当前位置:文档之家› 空压机余热利用技术要求

空压机余热利用技术要求

空压机余热利用技术要求
空压机余热利用技术要求

仅供参考[整理] 安全管理文书

空压机余热利用技术要求

日期:__________________

单位:__________________

第1 页共5 页

空压机余热利用技术要求

高效热能回收系统是压风机的配套产品。通过压风机内部的改造,利用热能交换设备,可以大量回收压风机运行过程中产生的多余热能。并将回收的热能用于生产和生活,达到保护环境,节约能源,降低企业生产成本和生活支出的目的。

高效热能回收系统,与压风机采用一对一的配套方式。

主要配置要求:压风机内部循环系统改造、热量交换模块、进/出水温度、压力就地仪表监测、板式换热器。

主要技术要求:

1、4台压风机各单独采用1套余热利用回收系统,互不影响。

2、压风机安装余热回收系统后,压风机控制系统不变,工作性能不变,操作维修方式不变。余热回收系统如有任何故障,余热回收系统停水、停用时,原压风机系统仍可以照常运行。

3、压风机安装余热回收装置后,单台压风机增加油量不超过45升。

4、压风机安装余热回收装置后压风机单台产生热水量(50℃)200KW 压风机不低于70吨/天;250KW压风机85吨/天。

5、压风机余热回收装置水侧和油侧管路接口尺寸为DN50。

6、压风机余热回收装置油侧管路材质要求为304不锈钢。

7、余热回收装置配置专门的设备保证余热回收后压风机的回油温度不低于60度。

8、当单台压风机停机时,对应的热回收装置水路能够断开,防止单台空压机余热回收系统停机时有反水现象发生。

9、连接管路具有三通管路设计,在极端情况下能够快速隔离压风机与余热回收装置,保证压风机设备安全。

第 2 页共 5 页

10、任何由于热回收装置造成的压风机的损坏由设备供应商负责。

11、设备供应商具备余热应用系统设计的能力,能够参与用热端(洗澡水使用侧)设计并能够提供煤矿系统的成功的应用案例至少3家以上。要求提供合同原件作为参考。

1、焊条采用不锈钢焊条,ER308L,全部采用钨极氩气保护焊接工艺;

2、焊接前应按GB/T985-1998的规定打坡口,焊缝外形成尺寸应符合JB/T794-1999的规定,并且要保证无虚焊、无夹渣;

3、表面光滑、无裂纹、焊缝无气泡,内衬结构排列要匀称,无毛刺。

4、水箱安装结束,内外进行清理、去污。制作安装完毕后,作满水试验。

组合式不锈钢水箱的特点:

特点:

1组合式不锈钢水箱由1*1的单张方形冲压好的不锈钢板拼装焊接而成,与现代的建筑遥相呼应,具有时代感。

2整个水箱为封闭式,进口不锈钢板表面光滑,所以在日常中不需要太多清洗,不易附生藻类,水中沉淀物清洗冲刷。

3因为采用人工拼装,故水箱类型,形状可根据房屋造型,按需要拼装成所需要的工字型,L型,Z型等。

4产品广泛适用于酒店、小区、商品房、生产型企业贮水,蓄饮料等用途、医药、环保、化工行业的贮液容器。

5优质食品级不锈钢SUS304极大延长可水箱的使用寿命,并能较好防止水质的二次污染。

第 3 页共 5 页

6结构独特合理,灵活、合理的板形设计可适各种尺寸组合的容器。

7高强度的冲压板及箱内分布均匀的不锈钢拉筋使箱体承压均匀合理。标准冲压板块10001000、1000500、500500mm20002000随意配装现场组装焊接,无需吊装设备。

8高质量的冲压工艺,既保证了箱体最大限度的承压需要,又降低了材料厚度,满足了箱体的美观实用要求。

9组合式不锈钢水箱的价格与玻璃钢水箱价格相近,并随容积的增加而降低,特大水箱的价格与水泥水箱的价格相近,且可作为永久储液容器。

组合式不锈钢水箱制作设备

焊接不锈钢水箱所需要的只要机器:电脑脉冲缝焊机,半自动滚筋机,点焊机,等离子切割机,电剪刀

焊接不锈钢水箱支架所需要的机器,电焊机,切割机,多用角钢卷弯机

焊接不锈钢水箱所需要的只要机器:氩弧焊机,熟练的氩弧焊队伍(对于工程来说至关重要)

所需材料:不锈钢水箱上下盖,304#不锈钢卷板,以及相关配件(螺丝,压板

第 4 页共 5 页

仅供参考[整理] 安全管理文书

整理范文,仅供参考!

日期:__________________

单位:__________________

第5 页共5 页

空压机余热回收热水工程方案.

空压机余热回收热水工程方案 客户: 联系人:供应商:联系人: 电话:电话: 传真:传真: 一:前言 贵司原有75HP空压机一台;贵司计划利用美国寿力LS16-75HAC型空压机壹台进行余热回收利用热水工程改造;用水方式为桶提式,用水人数700人,另热泵系统在冬季存在制热效率低、产水量不足且耗电大的缺陷,空压机余热回收目前在企业中属热门节能工程,改造后贵司原有供热系统可以作为备有,节假日空压机停开时可自动开启原有系统供应热水。此项工程投入运转后可为贵司节约大笔开支,支持节能环保事业是企业的一项光荣使命。 二:有利改造条件 1. 贵司计划利用美国寿力LS16-75HAC型空压机壹台进行余热回收利用热水工程改造,据核算单台75HP空压机的热量约为64.5千瓦/小时,如充分利用热能回收,1小时所产热水=(机台最大热负荷64.5千瓦/小时×3600千焦耳)÷(水的比热容4.2千焦耳×水的温升20-60℃)×热效率90%=1243升,壹台空压机每天运行16小时可以产生1243升×1台×16小时=19888升60℃热水,若1人1天用水25升,可供795人使用,空压机运行时间越长,可供使用人员越多。(以上按空压机满载运行条件下计算,空压机卸载时间越长则产热水量相应减少) 三:选用:“新热能”热水机给空压机系统带来的好处: 1.热水机无噪音、环保型、零能耗。 2.加装热水机后机组的运行排气温度非常稳定,不高温,油过滤器、油气分离器过滤,分离的效果能发挥更好,各个阀件的使用寿命更长,有效的降低了维修费用; 3.热水机不需要维护,零维护成本;

4.加装热水机后机组能够保持最佳运行温度82-96℃,使润滑油的性能发挥更好,降低损耗; 5.循环水的水温可保证45-60℃可供员工宿舍使用,食堂热水使用等其他工业热水预热。即实现热能回收达到节能的效果。 四、空压机余热回收热水节能工程安装示意图: 五、空压机余热回收工艺流程说明: 1、概述 压缩机在工作过程中所耗电能转变成热量后大部分被压缩后的油气混合物带走。这些油气混合物经过分离,分别在各自的冷却器(油冷却器和气冷却器)中被冷却介质(水或空气)带走,热量白白地浪费了。从理论上讲,除了2%的辐射热量不能回收外,几乎98%的热量均可以被回收利用。“新热能”热水机组实际上是一台热量回收装置,根据压缩机各机型油的不同热量,设计制造出不同型号的机组与各种型号的压缩机匹配使用,避免因换热面积不精确,压降过大等原因给压缩机带来故障。 热水机组接管通常设置在压缩机主机和冷却器之间,无论是水冷式压缩机还是风冷式压缩机都可适用,回收水温常规为55℃-75℃之间,最高可达90℃,广泛适用于需要高温 水或热水地方,如浴室、食堂、食品工业、锅炉软水或取暖设备等。热水机组是一个回收装置,要实现全自动供水功能还需添置其它设备,其中包括热水管道及保温工程、储热水箱、循环水泵、自动控制箱、各种阀件管件等。可根据用户的不同需求安装不同的控制系统,使余热回收工程在最经济、最安全可靠的状态下运行。 2.热水机组运行工作原理介绍:⑴压缩机启动状态 当压缩机冷态启动时,冷却油的温度较低,此时油冷器旁通阀、热交换器旁通阀关闭,冷却油不经过热交换器和冷却器而直接进入压缩机。⑵热水机组工作状态

空压机余热回收装置现场安装规范及标准

空压机余热回收项目 现场安装验收标 准 河南蓝海节能技术服务有限公司

目录 一、空压机余热回收设备现场验收标准 ........ 错误!未定义书签。 1、主机验收 (3) 2、油路验收 (3) 3、水路验收 (3) 4. 控制系统验收 (3) 5. 不锈钢水箱验收 (4) 二、空压机余热回收系统验收标准 (4)

、空压机余热回收设备现场验收标准 1、主机验收 1.1每台余热回收设备的安装场地尺寸至少有4m K 2m距离,保证设备有足够的安装空间和检修空间。 1.2安装位置空间高度要比安装后设备高0.5m左右。 1.3地面平整、硬化。 1.4进水温度表、出水温度表、进水压力表、出水压力表等安装位置及安装方法显示正确无误。 1.5余热回收装置主机无渗漏现象。 2、油路验收 2.1油路管道组件与空压机余热回收主机连接完好,无漏油现象。 2.2安装完毕后保证空压机内部油位在正常刻度线。 3、水路验收 3.1进水球阀、过滤器、电磁阀、自力式温控阀按照顺序安装方法、位置正确。 3.2单台设备的进出水管道与循环管道干管以及水泵与水箱连接正确。 3.3管网必须进行水压试验,试验压力为工作压力的1.5 倍,但不得小于 0.6Mpa。 3.4给水管道在竣工后,必须对管道进行冲洗,饮用水管道还要在冲洗后进行消毒,满足饮用水卫生要求。

4、控制系统验收 4.1控制柜安装位置正确合理,方便柜门的开启。 4.2电线走向合理清楚明了。 4.3各项控制功能符合设计要求。 4.4箱体外部无掉漆,磕碰现象。 4.5控制箱面部显示控制元器件布局合理、美观、固定牢靠,标签整齐 4.6箱内布线排列整齐,避免交叉,接线编号清晰,工整,不易脱色。 4.7接线端子压接牢固,可靠,外围无导线毛刺及导线裸露部分,压线处导线 无损伤。 4.8随箱配有原理图,接线图各一份。 4.9控制箱门锁有效无松动。 5、不锈钢保温水箱验收标准 5.1 水箱满水实验,24 小时无渗漏现象。 5.2 管道连接处、阀门及相关附件有无渗漏水现象。 5.3水箱底座符合技术要求。 5.4水箱保温符合技术要求,外表美观。 5.5水箱爬梯焊接位置准确。 5.6水箱安装完成后清洗干净。 二、空压机余热回收系统验收标准 1、控制系统保证空压机余热回收系统与对应的空压机启停联动,保证空压机回油温度正常。

空压机余热利用

空压机冷却水余热利用综述及实例 空气压缩机是气源装置中的主体,它将原动机的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。 余热回收相对电热设备几乎无需能耗,相对于燃油燃气设备零排放,是清洁环保的节能方式。 空压机余热回收可以达到双重目的,第一,可以将余热供给需要的地方;第二,可以节约能源,即节约用来生产等量与空气压缩机余热的热量所耗燃料或电力。 今日的能源状况越来越要求大力节约能源。在某些情况下,例如某些欧洲国家建筑法规都规定工业建筑物只要能够利用从排气中回收的余热,就必须安设足够数量的回收这种余热的装置。这些法规还规定,如果余热(通风空气或者冷却水携带的热量)超过50Mkh/year,同时又是以燃油和电作为热源,就必须有余热回收装置。 就空气压缩机来说,一台50KW设备一年满载运行1000小时,其余热就要超过上述数值。因此,回收余热的要求对于几乎所有装备了大型和中型的空压机站都是用。这样,重要的是弄清楚各种型号空压机的余热回收的可能性。 《怎样回收空气压缩机的余热以节约能源》来自Canadian Mining Journal 中论述了空气压缩机房间的热量等于空气压缩机本体产生的热(100%)加上空压机驱动电动机产生的热(型约为93%,小型约为85%),这就是说,产生的总热量介于轴输入功率的108%到118%之间。可以认为,压缩空气携带走的热量平均约为轴输入功率的4%,这相当于压缩空气和进入空气的平均温差15℃。这样,空压机房间产生的热量总共为轴输入功率的103~113%,这么多的热量,必须从空压机房排除,而在许多情况下可用于供热目的。话句话说,空压机房可作为集中供热的热源。 摘要:研究先进的余热利用技术对机组运行效率的提高有着重要的意义,本文介绍了,分析了各自的热点,并进行了总结和展望 关键词:空压机,冷却水,余热利用 王忠海的《空气压缩机的余热利用》一文中简单介绍了螺杆式空压机的原理和优点,并结合实际工程案例,通过对螺杆式空压机冷却水余热的利用,实现全天候的生活热水供应。 张明柱,张永波《大容量压缩空气干燥器有热再生节能技术》中利用压缩机出口的高温压缩空气对干燥器进行再生,在不增加设备结构复杂性的前提下,可以节能40%。 姚晶宏《空压机节能的新方式》也提出了将空压机散发的热量回收转换到水里,水温提高后可用于锅炉补充水,车间采暖以及金属涂装清洁处理等需要用热水的地方,一方面提高了空压机的运行效率,实现空压机的经济运转,另一方面实现了能源的综合利用,节约了成本。 赵亮,王龙,刘地清《空压机系统节能技术改造》对于空压机来说,其输入能源的80%左右将转化为热能,如果能根据压缩机的结构和原理,安装相应的换热器,水温可提高到65—80℃,实现余热的梯级利用,就可以变废为宝。 郭磊《利用水冷式空压机余热采暖的设计研究》、张庆营,张新明,孟令枫《空压机余热在中央空调节能设计中的应用》分别描述了冷却水(水温在32~42℃)在采暖末端设备以及空调机组设备中的应用,有效的节约了能源。

空压机变频节能及余热回收方案

节能项目方案设计 1空压机变频节能改造 1.1企业空压机系统基本情况介绍 某某科技(深圳)有限公司共有五台空气压缩机,其中三台用于A栋厂房,两台螺杆式空压机37kW、型号:OGFD37;一台活塞式空压机15kW、型号:AW19008。供A栋厂房冲压车间、自动组装机以及研发部门用气。另外两台螺杆式空压机22kW、型号:OGFD22,供C栋厂房注塑车间、机加工车间、组装、包装车间用气。 1.2空压机变频节能改造分析 一:原空压机系统工况的问题分析 1.主电机虽然以星-角降压起动,但起动时的电流仍然很大,会影响 电网的稳定及其它用电设备的运行安全。 2.主电机时常空载运行,属非经济运行,电能浪费最为严重。 3.主电机工频运行致使空压机运行时噪音很大。 4.主电机工频起动设备的冲击大,电机轴承的磨损大,所以对设备 的维护量大。 空压机节能改造的必要性: 鉴于以上对空压机的原理说明以及目前的工况分析,我们认为对空压机的节能降噪改造是必要的,这样不仅能够节约大量的运行费用,降低生产成本,同时还可以降低空压机运行时产生的噪音,减少设备维护费用。 二:螺杆式空压机的工作原理介绍 单螺杆空压机空气压缩机工作原理,如图1所示为单螺杆空气

压缩机的结构原理图。螺杆式空气压缩机的工作过程分为吸气、密封及输送、压缩、排气四个过程。当螺杆在壳体内转动时,螺杆与壳体的齿沟相互啮合,空气由进气口吸入,同时也吸入机油,由于齿沟啮合面转动将吸入的油气密封并向排气口输送;在输送过程中齿沟啮合间隙逐渐变小,油气受到压缩;当齿沟啮合面旋转至壳体排气口时,较高压力的油气混合气体排出机体。 图1 单螺杆空气压缩机原理图 三:压缩气供气系统组成及空压机控制原理 ⑴、压缩气供气系统组成 工厂空气压缩气供气系统一般由空气压缩机、过滤器、储气罐、干燥机、管路、阀门和用气设备组成。如图2所示为压缩气供气系统组成示意图。

空压机余热回收热水工程方案

空压机余热回收热水工程方案 客户:联系人:供应商:联系人: 电话:电话: 传真:传真: 一:前言 贵司原有75HP空压机一台;贵司计划利用美国寿力LS16-75HAC型空压机壹台进行余热回收利用热水工程改造;用水方式为桶提式,用水人数700人,另热泵系统在冬季存在制热效率低、产水量不足且耗电大的缺陷,空压机余热回收目前在企业中属热门节能工程,改造后贵司原有供热系统可以作为备有,节假日空压机停开时可自动开启原有系统供应热水。此项工程投入运转后可为贵司节约大笔开支,支持节能环保事业是企业的一项光荣使命。 二:有利改造条件 1.贵司计划利用美国寿力LS16-75HAC型空压机壹台进行余热回收利用热水工程改造, 据核算单台75HP空压机的热量约为64.5千瓦/小时,如充分利用热能回收,1小时所产热水=(机台最大热负荷64.5千瓦/小时×3600千焦耳)÷(水的比热容4.2千焦耳×水的温升20-60℃)×热效率90%=1243升,壹台空压机每天运行16小时可以产生1243升×1台×16小时=19888升60℃热水,若1人1天用水25升,可供795人使用,空压机运行时间越长,可供使用人员越多。(以上按空压机满载运行条件下计算,空压机卸载时间越长则产热水量相应减少) 三:选用:“新热能”热水机给空压机系统带来的好处: 1.热水机无噪音、环保型、零能耗。 2.加装热水机后机组的运行排气温度非常稳定,不高温,油过滤器、油气分离器过滤,分离的效果能发挥更好,各个阀件的使用寿命更长,有效的降低了维修费用; 3.热水机不需要维护,零维护成本;

4.加装热水机后机组能够保持最佳运行温度82-96℃,使润滑油的性能发挥更好,降低损耗; 5.循环水的水温可保证45-60℃可供员工宿舍使用,食堂热水使用等其他工业热水预热。即实现热能回收达到节能的效果。 四、空压机余热回收热水节能工程安装示意图: 五、空压机余热回收工艺流程说明: 1、概述 压缩机在工作过程中所耗电能转变成热量后大部分被压缩后的油气混合物带走。这些油气混合物经过分离,分别在各自的冷却器(油冷却器和气冷却器)中被冷却介质(水或空气)带走,热量白白地浪费了。从理论上讲,除了2%的辐射热量不能回收外,几乎98%的热量均可以被回收利用。“新热能”热水机组实际上是一台热量回收装置,根据压缩机各机型油的不同热量,设计制造出不同型号的机组与各种型号的压缩机匹配使用,避免因换热面积不精确,压降过大等原因给压缩机带来故障。 热水机组接管通常设置在压缩机主机和冷却器之间,无论是水冷式压缩机还是风冷式压缩机都可适用,回收水温常规为55℃-75℃之间,最高可达90℃,广泛适用于需要高温

空压机余热回收的利用技术改造

空压机余热回收的利用 我公司共有空压机6台,正常生产时需开机4台,冷却形式为空冷,空压机运行时产生的热量大部分散发到空压机房内,导致空压机房内温度较高,空压机频频跳停,严重制约生产。为解决这个问题,我公司技术人员多次与空压机厂家咨询交流,最终采用水冷方式解决了这个问题,这种方案既解决了空压机的散热问题,也可将冷却水加热用来洗澡。在解决这个问题中我公司也走了不少弯路,现将实施过程作简要介绍,以供同行参考。 一、探索中的情形 1、最初的情形 2011年11月我公司开始试生产,由于工期紧张,在空压机散热管道未安装的情况下就开始开机生产,造成空压机房室温在50度以上,空压机频频跳停,我公司岗位人员密切注意空压机运行情况,严防酿成生产事故。 2、第一次完善 12月份,我公司利用停机间隙安装散热管道,但由于设计不太合理,散热管道出口未开在屋顶而开在侧面墙上,并且6台空压机只预留5个散热出口,做不到每个空压机一个散热出口,为了方便安装散热管道,我公司决定串联所有散热出口安装。安装后再次开机运行发现空压机房室温仍旧居高不下,检查散热管道发现,整个散热管道温度都较高,在空压机房室内形成了一个大大的暖气管道,使整个空压机房温度依旧偏高,问题仍旧存在。

串联的散热 管道。 3、第二次完善 我公司技术人员经过讨论决定封堵空压机串联部分散热管道,使运行的空压机每个都单独散热。利用停机时间我们在串联管道中加入挡板,隔开该部分散热管道。如图: 加入的隔板 在实际运行中起到一定的效果,但随之而来了新的问题,由于只有5个散热出口而有6台空压机,势必有两台空压机共用一个散热管道,若该两台空压机同时运转,依旧会造成空压机温度高而跳停;另外散热管道在侧面墙上,未充分利用热空气上升的特性,且管道较长,给空压机顶部散热风机造成很大负担,主要原因是热空气温度较高、散热管道较长,散热风机在推着热空气排出室内时工况不良,时常导

空压机余热利用工程

空压机余热利用工程 1、简述 空压机余热是空压机在生产高压空气过程中随之产生的多余热量。在空压机将机械能转换为内能的过程中,空气受到强烈的高压压缩,温度骤升,同时压缩机的高速旋转也会摩擦发热,这些高温热量由空压机润滑油混合成的油气携带排出机体。这部分高温油气流的热量相当于空压机输入电功率的3/4,它的温度通常在80℃~100℃。高温油气流通过空压机的散热系统快速的冷却,以满足空压机正常工作的温度要求。这些热量通过空压机自身的散热系统散发到空气和冷却水中,造成了能源的浪费。 为了充分利用空压机所产生的余热,采用余热回收技术将空压机输入功率大约75%的能源消耗回收回来加热水,加热的水温可达75℃。该热水可用于车间采暖及员工洗澡。 2、热量回收计算 (1)我公司现有5台250KW空压机,二期还需要5台,总共10台250KW 空压机。全部进行余热回收改造,现计算可回收的热量,每台空压机功率的3/4转换为热能;10台空压机加载比例均按80%计算;油气回收效率按93%计算。现计算10台空压机运行1小时回收热量: Q=250×10×0.75×0.8×0.93=1395KW (2)按10%的热量用于洗澡;整个循环系统热量损失按20%计算;则每小时用于采暖的热量为1395×0.9×0.8=1004.4KW。 (3)压延车间冬季每小时需采暖热量为1160KW;胎胚存放区冬季每小时需采暖热量为330KW;两个工段总采暖热量需1490KW, 1490KW>1004.4KW,空压机提供的热量最多能供压延车间采暖和员工洗澡,目前压延车间有采暖设备,胎胚存放区无,所以先满足胎胚存放区采暖,剩余热量再供压延车间采暖,减少蒸汽消耗量。成型车间仍按现有方式采暖。 (4)按现在空压机运行情况看,若产量达到140万套,空压机同时运行数量估计是8台(加载率≥80%),即采暖热量得不到保证。 3、采暖计算 (1)胎胚存放区采暖

离心式压缩机专题(二)

离心式压缩机专题(二) 水平和垂直剖分离心式压缩机 2 几种不同类型的离心式压缩机 在第一部分内容里,学习离心式压缩机的分类时,我们知道离心式压缩机按照不同的分类方式可以分为多种不同类型。通过第二部分内容,将介绍几种典型的离心式压缩机,主要包括水平剖分离心式压缩机、垂直剖分离心式压缩机、等温离心式压缩机及组合离心式压缩机。 2.1 水平剖分离心式压缩机 水平剖分离心式压缩机的主要机构特点是,气缸被通过轴心线的水平中分面分为上下两个部分,被分开的两部分机壳通常称为上机壳和下机壳,在中分面处用螺栓联接为一体,进排气管一般垂直向下布置。 例如,沈鼓生产的MCL系列离心式压缩机,其中M代表为水平剖分离心式压缩机。该结构离心式压缩机,维修时一般只需要拆除上半部分定子件,拆装检修方便,一般适用于中、低压力场合,不适用于高压和压缩气体分子量较小的场合。 2.2 垂直剖分离心式压缩机 垂直剖分离心式压缩机的外气缸为筒形,在装配过程中,需要先将隔板与转子(或内气缸)组装好,然后再装入筒形外气缸内,两端或一端有端盖与气缸通过螺栓联接为一体。 例如,沈鼓生产的BCL系列离心式压缩机,其中B代表为垂直剖分离心式压缩机。此类型压缩机一般具有承压高、密封性好、温度和压力引起的变形均匀等的特点,但是拆装检修相对不便,一般适用于高压力和对密封性要求高的场合。

单轴型等温离心式压缩机 2.3 等温离心式压缩机 对于多级压缩的离心式压缩机,如果每一级压缩之后,均对该级出口气体进行冷却,使其达到接近于入口温度后再进入下一级压缩,使该压缩机整个压缩过程中,各级压缩前温度近似相等,则称为等温离心式压缩机。 为什么要进行等温压缩呢? 我们简单了解一下离心式压缩机的三种热力学压缩过程,主要包括等温压缩过程、绝热压缩过程和多变压缩过程。 等温压缩过程和绝热压缩过程为理想的压缩过程,离心式压缩机的实际压缩过程一般为多变压缩过程。关于这三种压缩过程的具体定义和特点是什么,这里我们不展开介绍,但是我们需要知道的一点是,等温压缩过程具有功耗低的特点,因此可以通过中间冷却或过程冷却的方式,使离心式压缩机靠近等温压缩过程,从而达到降低功耗的目的。 等温离心式压缩机可以分为单轴型等温离心式压缩机和多轴型等温离心式压缩机。 2.3.1 单轴型等温离心式压缩机 单轴型等温离心式压缩机,多级叶轮串联在一根轴上,冷却器对称地布置在压缩机机壳的两侧,并与机壳铸成一体,气体经每一级压缩机之后,经冷却进入下一级,进而完成压缩升压过程,也叫作内部冷却型等温离心式压缩机。也就是说,单轴型等温离心式压缩机,压缩机只有一根轴,但是每一级压缩之后,均对该级出口气体进行冷却,使其达到接近于入口温度后,再进入下一级压缩,它的冷却方式为内部冷却。

空压机余热回收方案

空压机余热利用中央热水系统设计案 致: 根据贵员工宿舍中央热水系统工程项目的邀请,设计施工市森茂节能环保工程有限公司,按贵要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水式为不定时不定量,热水温度在55℃以上。 1.2 工程总案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管

道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 在管路上水箱、水泵、换热器两头及各预留检修处,均安装铜制优质阀门,另在保暖水箱出口及换热器出口处安装水过滤器各1个。 1.2.2保暖水塔 贵司安装两个50吨保暖水箱,即可满足贵公司员工的用水要求。水箱材质为双层不锈钢,50mm厚聚脂泡沫保溫层,24小时温降5℃以。 1.2.3 换热装置 本工程将对13台螺杆式空压机加装余热利用装置,分两套系统,每小时分别可产水800L以上,10小时可产水160吨,完全可以满足员工的用水要求。 1.2.4 补水系统 补水系统使用水位开关、电磁阀、温度控制器控制

空压机的节能方法及螺杆空压机余热回收利用讲解

空压机的节能方法及螺杆空压机余热回收利用讲解 一、空压机解决泄漏和用气方式,达到节能目的 首先,空压机解决泄漏和用气方式就可以达到节能目的。据权威机构的检测,空压机所消耗的电能仅有10%转换为压缩空气,而90%转化为热能,可见压缩空气比电贵十倍。但是,在人们心目中,并没有认识到这一点,这主要表现为: 1.1 不重视管理路上的泄漏在气管首先发生的是隐漏,然后才是显漏。当送气管上出现1 mm的孔,压缩空气的压力为 0.714Mpa时,泄漏量为1.5 L/s,相当于压缩机损耗的功率为0.4kW。但在大多数工厂中,到处可以听到漏气的声音,有谁去理会呢?因为没有认识到压缩空气比电贵十倍,所以都习以为常了。因此,空压机节能首先要做的事是治理好泄漏。 1.2 使用不当造成的浪费这里仅举一个例子,在线路板生产厂家,大多数电镀线上都要用振动来增加对小孔的电镀能力,有些厂家偏好采用气振来达到此目的,殊不知,这样做比采用电振的方式要多消耗十倍以上的电力。我们通过表1来对气振和电振的优劣作一比较。从表1中我们可以看到气振的获取要多一个媒体,而压缩空气的获得耗电又如此之大,因而气振的耗能要比电振大的多就不奇怪了。因此空压机的节能同时还要避免不当的用气方式。其次,采取节能技术可以达到节能目的。 二、对空压机进行节能改造的方式 目前,对空压机进行节能改造共有三种方式,试阐述如下: 2.1 集中控制方式 对多台空压机采取集中控制方式。根据用气情况自动控制空压机的运行台数,改造之前,空压机开启的台数是固定的。 (1)当用气减少到一定量时,空压机是通过减少加载时间来减少产气量。 (2)若用气量进一步减少,性能好的空压机则会自动停机。在(1)的情况下,空压机即使是在卸载情况下也是要消耗电能的。改造后,便可停掉相应台数的空压机,运行台数减少了,无疑就节约了用电。 2.2 变频调速方式 采取变频调速方式来降低空压机电动机的轴功率输出。改造之前,空压机的压力达到设定压力时,即会自动卸荷;改造之后,空压机并不卸荷,而是通过降低转速来降低压缩机时的产气量,维持气网需要的最低压力。这里有两个地方可以节能: (1)减少压缩机从卸荷状态到加载状态这一突变过程带来的电能消耗。 (2)电机的运转频率降低至工频以下,使电机轴的输出功率减少。以上两种方式都不同程度的降低了空压机在运行过程中的能源消耗,但是空压机在工作过程中产生如此大的热能而让它白白地散发到空气中去,却在很长的时间内未得到用户的普遍重视,这不能说不是一个极大的遗憾。 2.3 空压机热能回收是一项非常环保的节能方式 2.3.1热能回收装置工作原理

空压机余热回收方案

空压机余热回收 系统工程方案书

目 录 一:空压机余热回收原理、用途说明 (3) 二:空压机热能回收的优点 (5) 三:空压机专用热水机和热泵、锅炉等各种制热设备的比较 (6) 四:贵公司的热能回收方案设计基础 (7) 五:空压机热能回收应用安装示意图 (8) 六:方案目标及验收标准 (10) 七:“新热能”空压机专用热水机的独特原理、设备数据、产品特点 (10) 八:工程施工依据与管道选材 (14) 九:安装施工方案 (15) 十:售后服务 (17) 十一:报价清单、回报周期、商务条款 (17) 十二:回报周期、商务条款: (19) 十三:工程实例图: (20) 附件:热水机产品介绍………………………………………………………………

一、空压机余热回收原理、用途说明: 1、概述:空压机热能的基本概况: 空压机的工作过程中,输入电能的80%左右变成热量,余不足20%左右变成最终的压缩空气能。 压缩机在工作过程中所耗电能转变成热量后,大部分被压缩后的油气混合物带走。分别在各自的冷却器(油冷却器和气冷却器)中被冷却介质(水或空气)带走,热量白白地浪费了。从理论上讲,除了2%的辐射热量不能回收外,几乎98%的热量均可以被回收利用。 2、热水机的基础原理及热能回收的用途: “新热能”热水机组实际上是一台热量回收装置,不同于机器上的冷却器。根据压缩机各机型的不同热量,设计制造出不同型号的机组与各种型号的压缩机匹配使用,避免因换热面积不精确,压降过大等原因给压缩机带来故障。热水机组接管通常设置在压缩机主机和冷却器之间,无论是水冷式压缩机还是风冷式压缩机都可适用。要实现全自动供水功能还需添置其它设备,其中包括热水管道、保温工程、储热水箱、循环水泵、自动控制箱、各种阀件管件等。可根据用户的不同需求安装不同的控制系统,使余热回收工程在最经济、最安全可靠的状态下运行。 回收水温常规为55℃-75℃之间,广泛适用于需要高温水或热水地方,如: 员工浴室用水、食堂用水、造纸及食品工业等生产设备用热水、锅炉预热、取暖设备、木材及电子产品烘干等。

离心压缩机余热回收工程技术方案

离心压缩机余热回收工程技术方案 编制单位: 编制日期:

目录 一、项目概况 (1) 二、项目建设的必要性 (1) 三、项目建设内容 (2) (一)项目设计原则 (2) (二)建设内容 (3) (三)工艺流程简述 (4) (四)产品特点............... 错误!未定义书签。 四、热工计算 (6) (一)基本参数 (6) (二)设计计算书 (6) (三)主要设备 (7) 五、经济效益分析 (10)

一、项目概况 有限公司现有三台空压机常年运行,空压机采用离心式两级压缩工艺,提供总容量为800Nm3/min,0.35MPa的压缩空气供生产使用,根据工艺和设备的要求,二级入口风温不可高于65℃。空压机压缩空气二级出口温度为夏季140℃,现生产工艺是将风温降到60℃以下。 有四台三级离心压缩空压机,提供总容量为730Nm3/min,0.75MPa的压缩空气供生产使用,根据工艺和设备的要求,二、三级入口风温不可高于65℃,空压机压缩空气三级出口温度夏季为140℃,现在的运行方式是将三级出口风温降到60℃以下外供。 二、项目建设的必要性 国民经济和社会发展第“十二五”规划纲要提出:“面对日趋强化的资源环境约束,必须增强危机意识,树立绿色、低碳发展理念,以节能减排为重点,健全激励和约束机制,加快构建资源节约、环境友好的生产方式和消费模式,增强可持续发展能力。” “十二五”期间的节能指标为:单位GDP能耗降低率为17%。在能源费用日趋增高的今天,节能降耗也是企业降低运行成本,提高经济效益的一个有效途径。 本项目中,空压机作为压缩空气的生产设备,在制取压缩空气的过程中,不可避免的要产生大量热量,受生产工艺的制约,

空压机余热回收方案设计

空压机余热利用中央热水系统设计方案 致: 根据贵方员工宿舍中央热水系统工程项目的邀请,设计施工方市森茂节能环保工程,按贵方要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计方案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计方案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单 1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计方案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。 1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造方式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水方式为不定时不定量,热水温度在55℃以上。 1.2 工程总方案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个周转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水

空压机余热回收案例

空压机余热回收案例: 某公司空压机余热回收节能改造 项目背景 1.改造前用能系统状况 某造船公司在生产中使用多台离心式空压机来制造压缩空气(空压机共3台,其额定功率2台974kW,1台662kW),合计容量为2610kW。 2.改造前用能系统存在的问题 空压机在运行时会产生大量的压缩热,通过油冷方式进行冷却并将热量排放到环境中。而与此同时,在生产生活中又需要用60℃热水,采用一台燃煤锅炉生产蒸汽以满足需要,造成了一定程度的能源浪费。 技术方案 1.技术原理 (1)叙述采用的技术的原理; (2)叙述采用节能技术及原因; (3)叙述电能替代技术的关键能效指标(设备效率、能效比或产品单耗); (4)叙述该技术使用条件和技术优势。 技术的原理:空压机压缩空气的过程中,由于空气分子间的摩擦,将产生大的热能,其热能总量接近于空压机的100%轴功率,其中70-90%的热能是可以被回收利用。在空压机系统中串

接换热设备,将被排放的热量交换于水、油等储热介质中加以综合利用。 采用节能技术及原因: 节能:改造原有系统,不仅利用了主产品,而且将副产品进行回收利用,节能效果明显。 易控制:回收空压机余热后生产热水后存入蓄热水箱供生产生活需要,补水、供水全部采用自动控制。 适用条件和技术优势: 目前空压机余热回收广泛应用于造船、钢铁、水泥等大量使用空压机且有生产生活用热需求的行业。技术优势:作为空压机来讲,它的主产品为压缩空气,热量为副产品,通常情况下,我们仅利用主产品,浪费副产品,不仅仅是浪费,利用该技术将空压机的热能进行回收利用,投入小产出高,优越性明显。 2.技术方案 (1)节能改造方案:本项目采用在空压机房中安装一台热交换器对其进行节能改造。

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

空压机余热回收技术方案

XXXX有限公司 XXX系统技术方案 一、概述 节能减排,降耗增效是当今每个企业所必须面对的话题,是关系到企业生存和发展的重中之重。能源的危机对于高能耗的企业,面临着严峻的考验和巨大的生存压力,现如今激烈的市场竞争,导致企业的利润空间已经大幅度下浮。只有在企业内部挖潜,在节能降耗上下功夫,不然企业无法生存。作为节能设备的制造企业,我们针对市场开发了适合于各种行业的空压机热能回收系列产品。本系统设计主要是提取空压机运行过程中浪费的热能,在回收热能的同时对空压机进行保护作用。从而达到节约能源与环保的作用。系统采用智能数字自动化控制,自动化程度高,可以完全不需要专人操作。 二、工程实施的意义 1、利用原本浪费的空压机热能进行回收,避免空压机房温度过高,空压机排气温度保持在750C到850C最好温度运行。 2.使空压机更省电,风扇不用开启,以贵公司76千瓦螺杆机为例风机为2.2千瓦,每小时可省约2.2度电,二十四小时可省52.8度电。 3、无需任何费用回收460C~480C热水,用于办公室或者车间供暖热源。 4、完全清洁无污染,安装方便,无需改变原有压缩机结构。 5、提高员工待遇(硬件设施),减少电费支出。

三、系统特点 系统采用全自动智能化控制, 无需专人看管。 回收热水温度可调 循环水箱自动补水 扬程水泵自动送水(达到设定的温度) 循环水箱水位控制 保温水箱水位控制 电脑检测循环水箱水位显示 电脑检测保温水箱水位显示 循环水自动循环加热 电脑系统自动检测故障源并显示在显示屏上

四、系统设计方案 (一)、根据贵公司提供的有关数据可以计算出供暖的面积:针对贵公司x台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收): 第一部分:空压机加载吸收的热量可转化中央空调供暖的功率为: 76×8×80%×80%=389千瓦 第二部分:空压机卸载吸收的热量可转化中央空调供暖的功率为: 76×8×20%×40%×80%=38.9千瓦 总共可以转化成中央空调供暖的功率为: 389+38.9=427.9千瓦 经过保温处理并考虑热量损失10%计算,可供中央空调供暖的总功率为:385千瓦 按照生活供暖加热到23摄氏度为例,每平方米面积所需供暖的功率为180W~200W左右,所以: 压缩机总体可以供暖的面积大致在2000个平方左右。(二)设计方案如下: 针对贵公司8台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收);

兴隆庄煤矿工业余热用于洗浴、供暖技术研究与应用

兴隆庄煤矿工业余热用于洗浴、供暖技术研究与应用 摘要:本文以兴隆庄煤矿实施空压机节能改造及矿井余热综合利用项目为例, 介绍气轮机低真空运行余热技术原理,对此项目进行技术改造的内容和方案等进 行研究,并提出了本次技术改造后的效果和改造过程以及改造之后存在的问题, 以供参考。 关键词:兴隆庄煤矿;气轮机低真空运行;余热技术 1引言 兴隆庄煤矿兴盛园小区采暖,副井口房保温防冻供热和矿区洗浴热水制备供 热均采用电厂蒸汽和锅炉提供热源,在过去加热处理过程中,运行成本及耗能较高,各个地点供热系统分散且单独供热,管网复杂、路线长,热损耗大,热资源 利用率较低,为进一步节约蒸汽费用,降底矿井生气成本,利用合同能源的方式,对上述三处位置进行整体的系统并网优化设计改造,采用华聚能源兴隆煤泥热电 厂3#汽轮机凝汽器低真空余热直供技术,解决兴盛园小区采暖、副井口房保温防 冻供热和矿区洗浴热水制备供热需求,达到节能减排目的。 2气轮机低真空运行余热技术原理 该项目冬季采暖期采用兴隆庄煤泥热电厂1#汽轮机凝汽器余热,利用凝汽器低真空乏汽供热技术,提高汽轮机凝汽器乏汽背压,提高乏汽在凝汽器中的冷凝 温度,直接利用凝汽器乏汽散热冷却水作为供热系统热源,通过水水换热器向矿 区供热。非采暖季1#汽轮机组凝汽器按标准工况工作,利用冷却水余热给洗浴热水自来水补水加热,再由蒸汽换热器提温至洗浴热水设计温度。 3气轮机低真空运行余热技术的应用 3.1工程概况 兖州煤业股份有限公司兴隆庄煤矿实施空压机节能改造及矿井余热综合利用 项目经过兴隆煤矿,兴隆庄煤泥热电厂及大地工程开发(集团)公司返复论证, 利用煤泥热电厂1#汽轮机凝汽器冷却水余热,利用凝汽器低真空供热技术,解决 兴盛园小区采暖,副井口房保温防冻供热和矿区洗浴热水制备供热需求。 3.2技术改造涉及范围 技术路线:利用电厂1.2MW机组凝汽器冷却循环水通过高效板式换热器换 热满足基峰供热,利用蒸气满足调峰供热,采用电厂余热为热源,向井口 5300m3/min进风防冻和兴盛园小区55万平方供暖以及矿井职工1500t洗浴热制取,满足冬季供暖和洗浴热水置换,电厂汽轮机冷却水出水温度≤60℃,回水温度不 高于45℃,不足部分用抽汽补充。 3.3主要工程内容 改造原煤矿中心换热站,拆除原两台燃煤锅炉与支撑平台,整理出约260m2 新机房;水源热泵供冷供热系统相关设备;原中心换热站内需改造的建筑供暖热水、新增洗浴热水与电厂冷却水换热设备、电厂冷却水分集水器、其他定压补水、软水装置、除垢装置、防腐装置、智控装置等均设置在上述新机房内;洗浴热水 加热与蓄热水箱设置在煤矿中心换热站北边空地上;改造北区换热站(或在其附 近扩建换热站),老北区及兴盛园供暖热水与电厂冷却水换热器、除垢防腐装置、电厂冷却水取水调控阀门、集控设备与值班室等均设置在该机房内;相关改造工 程的外管网布置,要求架空敷设为主,管道保温的材料、厚度与施工工艺满足国 标要求,外包度锌铁皮保护层;本项目要求设置集中智能控制系统,并能实现全 年智控节能运行与无人值守功能。

离心式压缩机

流体机械课程论文 题目:离心式压缩机 姓名: 班级: 学号: 指导老师: 时间:2012 年06 月10 日

离心式压缩机结构原理 压缩机是一种用于压缩气体以提高气体压力或输送气体的机器,广泛应用于化工企业各部门。压缩机种类繁多,尽管用 途可能一样,但其结构型式和工作原理都可能有很大的不同。 气体的压力取决于单位时间内气体分子撞击单位面积的次数与 强烈程度。因此,提高气体压力的主要方法就是增加单位容积 内气体分子数目,也就是容积式压缩机(活塞式、滑片式、罗 茨式螺杆式等)的基本工作原理;而利用惯性的方法,通过气 流的不断加速、减速,因惯性而彼此挤压,缩短分子间的距离,来提高气体的压力,离心式压缩机的工作原理属于这一类。 离心式压缩机的主要参数是流量、压缩比、有效功率、轴功率、转速、效率。1)流量指单位时间内流经压缩机流道任一截面 的气体量,通常以体积流量和质量流量两种方法来表示。体积 流量是指单位内流经压缩机流道任一截面的气体体积,其单位 为m3/s。因气体的体积随温度和压力的变化而变化,当流量以 体积流量表示时,须注明温度和压力。质量流量是指单位时间 内流经压缩机流道任一截面的气体质量,其单位为kg/s。2)压 缩比指压缩机的排出压力和吸入压力之比,有时也称压比。计

算压比时排出压力和吸入压力都要用绝对压力。3)转速指压缩机转子旋转的速度,其单位是r/min。4)有效功率在气体的压缩过程中,叶轮对气体所作的功,绝大部分转变气体的能量,另有一部分能量损失,该损失基本上包括流动损失、轮阻损失和漏气损失三部份,我们将压缩气体的能量与叶轮对气体所作的功的比值称为有效功率。5)轴功率离心式压缩机的转子在气体升压过程中产生的流动损失功率、轮阻损失功率和漏气损失功率外,其本身也产生机械损失,即轴承的摩擦损失,这部分功率消耗占总功率的2%~3%。如果有齿轮传动、则传动功率消耗同样存在,约占功率的2%~3%。以上功率消消耗都是在转子对气体作功过程中产生的,它们的总和即为离心式压缩机的轴功率,轴功率是选则驱动机功率的依据。6)效率指压缩机输出气体的有效功率与轴功率的比值,主要用来说明传递给气体的机械能的利用程度。 离心式压缩机用途很广最经济,气体的流动是连续的,其流量比容积型、压缩机要大得多。例如石油化学工业中,炼油和石化工业中普遍使用各种氢气压缩机,富气压缩机,离心式压缩机主要用于小功率的燃气轮机,内燃机增压以及动力风源等。 1.结构简单,易损零件少,运转可靠。一般能连续运行2年以上,因此不需要备用机。2.转速高、生产能力大,体积小。投资减少,操作人员减少。3.供气均匀有利稳定生产;气

相关主题
文本预览
相关文档 最新文档