当前位置:文档之家› 基于ARM9内核的IRQ异常中断编程机制的研究

基于ARM9内核的IRQ异常中断编程机制的研究

基于ARM9内核的IRQ异常中断编程机制的研究
基于ARM9内核的IRQ异常中断编程机制的研究

ARM中的中断要点

一、S5PV210中中断的特点 1、特点 ? Supports 93 vectored IRQ interrupts ? Fixed hardware interrupts priority levels ? Programmable interrupt priority levels ? Supports Hardware interrupt priority level masking ? Programmable interrupt priority level masking ? Generates IRQ and FIQ ? Generates Software interrupt 2、FIQ与IRQ的区别 1)FIQ和IRQ并不是中断源,而是中断的类型,我们可以将一个中断源设置成FIQ也可以设置成IRQ。2)FIQ是快速中断,IRQ是一般中断,FIQ的响应时间比IRQ短。 3)FIQ的优先级高于IRQ。 4)FIQ的分组寄存器(R8~R14)比IRQ(R13~R14)多。当在FIQ产生的时候,R8~R14不需要保存,响应的速度会快。 3、S5PV210的中断源

二、原理图分析

三、如何以中断的方式来检测按键:GPH2_2(EINT18) 、GPH2_3(EINT19) 按键的检测:轮询:将GPIO配置成输入……. 中断:将GPIO配置成外部中断……. 1、GPIO的配置,将一个GPIO配置成外部中断 2、外部中断的触发方式 (高电平、低电平、上升沿、下降沿)

3、外部中断的开关寄存器 0 = Enables Interrupt 打开中断 1 = Masked 关闭中断 4、外部中断判断寄存器 0 = Not occur 外部中断没有发生 1 = Occur interrupt 触发了中断

uCOS中断处理过程详解

再看3处代码: 在uCOS_II.H中有如下定义: OS_EXT OS_TCB *OSTCBPrioTbl[OS_LOWEST_PRIO + 1];//定义指向任务控制块的指针数//组,且每个优先级在同一时刻只对应一个任务 OS_EXT INT8U OSPrioCur;//用于保存目前任务的优先级 OS_EXT INT32U OSCtxSwCtr;//32位无符号全局整型变量,作为任务切换计数器 OS_EXT OS_TCB *OSTCBHighRdy;//指向最高优先级任务任务控制块的指 针 if (OSPrioHighRdy != OSPrioCur) //就绪态任务中的最高优先级已不是目前任务的优先级,则进行中断级的任务//切换 { OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy]; //将最高优先级任务控制块指针指向当前优先级最高的任务的任务控制块 OSCtxSwCtr++;//任务切换计数器加1 OSIntCtxSw();//调用中断级任务切换函数 } 此段代码体现出了可剥夺型实时操作系统内核的特点.

OSIntCtxSw()在80x86上的移植代码,此代码在OS_CPU_A.ASM中,代码如下: _OSIntCtxSw PROC FAR ; CALL FAR PTR _OSTaskSwHook ; 调用OSTaskSwHook()函数,此函数在 ;OS_CPU_C.C中只是个空函数,留给用户 ;在代码移植时自定义 ; MOV AX, SEG _OSTCBCur ;由于发生了段转移,恢复刚才(当前任务)数 MOV DS, AX;据段 ; MOV AX, WORD PTR DS:_OSTCBHighRdy+2 ;AH=_OSTCBHighRdy+3 ;AL=_OSTCBHighRdy+2 MOV DX, WORD PTR DS:_OSTCBHighRdy ;DH=_OSTCBHighRdy+1 ;DL=_OSTCBHighRdy MOV WORD PTR DS:_OSTCBCur+2, AX ;_OSTCBCur+3=AH ;_OSTCBCur+2=AL MOV WORD PTR DS:_OSTCBCur, DX ;_OSTCBCur+1=DH ;_OSTCBCur=DL

实验5 ARM中断编程

实验五 ARM中断编程 一、实验目的 1.学习键盘驱动原理。 2.掌握中断的使用方法。 二、实验内容 通过ARM的外部中断进行键盘的扫描,利用中断服务程序编写键盘的驱动,在超级终端上显示相应的键值。UART接收中断,以中断方式(而不是查询方式)实现串口数据的接收 三、预备知识 1.掌握在ADS1.2集成开发环境中编写和调试程序的基本过程。 2.会使用UltraEdit编辑C语言源程序。 3.了解ARM中断服务程序的框架结构。 4.了解编译后的映象文件的下载方法。 四、键盘驱动程序的原理 1.简单键盘扫描 通常在一个键盘中使用了一个瞬时接触开关,并且用如图1所示的简单电路,微处理器可以容易地检测到闭合。当开关打开时,通过处理器的I/O口的一个上拉电阻提供逻辑1;当开关闭合时,处理器的I/O口的输入将被拉低得到逻辑0。可遗憾的是,开关并不完善,因为当它们被按下或者被释放时,并不能够产生一个明确的1或者0。尽管触点可能看起来稳定而且很快地闭合,但与微处理器快速的运行速度相比,这种动作是比较慢的。当触点闭合时,其弹起就像一个球。弹起效果将产生如图2所示的好几个脉冲。弹起的持续时间通常将维持在5ms~30ms之间。如果需要多个键,则可以将每个开关连接到微处理器上它自己的输入端口。然而,当开关的数目增加时,这种方法将很快使用完所有的输入端口。为此我将用到矩阵键盘。 图1 简单键盘电路

图2 键盘抖动 2. 复杂矩阵键盘扫描 键盘上陈列这些开关最有效的方法(当需要5个以上的键时)就形成了一个如图3所示的二维矩阵。当行和列的数目一样多时,也就是方型的矩阵,将产生一个最优化的布列方式(I/O 端被连接的时候)。一个瞬时接触开关(按钮)放置在每一行与线一列的交叉点。矩阵所需的键的数目显然根据应用程序而不同。每一行由一个输出端口的一位驱动,而每一列由一个电阻器上拉且供给输入端口一位。 图3 矩阵键盘 键盘扫描过程就是让微处理器按有规律的时间间隔查看键盘矩阵,以确定是否有键被按下。一旦处理器判定有一个键按下,键盘扫描软件将过滤掉抖动并且判定哪个键被按下。每个键被分配一个称为扫描码的唯一标识符。应用程序利用该扫描码,根据按下的键来判定应该采取什么行动。换句话说,扫描码将告诉应用程序按下哪个键。

ARM中异常中断处理概述

异常中断处理概述 1.ARM中异常中断处理概述 1)在正常程序执行过程中,每执行一条ARM指令,程序计数器寄存器PC的值加4个字 节;每执行一条Thumb指令,程序计数器寄存器PC的值加两个字节.整个过程是顺序执行. 2)通过跳转指令,程序可以跳转到特定的地址标号处执行,或者跳转到特定的子程序处 执行; B指令用于执行跳转操作; BL指令在执行跳转操作的同时,保存子程序的返回地址; BX指令在执行跳转操作的同时,根据目标地址的最低位可以将程序状态切换到Thumb状态; BLX指令执行3个操作:跳转到目标地址处执行,保存子程序的返回地址(R15保存在R14中),根据目标地址的最低位可以将程序状态切换到Thumb状态. 3)当异常中断发生时,系统执行完当前指令后,将跳转到相应的异常中断处理程序处执 行.在当异常中断处理程序执行完成后,程序返回到发生中断的指令的下一条指令处执行. 4)在进入异常中断处理程序时,要保存被中断的程序的执行现场,在从异常中断处理程 序退出时,要恢复被中断的程序的执行现场.本章讨论ARM体系中的异常中断机制. 2.ARM体系中异常中断种类. ARM体系中的异常中断如下表所示:

3. 中断向量表中指定了各异常中断及其处理程序的对应关系.它通常存放在存储地址的低端.在ARM体系中,异常中断向量表的大小为32字节.其中,每个异常中断占据4个字节大小,保留了4个字节空间. 每个异常中断对应的中断向量表的4 .通过这两种指令,程序将跳转到相应的异常中断处理程序处执行. 当几个异常中断同时发生时,就必须按照一定的次序来处理这些异常中断.在ARM 中通过给各异常中断富裕一定的优先级来实现这种处理次序.当然有些异常中断是不坑能同时发生的,如指令预取中止异常中断和软件中断(SWI)异常中断是有同一条指令的执行触发的,他们是不可能同时发生的.处理器执行某个特定的异常中断的过程中,称为处理器处于特定的中断模式.各异常中断的中断向量地址以及中断的处理优先级如表2所示. 4.异常中断使用的寄存器 各异常中断对应着一定的处理器模式.应用程序通常运行在用户模式下.ARM中的处理器模式如表3所示. 各种不同的处理器模式可能有对应于该处理器模式的物理寄存器组,如表4所示,其中,R13_svc表示特权模式下的R13寄存器,R13_abt表示中止模式下的R13寄存器,其余的各寄存器名称含义类推. 表4 各处理器模式的物理寄存器组

ARM异常中断机制.

ARM9(以S3C2410为例)中断机制 一、ARM异常机制介绍 ARM9处理器有7种工作模式。分别是(除了用户模式其他都是异常模式 用户模式(usr:ARM处理器正常的程序执行状态。 快速中断模式(fiq:用于高速数据传输或通道处理。 外部中断模式(irq:用于通用的中断处理。 管理模式(svc:操作系统使用的保护模式。 数据访问终止模式(abt:当数据或指令预取终止时进入该模式。 系统模式(sys:运行具有特权的操作系统任务。 未定义指令中止模式(und:当未定义的指令执行时进入该模式。 每种模式通过5位二进制编码进行标示: 用户模式10000 快速中断模式10001 外部中断模式10010 管理模式10011 数据访问终止模式10111 未定义指令中止模式11011 系统模式11111 模式编码存放在CPSR(程序当前状态寄存器,记录当前工作模式的编码的值)中的[4:0]。

快速中断模式、外部中断模式、数据访问终止模式、未定义指令中止模式、管理模式称为异常模式。 异常类型具体含义 复位当处理器的复位电平有效时,产生复位异常,程序跳转到复位异常处理程序处执行。 未定义指令遇到不能处理的指令时,产生未定义指令异常。 软件中断该异常由执行SWI指令产生,可用于用户模式下的程序调用特权操作指令。可使用该异常机制实现系统功能调用。 指令预取中止若处理器预取指令的地址不存在,或该地址不允许当前指令访问,存储器会向处理器发出中止信号,但当预取的指令被执行时,才会产生指令预取中止异常。 数据中止若处理器数据访问指令的地址不存在,或该地址不允许当前指令访问时,产生数据中止异常。 IRQ(外部中断请求)当处理器的外部中断请求引脚有效,且CPSR中的I 位为0时,产生IRQ异常。系统的外设可通过该异常请求中断服务。 FIQ(快速中断请求)当处理器的快速中断请求引脚有效,且CPSR中的F 位为0时,产生FIQ异常。 当多个异常发生时,处理器根据优先级进行处理。优先级

uCOSii中断处理过程详解(一)

一. UCOSII的中断过程简介 系统接收到中断请求后,如果CPU处于开中断状态,系统就会中止正在运行的当前任务,而按中断向量的指向去运行中断服务子程序,当中断服务子程序运行完成后,系统会根据具体情况返回到被中止的任务继续运行,或转向另一个中断优先级别更高的就绪任务。 由于UCOS II是可剥夺型的内核,所以中断服务程序结束后,系统会根据实际情况进行一次任务调度,如果有优先级更高的任务,就去执行优先级更高的任务,而不一定要返回被中断了的任务。 二.UCOSII的中断过程的示意图 三.具体中断过程 1.中断到来,如果被CPU识别,CPU将查中断向量表,根据中断向量表,获得中断服务子程序的入口地址。 2.将CPU寄存器的内容压入当前任务的任务堆栈中(依处理器的而定,也可能压入被压入被中断了的任务堆栈中。

3.通知操作系统将进入中断服务子程序。即:调用OSIntEnter()或OSIntNesting直接 加1。 4.If(OSIntNesting==1){OSTCBCur->OSTCBStrPtr=SP;} //如果是第一层中断,则将堆栈指针保存到被中断任务的任务控制块中 5.清中断源,否则在开中断后,这类中断将反复的打入,导致系统崩贵 6.执行用户ISR 7.中断服务完成后,调用OSIntExit().如果没有高优先级的任务被中断服务子程序激活而进入就绪态,那么就执行被中断了的任务,且只占用很短的时间. 8.恢复所有CPU寄存器的值. 9.执行中断返回指令.

四.相关代码 与编译器相关的数据类型: typedef unsigned char BOOLEAN; typedef unsigned char INT8U; typedef unsigned int OS_STK; //堆栈入口宽度为16 位(一) void OSIntEnter (void)的理解 uCOS_II.H中定义:

ARM的中断原理

ARM的中断原理(转) 1.中断概述 CPU与外设的数据传输方式通常有以下3种方式:查询方式、中断方式、DMA方式。 所谓查询方式是指,CPU不到查询外设的状态,如果外设准备就绪则开始进行数据传输;如果外设还没有准备好,CPU将进入循环等待状态。很显然这样浪费了大量的CPU时间,降低了CPU的利用率。 所谓中断方式是指,当外设准备好与CPU进行数据传输时,外设首先向CPU发出中断请求,CPU 接收到中断请求并在一定条件下,暂时停止原来的程序并执行中断服务处理程序,执行完毕以后再返回原来的程序继续执行。由此可见,采用中断方式避免了CPU把大量的时间花费在查询外设状态的操作上,从而大大提高了CPU的执行效率。 1.中断概述 CPU与外设的数据传输方式通常有以下3种方式:查询方式、中断方式、DMA方式。 所谓查询方式是指,CPU不到查询外设的状态,如果外设准备就绪则开始进行数据传输;如果外设还没有准备好,CPU将进入循环等待状态。很显然这样浪费了大量的CPU时间,降低了CPU的利用率。 所谓中断方式是指,当外设准备好与CPU进行数据传输时,外设首先向CPU发出中断请求,CPU 接收到中断请求并在一定条件下,暂时停止原来的程序并执行中断服务处理程序,执行完毕以后再返回原来的程序继续执行。由此可见,采用中断方式避免了CPU把大量的时间花费在查询外设状态的操作上,从而大大提高了CPU的执行效率。 ARM系统包括两类中断:一类是IRQ中断,另一类是FIQ中断。IRQ是普通中断,FIQ是快速中断,在进行大批量的复制、数据传输等工作时,常使用FIQ中断。FIQ的优先级高于IRQ。 在ARM系统中,支持7类异常,包括:复位、未定义指令、软中断、预取中止、数据中止、IRQ和FIQ,每种异常对应于不同的处理器模式。一旦发生异常,首先要进行模式切换,然后程序将转到该异常对应的固定存储地址执行。这个固定的地址称为异常向量。异常向量中保存的通常为异常处理程序的地址。ARM的异常向量如下: 异常模式正常地址高向量地址 复位管理 0x00000000 0xFFFF0000 未定义指令未定义 0x00000004 0xFFFF 0004 软中断管理 0x00000008 0xFFFF 0008 预取指中止中止0x0000000C 0xFFFF 000C 数据中止中止0x00000010 0xFFFF0010 IRQ IRQ 0x00000018 0xFFFF0018

IRQ0中断处理全过程

IRQ0中断处理全过程 1:系统注册IRQ0(时钟中断)的下半部分的处理过程。 在\kernel\sched.c的sched_init函数中 init_bh(TIMER_BH, timer_bh);/*TIMER_BH==0*/ init_bh(TQUEUE_BH, tqueue_bh);/*TQUEUE_BH==2*/ init_bh(IMMEDIATE_BH, immediate_bh);/*IMMEDIATE_BH==11*/ init_bh(TIMER_BH, timer_bh)把timer_bh函数注册为定时器的下半部分。 来看看init_bh是怎么处理的。 去掉一些加琐解琐的东西,就变成以下了。 void init_bh(int nr, void (*routine)(void)) { bh_base[nr] = routine; atomic_set(&bh_mask_count[nr], 0); bh_mask |= 1 << nr; } 就是简单的设置bh_base和bh_mask. 看看这些的定义: atomic_t bh_mask_count[32]; unsigned long bh_active = 0; unsigned long bh_mask = 0; void (*bh_base[32])(void); bh_base[] 31 bh_active 0 Bottom half handler(timer_bh) 31 bh_mask 0 不好意思,画的这么难看:P 如果bh_mask的第N位被置为1,则表明bh_base[]中的第N个指针指向了一个Bottom half 例程。 如果bh_active的第N位被置为1,则表明一旦调度进程许可,立即调用第N个Bottom hal f 例程。 bh_mask_count[]跟踪为每个下半部分提出的enable/disable请求嵌套对的数组。2.系统初始化时钟中断(IRQ0) ①先看看start_kernel(\init\main.c)吧 有几个跟时钟中断(IRQ0)相关的函数。 init_IRQ(); sched_init(); time_init(); sched_init()就是注册时钟中断的下半部分,其实IRQ0两个下半部分,一个前面已经看 到,还有一个下半部分init_bh(TQUEUE_BH, tqueue_bh);下面会看到。 ②init_IRQ函数在\arch\i386\kernel\irq.c 比较重要的调用就是init_ISA_irqs();

arm中断返回地址详细分析.

在ARM体系中,通常有以下3种方式控制程序的执行流程: 1、在正常执行过程中,每执行一条ARM指令,程序计数器PC的值加4个字节;每执行一条Thumb 指令,程序计数器PC加2个字节。整个过程是顺序执行的; 2、跳转B指令执行跳转操作;BL指令在执行跳转的同时,保存子程序返回地址;BX指令,执行跳转的同时,根据目标地址的最低位,可以将程序状态切换到Thumb状态;BLX指令执行上述3个操作; 3、当异常中断发生时,系统执行完当前指令后,将跳转到相应的异常中断处理程序处执行。在进入异常中断处理程序时,要保存被中断的程序的执行现场,在从异常中断处理程序退出时,要恢复被中断的程序的执行现场。当异常中断处理程序执行完成后,程序返回到发生中断的指令的下一条指令处执行。 异常中断种类、异常中断向量地址和异常中断优先级别见下表: ARM运行的几种处理器模式如上表所示。其中,应用程序通常运行在用户模式下! 为了说明异常中断执行过程,先了解各处理器模式下的寄存器组,如下表: 重点:ARM处理器对异常中断的响应过程: ㈠、保存当前程序状态寄存器CPSR到对应异常中断的处理器模式下的SPSR中; ㈡、设置当前程序状态寄存器CPSR的处理器模式位M(4:0)为对应的处理器模式,并禁止IRQ 中断(设置I位=1);当进入的是FIQ模式时,禁止FIQ中断(设置F位=1); ㈢、将对应异常中断的处理器模式下的LR设置成返回地址; ㈣、将程序计数器PC值,设置成该异常中断向量地址,从而跳转到相应的异常中断处理程序处执行。 上述处理器对异常中断的响应过程可以用伪代码描述如下: R14=return Link SPSR=CPSR CPSR[4:0]=exception mde number CPSR[5] = 0 //所有异常均在ARM状态下处理(本句出自《基于ARM的嵌入式系统开发与实例》P32) if(==Reset or FIQ )then CPSR[6]=1 //禁止FIQ中断 CPSR[7] =1 //禁止IRQ中断 PC = exception vetor address 程序将自动跳转到对应异常中断的处理程序中。 上述过程,完全由处理器自动完成,所以,当发生一种异常中断时,寄存器R14 、CPSR、SPSR 和PC的值将是上述的结果!结果如下图所示: 下面是引用别人的文章: ARM处理器中主要有7个异常(2个中断异常): 1、复位异常;在以ARM为核的单片机中,常把下列事件作为引起复位的原因。 ? 上电复位:在上电后,复位使内部达到预定的状态,特别是程序跳到初始入口; ? 复位引脚上的复位脉冲:这是由外部其他控制信号引起的; ? 对系统电源检测发现过压或欠压; ? 时钟异常复位。 ARM处理器复位后,处理器硬件将进行以下操作: ? 强制进入管理模式;0b10011 ? 强制进入ARM状态;T=0 ? 跳转到绝对地址PC=0x00000000处执行;

Linux中断处理流程

Linux中断处理流程 先从函数注册引出问题吧。 一、中断注册方法 在linux内核中用于申请中断的函数是request_irq(),函数原型在Kernel/irq/manage.c中定义: int request_irq(unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) irq是要申请的硬件中断号。 handler是向系统注册的中断处理函数,是一个回调函数,中断发生时,系统调用这个函数,dev_id参数将被传递给它。 irqflags是中断处理的属性,若设置了IRQF_DISABLED (老版本中的SA_INTERRUPT,本版zhon已经不支持了),则表示中断处理程序是快速处理程序,快速处理程序被调用时屏蔽所有中断,慢速处理程 序不屏蔽;若设置了IRQF_SHARED (老版本中的SA_SHIRQ),则表示多个设备共享中断,若设置了IRQF_SAMPLE_RANDOM(老版本中的 SA_SAMPLE_RANDOM),表示对系统熵有贡献,对系统获取随机数有好处。(这几个flag是可以通过或的方式同时使用的) dev_id在中断共享时会用到,一般设置为这个设备的设备结构体或者NULL。devname设置中断名称,在cat /proc/interrupts中可以看到此名称。 request_irq()返回0表示成功,返回-INVAL表示中断号无效或处理函数指针为NULL,返回-EBUSY表示中断已经被占用且不能共享。 关于中断注册的例子,大家可在内核中搜索下request_irq。 在编写驱动的过程中,比较容易产生疑惑的地方是: 1、中断向量表在什么位置?是如何建立的? 2、从中断开始,系统是怎样执行到我自己注册的函数的? 3、中断号是如何确定的?对于硬件上有子中断的中断号如何确定? 4、中断共享是怎么回事,dev_id的作用是? 本文以2.6.26内核和S3C2410处理器为例,为大家讲解这几个问题。 二、异常向量表的建立 在ARM V4及V4T以后的大部分处理器中,中断向量表的位置可以有两个位置:一个是0,另一个是0xffff0000。可以通过CP15协处理器c1寄存器中V位(bit[13])控制。V和中断向量表的对应关系如下: V=0 ~ 0x00000000~0x0000001C V=1 ~ 0xffff0000~0xffff001C arch/arm/mm/proc-arm920.S中 .section ".text.init", #alloc, #execinstr __arm920_setup: ...... orr r0, r0, #0x2100 @ ..1. ...1 ..11 (1) //bit13=1 中断向量表基址为0xFFFF0000。R0的值将被付给CP15的C1.

C51中断处理过程

C51中断处理过程 3 C51中断处理过程 C51编译器支持在C源程序中直接开发中断过程,因此减轻了使用汇编语言的繁琐工作,提高了开发效率。中断服务函数的完整语法如下: void函数名(void)[模式] [再入]interrupt n [using r] 其中n(0~31)代表中断号。C51编译器允许32个中断,具体使用哪个中断由80C51系列的芯片决定。r(0~3)代表第r组寄存器。在调用中断函数时,要求中断过程调用的函数所使用的寄存器组必须与其相同。"再入"用于说明中断处理函数有无"再入"能力。C51编译器及其对C语言的扩充允许编程者对中断所有方面的控制和寄存器组的使用。这种支持能使编程者创建高效的中断服务程序,用户只须在C语言下关心中断和必要的寄存器组切换操作。例3 设单片机的fosc=12MHz,要求用T0的方式1编程,在P1.0脚输出周期为2ms的方波。例3 设单片机的fosc=12MHz,要求用T0的方式1编程,在P1.0脚输出周期为2ms的方波。用C语言编写的中断服务程序如下: #include sbit P1_0=P1^0; void timer0(void)interrupt 1 using 1 { /*T0中断服务程序入口*/ P1_0=!P1_0; TH0=-(1000/256); /*计数初值重装*/ TL0=-(1000%256); } void main(void) { TMOD=0x01; /*T0工作在定时器方式1*/ P1_0=0; TH0=-(1000/256); /*预置计数初值*/ TL0=-(1000%256); EA=1; /*CPU开中断*/ ET0=1; /*T0开中断*/ TR0=1; /*启动T0*/ do{}while(1); } 在编写中断服务程序时必须注意不能进行参数传递,不能有返回值。 8051 系列 MCU 的基本结构包括:32 个 I/O 口(4 组8 bit 端口);两个16 位定时计数器;全双工串行通信;6 个中断源(2 个外部中断、2 个定时/计数器中断、1 个串口输入/输出中断),两级中断优先级;128 字节内置RAM;独立的 64K 字节可寻址数据和代码区。中断发生后,MCU 转到 5 个中断入口处之一,然后执行相应的中断服务 处理程序。中断程序的入口地址被编译器放在中断向量中,中断向量位于程序代码段的最低地址处,注意这里的串口输入/输出中断共用一个中断向量。8051的中断向量表如下: 中断源中断向量 --------------------------- 上电复位 0000H 外部中断0 0003H 定时器0 溢出 000BH 外部中断1 0013H 定时器1 溢出 001BH

ARM处理器中断处理的理解

ARM处理器中断处理的理解 在发生外部中断时的处理过程如下图所示: 在发生外部中断时ARM程序跳转到 b HandlerIRQ;handler for IRQ interrupt 根据如下语句 LTORG HandlerFIQ HANDLER HandleFIQ HandlerIRQ HANDLER HandleIRQ HandlerUndef HANDLER HandleUndef 就会调用如下HANDLER宏: HandlerIRQ HANDLER HandleIRQ ;发生外部中断时调用这个宏,跳转到IsrIRQ HANDLER宏如下: MACRO $HandlerLabel HANDLER $HandleLabel ;在一个标号前使用$表示程序被汇编时将使用相应的值来代替$后的标号 $HandlerLabel ;可以将其想像成函数名,但这个函数名可以被不同名称(HandlerIRQ,HandlerFIQ)替代sub sp,sp,#4 ;decrement sp(to store jump address) stmfd sp!,{r0} ;PUSH the work register to stack(lr does't push because it return to original address) ldr r0,=$HandleLabel ;可以当成函数参数, HandleIRQ所指向的地址內裝的是IsrIRQ的入口地址 ;所以下面的語句实际上是load IsrIRQ的入口地址到r0 ldr r0,[r0] ;load the contents(service routine start address IsrIRQ的入口地址) of HandleXXX to r0 str r0,[sp,#4] ;store the contents(ISR) of HandleXXX to stack, r0也就是IsrIRQ的入口地址to SP

Linux中断处理过程浅析

linux中断响应和处理过程: 首先中断属于异常的一种。异常,就是可以打断CPU正常运行流程的一些事情,比如说外部中断,未定义的指定,试图修改只读数据,执行SWI指定(software interrupt instructin,软件中断指令,比如说上层调用sys_read,sys_write就会产生swi)等。 内核启动时在start_kernel函数(init/main.c)中调用trap_init , init_IRQ两个函数来设置异常的处理函数。 trap_init函数(arch/arm/kernel/traps.c) void_init trap_init(void) { ...... memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start); memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start); ....... } 上面两条定义的是异常向量的存放地方,即:__stubs_start~~~~~ __stubs_end之间就是异常向量. 接下来我们看异常向量之间的定义:(arch/arm/kernel/entry-armv.s) .equ stubs_offset, __vectors_start + 0x200 - __stubs_start .globl __vectors_start __vectors_start: ARM( swi SYS_ERROR0 ) //复位时.CPU交执行这条指令 THUMB( svc #0 ) THUMB( nop ) W(b) vector_und + stubs_offset //未定义异常时,CPU将执行这条跳转指令 W(ldr) pc, .LCvswi + stubs_offset //swi异常 W(b) vector_pabt + stubs_offset //指令预取止 W(b) vector_dabt + stubs_offset //数据访问中止 W(b) vector_addrexcptn + stubs_offset //没有用到 W(b) vector_irq + stubs_offset //irq中断 W(b) vector_fiq + stubs_offset //fig中断(快速中断) .globl __vectors_end __vectors_end: 各种异常的处理函数可以分为五类,分别分布在下面不同的文件中: 1、arch/arm/kernel/traps.c中 处理未定义指令异常,总入口函数为do_undefinstr

armlinux内核中ARM中断实现详解.

linux-2.6.26内核中ARM中断实现详解(1) 作者:刘洪涛,华清远见嵌入式学院金牌讲师,ARM ATC授权培训讲师。 看了一些网络上关于linux中断实现的文章,感觉有一些写的非常好,在这里首先感谢他们的无私付出,然后也想再补充自己对一些问题的理解。先从函数注册引出问题吧。 一、中断注册方法 在linux内核中用于申请中断的函数是request_irq(),函数原型在 Kernel/irq/manage.c中定义: int request_irq(unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) irq是要申请的硬件中断号。 handler是向系统注册的中断处理函数,是一个回调函数,中断发生时,系统调用这个函数,dev_id参数将被传递给它。 irqflags是中断处理的属性,若设置了IRQF_DISABLED (老版本中的 SA_INTERRUPT,本版zhon已经不支持了),则表示中断处理程序是快速处理程序,快速处理程序被调用时屏蔽所有中断,慢速处理程序不屏蔽;若设置了IRQF_SHARED (老版本中的SA_SHIRQ),则表示多个设备共享中断,若设置了IRQF_SAMPLE_RANDOM(老版本中的 SA_SAMPLE_RANDOM),表示对系统熵有贡献,对系统获取随机数有好处。(这几个flag是可以通过或的方式同时使用的) dev_id在中断共享时会用到,一般设置为这个设备的设备结构体或者NULL。 devname设置中断名称,在cat /proc/interrupts中可以看到此名称。 request_irq()返回0表示成功,返回-INVAL表示中断号无效或处理函数指针为NULL,返回-EBUSY表示中断已经被占用且不能共享。 关于中断注册的例子,大家可在内核中搜索下request_irq。 在编写驱动的过程中,比较容易产生疑惑的地方是: 1、中断向量表在什么位置?是如何建立的? 2、从中断开始,系统是怎样执行到我自己注册的函数的? 3、中断号是如何确定的?对于硬件上有子中断的中断号如何确定? 4、中断共享是怎么回事,dev_id的作用是? 本文以2.6.26内核和S3C2410处理器为例,为大家讲解这几个问题。

arm中断处理流程

ARM编程特别是系统初始化代码的编写中通常需要实现中断的响应、解析跳转和返回等操作,以便支持上层应用程序的开发,而这往往是困扰初学者的一个难题。中断处理的编程实现需要深入了解ARM内核和处理器本身的中断特征,从而设计一种快速简便的中断处理机制。需要说明的是,具体的上层高级语言编写的中断服务函数不在本文的讨论范围之内。 ARM处理器异常中断处理概述 当异常中断发生时,系统执行完当前指令后,将跳转到相应的异常中断处理程序处执行。当异常中断处理程序执行完成后,程序返回到发生中断的指令的下一条指令处执行。在进入异常中断处理程序时,要保存被中断的程序的执行现场。从异常中断处理程序退出时,要恢复被中断的程序的执行现场。ARM体系中通常在存储地址的低端固化了一个32字节的硬件中断向量表,用来指定各异常中断及其处理程序的对应关系。当一个异常出现以后,ARM微处理器会执行以下几步操作: 1)保存处理器当前状态、中断屏蔽位以及各条件标志位; 2)设置当前程序状态寄存器CPSR中相应的位; 3)将寄存器lr_mode设置成返回地址; 4)将程序计数器(PC)值设置成该异常中断的中断向量地址,从而跳转到相应的异常中断处理程序处执行。 在接收到中断请求以后, ARM处理器内核会自动执行以上四步,程序计数器PC总是跳转到相应的固定地址。从异常中断处理程序中返回包括下面两个基本操作: 1)恢复被屏蔽的程序的处理器状态; 2)返回到发生异常中断的指令的下一条指令处继续执行。 当异常中断发生时,程序计数器PC所指的位置对于各种不同的异常中断是不同的,同样,返回地址对于各种不同的异常中断也是不同的。例外的是,复位异常中断处理程序不需要返回,因为整个应用系统是从复位异常中断处理程序开始执行的。 支持中断跳转的解析程序 解析程序的概念和作用 如前所述,ARM处理器响应中断的时候,总是从固定的地址开始的,而在高级语言环境下开发中断服务程序时,无法控制固定地址开始的跳转流程。为了使得上层应用程序与硬件中断跳转联系起来,需要编写一段中间的服务程序来进行连接。这样的服务程序常被称作中断解析程序。 每个异常中断对应一个4字节的空间,正好放置一条跳转指令或者向PC寄存器赋值的数据访问指令。理论上可以通过这两种指令直接使得程序跳转到对应的中断处理程序中去。但实际上由于函数地址值为未知和其它一些问题,并不这么做。这里给出一种常用的中断跳转流程:

ARM的三种中断调试方法简介.

ARM的三种中断调试方法简介 1嵌入式软件开发流程参照嵌入式软件的开发流程。第一步:工程建立和配置。第二步:编辑源文件。第三步:工程编译和链接。第四步:软件的调试。第五步:执行文件的固化。在整个流程中,用户首先需要建立工程并对工程做初步的配置,包括配置处理器和配置调试设备。编辑工程文件,包括自己编写的汇编和C语言源程序,还有工程编译时需要编写的链接脚本文件,调试过程中需要编写存储区映像文件和命令脚本文件,以及上电复位时的程序运行 1 嵌入式软件开发流程 参照嵌入式软件的开发流程。第一步:工程建立和配置。第二步:编辑源文件。第三步:工程编译和链接。第四步:软件的调试。第五步:执行文件的固化。 在整个流程中,用户首先需要建立工程并对工程做初步的配置,包括配置处理器和配置调试设备。编辑工程文件,包括自己编写的汇编和C语言源程序,还有工程编译时需要编写的链接脚本文件,调试过程中需要编写存储区映像文件和命令脚本文件,以及上电复位时的程序运行入口的启动程序文件。 对后四种文件的理解很重要,其作用解释如下。 (1) 链接脚本文件:在程序编译时起作用。该文件描述代码链接定位的有关信息,包括代码段,数据段,地址段等,链接器必须使用该文件对整个系统的代码做正确的定位。在SDRAM中调试程序、在FLASH中调试或固化后运行的链接脚本文件应加以区分。(在IDE开发环境中使用扩展名*.ld) (2)命令脚本文件:在SDRAM中调试程序时起作用。在集成环境与目标连接时、软件调试过程中以及目标板复位后,有时需要集成环境自动完成一些特定的操作,比如复位目标板、清除看门狗、屏蔽中断寄存器、存储区映射等。这些操作可以通过执行一组命令序列来完成,保存一组命令序列的文本文件称为命令脚本文件(在 IDE开发环境中使用扩展名*.cs)。 (3)存储区映像文件:在SDRAM中调试程序时起作用。在软件调试过程中访问非法存储区在部分处理器和目标板上会产生异常,如果异常没有处理,则会导致软件调试过程无法继续,为了防止以上问题并调整仿真器访问速度以达到最合适的水平,提供这样一种用于描述各个存储区性质的文件叫存储区映像文件(在IDE开发环境中使用扩展名*.map)。 在程序的调试过程中可以选择使用存储区映像文件*.map和命令脚本文件*. cs 配合程序的调试。

ARM中断系统.

该文章介绍了ARM处理器的中断系统,以周立功公司的LPC2000为例。希望对大家有用! 1.1 中断源 LPC2000系列的向量中断控制器(VIC)支持32个中断请求输入,也即是支持32个中断源,见表5.1。这32个中断按顺序称为VIC通道0,VIC通道1,…,VIC通道31。 每一个VIC通道都支持软件中断与硬件中断,即每个中断均可由软件或硬件中断产生,软件中断与对应通道上的硬件中断是逻辑“或”的关系。软件中断可通过置位VICSoftInt寄存器相应位来产生,也可通过置位VICSoftIntClear 寄存器相应位来清除。 表5.1 外设功能的中断源 1.2 三种中断类型 LPC2000具有3类中断:FIQ、向量IRQ和非向量IRQ。LPC2000系列可通过对VICIntSelect和VICVectCntlx(x=0,1,…,15)这两类寄存器的设置,将以上的32个中断源设置为这三类中断的任何一种。其中,快速中断请求FIQ具有最高优先级。建议只分配一个中断请求给FIQ以减少中塅处理程序的延迟。当然,VIC支持多个FIQ中断。向量IRQ具有中等优先级。该级别最多可分配32个请求中的16个。32个请求中的任何一个都可以分配到16个向量IRQslot中的任意一个。其中,slot0具有最高优先级,而slot15则为最低优先级。非向量IRQ 具有最低优先级。 1.3 如何初始化某个中断源为三类中断中的一类 通过VICIntSelect中断选择寄存器将32个中断请求分配为FIQ或IRQ (包括向量IRQ与非向量IRQ);通过VICVectCntlx(x=0,1,…,15)来选择32个中断请求中的某个为向量IRQ并设定此中断请求为IRQ slotx(x对应于VICVectCntlx中的x)。若某个中断源被设定为IRQ,但却未通过VICVectCntlx 使能,则该中断源将被默认为非向量IRQ。 1.4 中断处理过程中断处理过程如下所示: 初始化:设置中断源为3种中断源之一,设置中断地址,使能中断,然后正常运行用户程序;当有IRQ中断产生时,VIC将会根据中断源设置VICVectAddr

中断概述和中断处理过程

第23课中断概述可屏蔽中断处理过程 教学目的:了解中断的相关概念,掌握可屏蔽中断的处理过程。 教学重点:中断响应过程、中断向量和中断服务过程。 教学难点:中断向量。 授课内容: 一、中断概念 1.中断源 2.中断响应 3.中断向量表 4.中断优先级 5.中断屏蔽 二、中断分类 8086/8088有一个强有力的中断系统,可以处理256种不同的中断,256种中断可以分为两大类:外部中断和内部中断。 1.外部中断 也称为硬件中断,是由外部的硬件产生的。分成不可屏蔽中断请求和可屏蔽中断请求。 2.内部中断 又称为软件中断。通常有三种情况引起:由中断指令INT引起的中断;由CPU 的某些运算错误引起的中断;由调试程序debug设置的中断。 三、CPU响应中断过程 可屏蔽中断处理的过程一般分成几步:中断请求;中断响应;保护现场;转入执行中断服务子程序;恢复现场和中断返回。 CPU响应中断要有三个条件: 外设提出中断申请 本中断位未被屏蔽 中断允许 CPU在响应外部中断,并转入相应中断服务子程序的过程中,自动依次做以

下工作: (1)从数据总线上读取中断类型号,将其存入内部暂存器。 (2)将标志寄存器PSW的值入栈。 (3)将PSW中的中断允许标志IF和单步标志TF清0,以屏蔽外部其它中断请求,及避免CPU以单步方式执行中断处理子程序。 (4)保护断点。 (5)根据中断类型号到中断向量表中找到中断向量,转入相应中断服务子程序。 (6)中断处理程序结束以后,从堆栈中依次弹出IP、CS和PSW,然后返回主程序断点处,继续执行原来的程序。 四、中断向量表 寻找中断源可以用查询中断及矢量中断两种方法。 1.中断向量表 又称中断服务程序入口地址表。8086允许处理256种类型中断,对应类型号为0~FFH。 2.中断向量的设置 供用户使用的中断类型号,它可由用户定义为软中断,由INT n指令引用;也可通过1NTR端直接接入,或通过中断控制器8259A引入可屏蔽硬件中断。有两种方法可将中断服务程序的入口地址置入中断类型号n所对应的中断向量表中。一种方法用指令来设置,另一种方法利用DOS功能调用来设置。 设置中断向量:预置AL=中断类型号 DS:DX=中断服务程序入口地址 AH=25H 执行: INT 21H 取中断向量:预置AL=中断类型号 AH=35H 执行: INT 21H 返回: ES:BX=中断服务程序人口地址 3.中断类型号的获取

相关主题
文本预览
相关文档 最新文档