电路干扰少。但功率器件在线形区工作时会将大部分电功率用于产生热量,效率和散热问题严重。开关驱动方式是使半导体功率器件工作在开关状态,通过脉宽调制来控制电动机电枢电压,实现调速。开关驱动方式功耗小,效率高,调压范围宽,可靠安全,滤波电容容量小,温升低,符合动态送风的控制特点。2 脉宽调制(PWM)调速技术

图1是利用开关管对直流电动机进行PWM 调速控制的原理图。在图1中,当开关管V1(MOSFET )的栅极输入高电平时,MOSFET 导通,直流电动机电枢绕组两端有电压U s 。t 1秒后,栅极输入变为低电平,MOSFET 截止,

电枢电压变为0。t

2秒后,栅极输入重新变为高电平,开关管MOSFET 的动作重复前面的过程。这样,对应着输入的电平高低,电机电枢电压的波形如图2所示。电机的电枢绕组两端的电压平均值U 0为:

U 0=

t 1U s +0t 1+t 2=t 1

T U s

U s

(2)

其中α为占空比,α=

t 1

T

。占空比表示在一个周期T ,开关管导通的时间与周期的比值。

α的变化范围为0≤α≤1。由式(2)可知,当电源电压U s 不变

时,电枢端电压的平均值U 0取决于占空比α的大

图1 PWM 调速控制原理图

图2 输入及输出电压波形图

小,改变α值就可以改变端电压的平均值,从而达

到调速的目的,即PWM 调速。本实验采用PWM 调速中的定频调宽法,即保持周期T (或频率)不变,同时改变t 1和t 2。3 风机转速控制主电路

图3所示为动态送风装置的控制主电路,属于有制动的不可逆PWM 控制系统。在该电路中,单片机C8051F330按照控制程序输出PWM 波,控制开关管V 1与V 2的导通和关断,从而控制电动机的转速,进而控制风机的风速。开关管V 1和V 2的PWM 信号电平方向相反。采用正相输出器7407实现对V 1的控制,反相输出器7406实现对V 2的控制。

图3 风机转速控制主电路

控制过程如下:在每个PWM 周期的0~t 1区间,V 1导通,V 2截止,电动机工作在电动状态。在

t 1~t 2区间,V 1截止,电源被切断,电枢绕组的自

感电动势使电流经过续流二极管D 2形成回路。此时虽然开关管V 2的控制信号为高电平,由于续流二极管D 2的钳位作用,使开关管V 2截止,其电流波形如图4中I 1所示。在制动时,由于控制信号的PWM 占空比减小,使电枢电压平均值U 0小于电动机的反电动势,电枢中的电流反向流动,产生

制动转矩。在每个PWM 周期的0~t 1区间,电枢

?

68? 制 冷 与 空 调 第7卷 

绕组的自感电动势与反电动势之和大于电源电压,电流经过续流二极管D 1将能量回馈给电源,电动机工作在再生发电制动状态。在t 1~t 2区间,V 2在控制信号作用下导通,电流经过V 2形成回路,电动机处于耗能制动状态。制动时的电流波形如图4中I 2所示

图4 控制电压及电流波形图

4 动态送风的控制程序

单片机的控制程序可以用汇编语言或C51来编写。由于C51的通用性和易读性,本实验采用

C51来编写单片机的控制程序,用来实现动态送风功能。控制程序的关键是实现单片机依据自然风的规律来输出PWM 信号,从而控制电机转速及风机出口的风速,使风机出口的风速变化和频谱特征符合自然风的特性,达到动态送风的目的。由于PWM 信号是电压信号,因此电压和风速之间的关系至关重要。两者之间的关系通常是由实际测量的手段得到。控制程序的编写初步完成后,需要采集风速,分析数据,反过来再改善程序,是个不断完善的过程。5 贯流风扇在实验中的应用

本实验采用贯流风扇作为送风设备。图5为本装置中贯流风扇出风特性示意图。可以看出,贯流风扇不像离心式风扇使气流轴向进入风机,而是将机壳部分地敞开,使气流径向进入风机,气流横

穿叶片两次。这种结构上的特点使得出风口送风更为均匀,更容易满足人体的舒适性,同时也能更好地实现风速按照控制信号变化,提高了控制的准确性

图5 贯流风扇出风特性示意图

6 实验结果及分析

在本实验中,采用热线风速仪对风速进行采

集,热线为20μm 的钨铼丝,风速测量误差小于5%。风速采集的时间间隔为0.1秒。6.1 风速概率分布

一个完全随机的均匀各向同性物理量,其概率分布为正态分布,但由于受湍流的间歇性及空气流动边界条件的影响,自然风的速度分布为偏态分布[7]。图6为本实验中距离风机出口500mm ,600mm 和700mm 处的风速概率分布。从图中可

以看出,虽然距离风机出口远近不同,平均风速大小也不同,但是风速分布均为偏态分布,与普通机械风的正态速度分布[7]有明显区别,更接近自然风特性

图6 风速的概率分布图

6.2 频谱分布

功率谱密度E (f )反映了气流的波动能量随

频率f 的分配,对自然风的频谱特性的研究发现[7],虽然自然风千差万别,但频谱具有共性,其

?

78? 第1期 任小坤等:基于单片机的直流电机控制系统在动态送风装置中的应用

基本形状是相似的;自然风的波动能量集中在低频部分。图7和图8分别为本实验中距离风机出口300mm和600mm处的频谱分布。对比两图可以看出,虽然距离风口远近不同,但二者的频谱分布是相似的,能量主要集中在低频区,高频区的能量较低,接近自然风特性

7 距风口300mm处频谱图8 距风口600mm处频谱

7 结 论

分析现有动态风产生的不同方式,研究基于单

片机的动态送风控制系统,并对送风装置的出风特

性进行了实验研究。该装置出风均匀,噪声低,功

耗小,成本低,在风速概率分布、频谱分布等方面均

满足了动态送风的要求。

测试结果表明,整个系统方案可行,设计合理,

是一套经济、实用的动态送风装置。

参考文献

[1] 赵荣义.室内空气环境调节策略的新发展.洁净与空

调技术,1997,(2):226.

[2] 赵荣义,孙淑凤,丁容仪.Conditioning strategies of in2

door thermal environment in warm climates.Energy

and Building,2004,36(12):128121286.

[3] 孙淑凤,赵荣义,许为全,等.动态空调策略研究.制

冷与空调,2003,3(6):27232.

[4] P O Fanger,于晓明.21世纪的室内空气品质:追求

优异.暖通空调,2003,30(3):32235.

[5] 张宇峰,赵荣义.局部热暴露对人体全身热反应的影

响.暖通空调,2005,35(2):25230.

[6] 李俊,孙淑凤,狄洪发,等.动态条件下人体对个体送

风的热反应研究.暖通空调,2005,35(10):17222.

[7] 贾庆贤.送风末端装置的动态化研究.北京:清华大

学热能工程系,2000.

[8] 孙淑凤,丁容仪,赵荣义,等.新型送风末端装置性

能的实验研究.低温与超导,2003,31(2):49252.

[9] 周翔.动态热环境下人体热反应机理研究———气流

湍流度的影响.北京:清华大学建筑技术科学系,

2005.

[10] 张建国,王元,徐筑,等.基于微机与单片机通信方式

下的变频器控制.西北大学学报,2005,3(6):128.

(上接第84页)

3 结束语

冰蓄冷空调系统的经济性受当地电费结构及

其他优惠政策的影响很大,其可行性应在与常规空

调系统进行经济比较的基础上作出评估,具体计算

时应以空调全年负荷时间频数为基础。

对于三段分时电价,不应简单地采用峰谷电价

比或峰谷电价差来衡量电价的优惠程度,而应采用

平峰电价的加权平均值代替峰时电价来计算峰谷

电价比或峰谷电价差。

参考文献

[1] 余建平.调峰电站技术经济特性的分析与探讨.华东

电力,2002,(5):527.

[2] 罗德祥.某空调工程采用冰蓄冷系统的经济分析.制

冷,2005,24(2):43246.

[3] 黄洁,王长庆.某科技馆冰蓄冷系统经济分析.制冷

与空调,2004,(1):71274.

[4] C Chaichana,W Charters,L Aye.An ice thermal stor2

age computer model.Applied Thermal Engineering

2001,21:176921778.

?

8

8

?

制 冷 与 空 调 第7卷 

PWM控制直流电机的系统的设计

电力电子与电机拖动综合课程设计 题目: PWM控制直流电机的系统 专业: 05自动化 学号: 200510320219 姓名:张建华 完成日期: 指导教师:李晓高

电力电子与电机拖动综合课程设计任务书 班级:自动化05 姓名:张建华指导老师:2008年6月10日 年月日

目录

1 引言 直流电机由于具有速度控制容易,启、制动性能良好,且在宽范围内平滑调速等特点而在冶金、机械制造、轻工等工业部门中得到广泛应用。直流电动机转速的控制方法可分为两类,即励磁控制法与电枢电压控制法。励磁控制法控制磁通,其控制功率虽然小,但低速时受到磁饱和的限制,高速时受到换向火花和换向器结构强度的限制;而且由于励磁线圈电感较大,动态响应较差。所以常用的控制方法是改变电枢端电压调速的电枢电压控制法。调节电阻R即可改变端电压,达到调速目的。但这种传统的调压调速方法效率低。随着电力电子技术的进步,发展了许多新的电枢电压控制方法,其中PWM(脉宽调制)是常用的一种调速方法。其基本原理是用改变电机电枢(定子)电压的接通和断开的时间比(占空比)来控制马达的速度,在脉宽调速系统中,当电机通电时,其速度增加;电机断电时,其速度减低。只要按照一定的规律改变通、断电的时间,即可使电机的速度达到并保持一稳定值。最近几年来,随着微电子技术和计算机技术的发展及单片机的广泛应用,使调速装置向集成化、小型化和智能化方向发展。 本电机调速系统采用脉宽调制方式, 与晶闸管调速相比技术先进, 可减少对电源的污染。为使整个系统能正常安全地运行, 设计了过流、过载、过压、欠压保护电路, 另外还有过压吸收电路。确保了系统可靠运行。 2 系统概述 2.1 系统构成 本系统主要有信号发生电路、PWM速度控制电路、电机驱动电路等几部分组成。整个系统上采用了转速、电流双闭环控制结构,如图1所示。在系统中设置两个调节器,分别调节转速和电流,二者之间实行串级连接,即以转速调节器

pic单片机控制直流电机

实用标准文案 目录 1 总体设计框 架 (3) 2 硬件电路设 计 (4) 2.1 芯片介 绍 (4) 2.2 驱动电 路 (9) 2.3 按键控制电 路 (10) 3 程序编写 ................................................. 10 3.1 工作原 理 (10) 21程序书写过程 3.2 ...................................................... 参考资 料 (16) 精彩文档. 实用标准文案 直流电机驱动 Abstract 摘要:本文主要内容是利用PIC18F452单片机来控制直流电机,通过L293NE来驱动电机,通过按键来使其正转,反转。Keywords 关键词:直流电机,PWM,L293NE 精彩文档. 实用标准文案

总体设计框架1硬件电路利用驱动芯片L293D来驱动直流电机,按键则是单独引出。如图1所示。软件则是C语言编程。 PI驱C直动1流8电电F路机452 图1硬件设计框精彩文档. 实用标准文案 2硬件电路设计 2.1 芯片介绍 首先,总体说明硬件电路设计,如图2 原理图,图3 PCB图以及图4板子的图所示。三个输入信号,如图分别为RD4,RD5,RD6连上光耦的2脚,然后通过光耦的4脚引入L293D的使能引脚(12EN)以及输入引脚(1A,2A),然后L293D的输出引脚(1Y,2Y)通过H-桥型控制电路与直流电机连接。 图2 直流电机控制部分原理图 精彩文档. 实用标准文案 PCB图图3直流电机控制部分 成品板图4 其中红线圈表示直流电机控制部分。下面详细介绍各个芯片。PIC18F452

基于单片机对直流电机的控制

基于单片机对直流电机的控制 第十五组 姓名:吴代露20131325010 张鹏飞20131325012 金静丽20131325014 周敏20131325015 胡会华20131325017 顾蓉20131325018 专业:2013级信息工程(系统工程方向) 指导老师:周旺平 2014.12.22

基于单片机对直流电机的控制 内容摘要 电动机作为最主要的动力源,在生产和生活中占有重要地位。电动机的调速控制过去多用模拟法,随着计算机的产生和发展以及新型电力电子功率器件的不断涌现,电动机的控制也发生了深刻的变化。 关键字:电动机飞思卡尔 PWM控制 一、引言 (一)直流电机的定义 直流电机(direct current machine):是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 (二)直流电机的基本结构 由直流电动机和发电机工作原理示意图可以看到,直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。 (三)直流电机工作原理

直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向)。导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 (四)直流电机的分类 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。(1)无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。 (2)有刷直流电动机:又可分为永磁直流电动机和电磁直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。稀土永磁直流电动机:体积小且性能更好,但价格昂贵,主要用于航天、计算机、井下仪器等;铁氧体永磁直流电动机:由铁氧体材料制成的磁极体,廉价,且性能良好,广泛用于家用电器、汽车、玩具、电动工具等领域;铝镍钴永磁直流电动机:需要消耗大量的贵重金属、价格较高,但对高温的适应性好,用于环境温度较高或对电动机的温度稳定性要求较高的场合。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 (1)串励直流电动机:电流串联,分流,励磁绕组是和电枢串联的,直流串励电

直流电机控制系统设计

直流电机控制系统设计

XX大学 课程设计 (论文) 题目直流电机控制系统设计 班级 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号姓名 课程设计题目直流电机控制系统设计 课程设计时间: 2012年7 月9 日至2012年7 月20 日 课程设计的内容及要求: 1.内容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。 指导教师年月日 负责教师年月日

学生签字年月日 目录 0 前言 (1) 1 总体方案设计 (2) 1.1 系统方案 (2) 1.2 系统构成 (2) 1.3 电路工作原理 (2) 1.4 方案选择 (3) 2 硬件电路设计 (3) 2.1 系统分析与硬件设计 (3) 2.2 单片机AT89C52 (3) 2.3 复位电路和时钟电路 (4) 2.4 直流电机驱动电路设计 (4) 2.5 键盘电路设计 (4) 3软件设计 (5) 3.1 应用软件的编制和调试 (5) 3.2 程序总体设计 (5) 3.3 仿真图形 (7) 4 调试分析 (9) 5 结论及进一步设想 (9) 参考文献 (10) 课设体会 (11) 附录1 电路原理图 (12) 附录2 程序清单 (13)

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

单片机PWM控制直流电机的速度

用单片机控制直流电机的速度 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: ?1、改变电枢电压; ?2、改变激磁绕组电压; ?3、改变电枢回路电阻。 使用单片机来控制直流电机的变速,一般采用调节电枢电压的方式,通过单片机控制PWM1,PWM2,产生可变的脉冲,这样电机上的电压也为宽度可变的脉冲电压。根据公式 U=aVCC 其中:U为电枢电压;a为脉冲的占空比(0

电动机的电枢电压受单片机输出脉冲控制,实现了利用脉冲宽度调制技术(PWM)进行直流电机的变速。 因为在H桥电路中,只有PWM1与PWM2电平互为相反时电机才能驱动,也就是PWM1与PWM2同为高电平或同为低电平时,都不能工作,所以上图中的实际脉冲宽度为B, 我们把PWM波的周期定为1ms,占空比分100级可调(每级级差为10%),这样定时器T0每0.01ms产生一次定时中断,每100次后进入下一个PWM波的周期。上图中,占空比是60%,即输出脉冲的为0.6ms,断开脉冲为0.4ms,这样电枢电压为5*60%=3V。 我们讨论的是可以正转反转的,如果只按一个方向转,我们就只要把PWM1置为高电平或低电平,只改变另一个PWM2电平的脉冲变化即可,,如下图(Q4导通,Q3闭合,电机只能顺时针调整转动速度)

关于直流电机及控制系统的基本知识

关于直流电机及控制系统的基本知识 6、直流电机的四象限运行: 直流电机与交流电机一样,也有两种运行方式:电动运行和制动运行。如果再以正、反转来分的话,则分为正转运行、正转制动运行和反转运行、反转制动运行四种运行方式。如果以坐标形式来表示的话,则称为电机的四象限运行坐标,见下图4-5各种运行方式的机械特性曲线。 当电机正向运行时,其机械特性是一条横跨1、2、4象限的直线。其中1象限为电动运行状态,电磁转矩方向与旋转方向相同,第2、4象限为制动运行状态,在此状态内是产生一个与转向方向相反的阻力矩,以使拖动系统迅速停车或限制转速的升高。制动状态下转矩的方向与转速的方向相反,此时电机从轴上吸收机械能并转化为电能消耗于电枢回路电路或回馈于电源。第3象限为反向电动运行。

当电磁转矩T M与转速n同方向,T M是拖动负载运动的,所以电机运行曲线处于1、3象限,1象限为电机正向运行,3象限为电机反向运行;当T M与转速n的方向相反时,表示电机机处于制动运行方式,其机械特性曲线在坐标的2、4象限内,2象限内为电机正向制动,包含能耗制动过程(O A线段)、电源反接制动过程(-T M B线段)和正向回馈制动过程(-n0C)线段;处于第四象限时为电机反向制动,也包含能耗制动过程(O D线段)、倒拉反接制动过程(T M E线段)和反向回馈过程(-n0F线段)。 7、直流电机的启动、停止和制动控制: 直流电机从接入电源开始,电枢由静止开始转动到额定转速的过程,称为启动过程。要求启动时间短、启动转矩大、启动电流小。启动的要求是矛盾的,比如,用逐渐提升供电电压实施软起动,来降低起动电流,但启动时间又会加长;加大启动转矩,又势必增大的启动电流等。因而要根据实际应用和配置情况,对启动问题综合考虑。 1)启动方式: a、直接启动。只适用于小型直流电机。启动方法是先给电机加励磁,并调节励磁电流达到最大,当励磁磁场建立后,再使电枢绕组直接加上额定电压,电机开始启动。在启动过程中,电枢中最大冲击电流,称为启动电流。直流启动,因启动电流大,电气和机械冲击大等缺点,应用较少; b、早期采用变阻器启动,电动机在启动时在电枢回路中串入变阻器,用接触器触点切换电阻只数,限制启动电流。将启动电流限制在2位额定电流以内。后期采用晶闸管电子电力技术,用改变电枢电压的方式实现了软起动。 2)停止方式: a、自由停车。直流电机的电源关断后,电机按运转惯性自由停车; b、施加制动(刹车)措施,如机械抱闸刹车、能耗制动、反接制动等使其快速停车。 3)直流电机的制动方式和方法: 电动机的电磁转矩方向与旋转方向相反时,就称为电动机处于制动状态。 制动的目的:使电动机减速或停车、限制电动机转速的升高(如电车下坡)。 机械抱闸制动也是一种制动(刹车)方式,但不属电机运行特性的范畴。属于电机运行特性的制动方式和方法有以下四种,有时也统称为电磁制动方式。 a、能耗制动。指运行中的直流电机突然断开电枢电源,然后在电枢回路串 入制动电阻,使电枢绕组的惯性能量消耗在电阻上,使电机快速制动。由于电压和输入功率都为0,所以制动平衡,线路简单;

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

微机原理课程设计—直流电机闭环调速控制系统

实验课题:直流电机调速控制 实验内容: 本实验完成的是一个实现对直流电机转速调节的应用。 编写实验程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。 实验目的: (1)学习掌握模/数信号转换的基本原理。 (2)掌握的ADC0809、8255芯片的使用方法。 (3)学习PC系统中扩展简单I/O接口的方法。 (4)了解实现直流电机转速调节的基本方法。 实验要求: 利用微机接口实验系统的硬件资源,运用汇编语言设计实现直流电机的调速控制功能。 基本功能要求:1、利用A/D转换方式实现模拟量给定信号的采样;2、实现PWM方式直流电机速度调节;3、LED灯显示当前直流电机速度状态。 实验设备: (1)硬件要求: PC微机一台、TD-PIT实验系统一套 (2)软件要求:唐都编程软件,tdpit编程软件,“轻松编程”软件 实验原理: 各芯片的功能简介: (1)8255的基本输出接口电路: 并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU 和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。

基于51单片机控制直流电机的设计

可以实现的功能是: 按下左转键则开始向左转动 按下右转键则向右转动 按下停止键则开始逐渐停止转动 按下调速键一次则会加速一档 按下调速键二次则会加速二档 按下调速键三次则会加速三档 按下调速键四次则会加速四档 按下调速键五次则会回到最初速度重新记档位 设计思路: 直流电机只要能提供一定的直流就可以转动,改变电压极性可以改变转动方向,可以通过给直流电机提供脉冲信号来驱动它,脉冲信号的占空比可以影响到直流电机的平均速度,因此可以通过调整占空比从而能实现调速的目的。直流电机的驱动电路要有过流保护作用,图中的二极管就直到这个作用,另外电机的驱动电流是比较大的所以需要用三极管来放大电流。程序的关键就是如何实现占空比的调整,这个可以通过对51单片机定时器重装初值进行改变,从而改变时间。用51实现PWM信号的输出,相对麻烦点,要是AVR就可以方便地实现PWM信号,由见51单片机的局限性与AVR单片机的优势。 原理图

详细程序: #include #define uchar unsigned char #define uint unsigned int sbit PW1=P2^0 ; sbit PW2=P2^1 ; //控制电机的两个输入 sbit accelerate=P2^2 ; //调速按键 sbit stop=P2^3 ; //停止按键 sbit left=P2^4 ; //左转按键 sbit right=P2^5 ; //右转按键 #define right_turn PW1=0;PW2=1 //顺时针转动 #define left_turn PW1=1;PW2=0 //逆向转动 #define end_turn PW1=1;PW2=1 //停转 uint t0=25000,t1=25000; //初始时占空比为50% uint a=25000; // 设置定时器装载初值 25ms 设定频率为20Hz uchar flag=1; //此标志用于选择不同的装载初值 uchar dflag; //左右转标志 uchar count; //用来标志速度档位 void keyscan(); //键盘扫描 void delay(uchar z); void time_init(); //定时器的初始化 void adjust_speed(); //通过调整占空比来调整速度 void main()

直流电机控制系统

直流电机控制系统

摘要:本文利用MCS-51系列单片机产生PWM信号,采用了自己设计的电机驱动电路,实现对直流电机的转速和控制方向的控制,并着重对电机驱动电路的设计进行叙述。主要模块包括单片机控制模块、电机驱动模块、电机接口模块、电源模块、键盘控制模块。 关键词:PWM信号,直流电机,电机驱动,单片机

引言 随着科学技术的迅猛发展,电气设备发展日新月异.尤其以计算机,信息技术为代表的高新技术的发展,使制造技术的内涵和外延发生了革命性的变化,传统的电气设备设计,制造技术不断吸收信息控制,材料,能量及管理等领域的现代成果,综合应用于产品设计,制造,检测,生产管理和售后服务.在生产技术和生产模式等方面,许多新的思想和概念不断涌现,而且,不同科学之间相互渗透,交叉融合,迅速改变着传统电气设备制造业的面貌,从而使得产品频繁的更新换代,这就使得电机成为社会生产和生活中必不可少的工具.随着科学技术的不断发展,人类社会的不断进步,人们对生活产品的需求要不断趋向多样化,这就要求生产设备必须具有良好的动态性能,在不同的时候进行不同的操作,完成不同的任务.为了使系统具有良好的动态性能必须对系统进行设计.特别是大型的钢铁行业和材料生产行业,为达到很高的控制精度,速度的稳定性,调速范围等国产直流电机简介为了满足各行业按不同运行条件对电动机提出的要求,将直流电机制造成不同型号的系列.所谓系列就是指结构形状基本相似,而容量按一定比例递增的一系列电机.它们的电压,转速,机座型号和铁心长度都是一定的等级.现将我国目前生产的几个主要系列直流电机简要的介绍如下。Z2系列为普通用途的中,小型电机.它的容量从400W到200KW,电动机的额定电压有200V和110V两种,额定转速有3000,1500,1000,750及600r/min五个等级.Z2系列普通用

直流电机控制系统设计范本

直流电机控制系统 设计

XX大学 课程设计 (论文)题目直流电机控制系统设计 班级 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号姓名 课程设计题目直流电机控制系统设计 课程设计时间: 7 月 9 日至 7 月 20 日 课程设计的内容及要求: 1.内容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。

指导教师年月日 负责教师年月日 学生签字年月日 目录 0 前言...................................................................................... 错误!未定义书签。 1 总体方案设计 ...................................................................... 错误!未定义书签。 1.1 系统方案 ...................................................................... 错误!未定义书签。 1.2 系统构成 ...................................................................... 错误!未定义书签。 1.3 电路工作原理............................................................... 错误!未定义书签。 1.4 方案选择 ...................................................................... 错误!未定义书签。 2 硬件电路设计 ...................................................................... 错误!未定义书签。 2.1 系统分析与硬件设计................................................... 错误!未定义书签。 2.2 单片机AT89C52............................................................ 错误!未定义书签。 2.3 复位电路和时钟电路................................................... 错误!未定义书签。 2.4 直流电机驱动电路设计 ............................................... 错误!未定义书签。 2.5 键盘电路设计............................................................... 错误!未定义书签。 3 软件设计 ............................................................................ 错误!未定义书签。 3.1 应用软件的编制和调试 ............................................... 错误!未定义书签。 3.2 程序总体设计............................................................... 错误!未定义书签。 3.3 仿真图形 ...................................................................... 错误!未定义书签。 4 调试分析 .............................................................................. 错误!未定义书签。

一个基于51单片机控制直流电机的设计

今天做的一个基于51单片机控制直流电机的设计 2010-09-12 18:47 可以实现的功能是: 按下左转键则开始向左转动 按下右转键则向右转动 按下停止键则开始逐渐停止转动 按下调速键一次则会加速一档 按下调速键二次则会加速二档 按下调速键三次则会加速三档 按下调速键四次则会加速四档 按下调速键五次则会回到最初速度重新记档位 设计思路: 直流电机只要能提供一定的直流就可以转动,改变电压极性可以改变转动方向,可以通过给直流电机提供脉冲信号来驱动它,脉冲信号的占空比可以影响到直流电机的平均速度,因此可以通过调整占空比从而能实现调速的目的。直流电机的驱动电路要有过流保护作用,图中的二极管就直到这个作用,另外电机的驱动电流是比较大的所以需要用三极管来放大电流。程序的关键就是如何实现占空比的调整,这个可以通过对51单片机定时器重装初值进行改变,从而改变时间。用51实现PWM信号的输出,相对麻烦点,要是AVR就可以方便地实现PWM 信号,由见51单片机的局限性与AVR单片机的优势。 原理图

详细程序: #include #define uchar unsigned char #define uint unsigned int sbit PW1=P2^0 ; sbit PW2=P2^1 ; //控制电机的两个输入 sbit accelerate=P2^2 ; //调速按键 sbit stop=P2^3 ; //停止按键 sbit left=P2^4 ; //左转按键 sbit right=P2^5 ; //右转按键 #define right_turn PW1=0;PW2=1 //顺时针转动 #define left_turn PW1=1;PW2=0 //逆向转动 #define end_turn PW1=1;PW2=1 //停转 uint t0=25000,t1=25000; //初始时占空比为50% uint a=25000; // 设置定时器装载初值 25ms 设定频率为20Hz uchar flag=1; //此标志用于选择不同的装载初值 uchar dflag; //左右转标志 uchar count; //用来标志速度档位 void keyscan(); //键盘扫描 void delay(uchar z); void time_init(); //定时器的初始化 void adjust_speed(); //通过调整占空比来调整速度 void main() {

直流电动机调速控制系统论文

安徽三联学院 年度论文 直流电动机调速系统的研究 Dc motor speed control system research 专业:电气工程及其自动化 姓名:薄朋_____________ 学号: 1002164___________ 指导老师:张金翰________ 2013年1月10日 信息与通信技术系

【摘要】直流电动机诞生与19世纪,距今已有100多年的历史,并已成为动力机械的主要驱动装置。直流调速系统具有优良的启动、制动性能,宜于在宽广范围内平滑调速,在需要高性能可控电力拖动的领域中得到了广泛的应用。电动机拖动生产机械运行时,系统的速度需要根据工作状态和工艺要求的不同进行调节,使生产机械以最合理的速度工作,从而提高产品和生产效率,这就要求人为采取一定的方法来改变生产机械的工作速度,以满足生产的需要。 关键字:直流电动机调速 【abstract 】Dc motor was born in the 19th century, more than 100 years of history, and has become the main drive power machinery. Dc speed control system has good start, braking performance, like in the wide range smoothing speed and are in need of high performance controlled electric drive field has been widely used in the field. Motor drive production machine operation, the speed of the system need according to the working status and technological requirements of different carries on the adjustment, production machinery with the most reasonable speed work, so as to improve the products and production efficiency, this requires people to take certain method to change the production machinery working speed, in order to meet production need. Key words: Dc motor speed regulation

基于单片机的直流电机控制(正反转、开关控制)

基于单片机的直流电机控制(正反转,开关控制)原理图如下: 程序如下: /*用电机来代表门的转动情况*/ #include //定义变量 sbit kaimen=P0^0; sbit zanting=P0^1; sbit fanxiang=P0^2; sbit P2_0=P2^0; sbit P2_1=P2^1; bit Flag = 1;//定义电机正反向标志 //函数声明 void motor_turn(void); //正反向控制 void Timer0_init(void); //定义定时器0初始化 /******************************延时处理***************************/ void Delay(unsigned int z)

{ unsigned int x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } /***************************************************************/ void Timer0_int(void) interrupt 1 using 1//定时器0中断处理主要用来处理换方向的时候 { TR0 = 0; TL0=(65536-50000)/ 256; //定时50ms TH0=(65536-50000)% 256; TR0 = 1; if(Flag == 1)//代表改变方向 { P2_0 = 0; P2_1 = 1; } else //方向不变 { P2_1 = 0; P2_0 = 1; } } /****************开始转动:人满时候开始转动**************/ void motor_start(void) { if(kaimen==1) { //Delay(10); if(kaimen==1) { P2_0 = 0; P2_1 = 1; } } } /***************有人但是人未满时或者有夹到人的时候暂停*************/ void motor_pause(void) { if(zanting==1) { Delay(10);

直流电机控制系统设计(1)

湖南工程学院课程设计《DSP原理及应用》 题目:直流电机控制系统设计 专业: 班级: 姓名: 学号: 指导教师: 2015年5 月19 日

摘要 直流电动机具有优良的调速特性,调速平滑,方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程中自动化系统各种不同的特殊运行要求。电动机调速系统采用微机实现自动控制,是电气传动发展的主要方向之一。采用微机控制后,整个调速系统体积小,结构简单、可靠性高、操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。 本篇论文介绍了基于单片机的直流电机PWN调速的基本办法,直流电机调速的相关知识以及PWM调速的基本原理和实现方法。重点介绍了基于TMS320LF2407单片机的用软件产生PWM信号以及信号占空比调节的方法。对于直流电机速度控制系统的实现提供了一种有效的途径。 关键词:单片机最小系统;PWM ;直流电机调速,TMS320LF2407;

前言 电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。然而近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强I/O功能等方向发展。随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。这是因为单片机具有很多优点:体积小,功能全,抗干扰能力强,可靠性高,结构合理,指令丰富,控制功能强,造价低等。所以选用单片机作为控制系统的核心以

51单片机控制直流电机PWM调速C语言程序

#include #define uchar unsigned char #define uint unsigned int sbit KEY1 = P3^4; sbit KEY2 = P3^5; sbit KEY3 = P3^6; sbit IN1 = P1^0; sbit IN2 = P1^1; sbit ENA = P1^2; sfr ldata=0x80; sbit dula=P2^6; sbit wela=P2^7; //sbit lcden=P3^4; //uchar timer,ms,t_set = 1; uchar T_N=100; uchar T_N1=100; uchar T_H_N=50; uchar T_H_N1=50; void msplay(uchar,uchar); uchar code x1[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x27,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; //uchar code x2[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xd8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e}; uchar code x3[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf}; //uchar code x4[]={0x01,0x02,0x04,0x08,0x10,0x20}; void delay(uint z) //延时函数 { uint x; for(x=z;x>0;x--); }

基于STC52单片机的直流电机PWM调速系统

实训报告 实训名称直流电机调速试验系别电子与电气工程学院专业、班级09测控C1 学生姓名、学号刘凡094821257 学生姓名、学号沈阳094821345 学生姓名、学号覃新造094820364 指导教师陈进 实训地点16号楼212室 实训日期2012 年5月20日

基于STC52单片机的直流电机PWM调速系统 摘要 本文介绍一种基于STC52单片机控制的PWM直流电机脉宽调速系统。系统以廉价的STC52单片机为控制核心,以直流电机为控制对象。从系统的角度出发,对电路进行总体方案论证设计,确定电路各个的功能模块之间的功能衔接和接口设置,详细分析了各个模块的方案论证和参数设置。整个系统利用52单片机的定时器产生1K左右的PWM脉冲,通过快速光耦6N137实现控制单元与驱动单元的强弱电隔离,采用4个9013和2个9012构成的H桥电路实现对直流电机的调速,用光电编码盘完成测速功能。 关键字STC52,PWM,光耦隔离,光电编码盘

1前言 1.1数字直流调速的意义 现在电气传动的主要方向之一是电机调速系统采用微处理器实现数字化控制。从上世纪80年代中后期起,世界各大电气公司如ABB、通用、西屋、西门子等都在竞相开发数字式调速传动装置,经过二十几年的发展,当前直流调速已发展到一个很高的技术水平:功率元件采用可控硅;控制板采用表面安装技术;控制方式采用电源换相、相位控制[1]。特别是采用了微处理器及其他先进电力电子技术,使数字式直流调速装置在精度的准确性、控制性能的优良性和抗干扰的性能有很大的提高和发展,在国内外得到广泛的应用。数字化直流调速装置作为目前最新控制水平的传动方式显示了强大优势。全数字化直流调速系统不断升级换代,为工程应用和工业生产提供了优越的条件。 采用微处理器控制,使整个调速系统的数字化程度,智能化程度有很大改观;采用微处理器控制,使调速系统在结构上简单化,可靠性提高,操作维护变得简捷,电机稳态运行时转速精度等方面达到较高水平。由于微处理器具有较佳的性价比,所以微处理器在工业过程及设备控制中得到日益广泛的应用。近年来,尽管交流调速系统发展很快,但是直流电机凭借其良好的启动、制动性能,在金属切削机床、轧钢机、海洋钻机、挖掘机、造纸机、矿井卷扬机、电镀、高层电梯等需要广泛范围内平滑调速的高性能可控电力拖动领域中仍得到了广泛的应用。 现阶段,我国还没有自主的全数字化直流调速控制装置生产商,而国外先进的控制器价格昂贵,且技术转让受限,为此研究及更好的使用国外先进的控制器,吸收国外先进的数字化直流电机调速装置的优点,具有重要的实际意义和重大的经济价值。 1.2研究现状综述 1.2.1电气传动的发展现状 20世纪70年代以来,直流电机传动经历了重大的技术、装备变革。整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进[1]。同时,高集成化、小型化、高可靠性及低成本成为控制的电路的发展方向。使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代[1]。 早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,

相关主题
文本预览
相关文档 最新文档