当前位置:文档之家› 结构化学答案3

结构化学答案3

结构化学答案3
结构化学答案3

03 共价键和双原子分子的结构化学

【3.1】试计算当Na +

和Cl +

相距280pm 时,两离子间的静电引力和万有引力;并说明讨论

化学键作用力时,万有引力可以忽略不计。(已知:完有引力

1112

2, 6.710m m F G

G r -==?

22

N m kg -??;静电引力

92212

2,9.010q q F K

K N m C r -==???)

解:万有引力 静电引力

由上计算可见,在这情况下静电引力比万有引力大34

10倍,所以万有引力可以忽略不计。

【3.2】写出2O ,2O +,22O -

的键级,键长长短次序和磁性。

解:

分子(或离子) 键 级 2.5

2

1.5

1

键长次序

磁 性

顺磁 顺磁 顺磁 抗磁

【3.3】2H 分子基态的电子组态为()2

1s σ,其激发态有

()a 1s s σσ*↑↓

,()

*11s s b σσ↑↑

,()

*11s s c σσ↑↓

试比较()a ,()b ,()c 三者能级的高低次序,说明理由,能量最低的激发态是顺磁性还是

反磁性?

解:c

a b E E E >。因为(c )中两个电子都在反键轨道上,与H 原子的基态能量相

比,c E 约高出2β-。而(a )和(b )中的2个电子分别处在成键轨道和反键轨道上,a E 和

b E 都与H 原子的基态能量相近,但(a )中2个电子的自旋相反,(b )中的2个电子的自

旋相同,因而a E 稍高于b E 。 能级最低的激发态(b )是顺磁性的。

【3.4】试比较下列同核双原子分子:2B ,2C ,2N ,2O ,2F 的键级、键能和键长的大小

关系,在相邻两个分子间填入“

”或“

”符号表示。

解:

【3.5】基态2C 为反磁性分子,试写出其电子组态;实验测定2C 分子键长为124pm ,比C 原子共价双键半径和(

)267pm ?短,试说明其原因。

解:2C 分子的基组态为:

由于s-p 混杂,1u σ为弱反键,2C 分子的键级在23之间,从而使实测键长比按共价双键

半径计算得到的值短。

【3.6】据分子轨道理论,指出2Cl 的键比2Cl +

的键是强还是弱,为什么?

解:2Cl 的键比2Cl +的键弱。

原因是:2Cl 的基态价电子组态为2*224*433333()()()()()x s

s p p p σσσππ,键级为1。2Cl +

比2Cl 少1个反键电子,键级为1.5。

【3.7】画出CN -

的分子轨道示意图,写出基态电子组态,计算键级及磁矩(忽略轨道运动对磁矩的贡献)。

解:CN -

与N 2为等电子“分子”。其价层分子轨道与N 2分子大致相同,分子轨道轮廓图如图3.7。

基态的价电子组态为()()()()

2

2

4

2

1213σσπσ。

键级=12(成键电子数-反键电子数)=()1

823

2-=

未成对电子数为0,因而磁距为0。

【3.8】画出NO 的分子轨道示意图,计算键级及自旋磁矩,试比较NO 和NO +

何者的键更强?哪一个键长长一些?

解:NO 的价层分子轨道能级示意图如图3.8所示。

键级1

(83) 2.52=-=

不成对电子数为1,自旋磁矩 1.73e e μβ==。

由于NO +失去了1个反键的2π电子,因而键级为3,所以它的化学键比NO 化学键强。相应地,其键长比NO 的键长短。

【3.9】按分子轨道理论写出NF ,NF +,NF -

基态时的电子组态,说明它们的不成对电子数和磁性(提示:按类似2O 的能级排)。

解:NF ,NF +和NF -

分别是O 2,2O +和2O -

的等电子体,它们的基态电子组态、键级、

不成对电子数及磁性等情况如下:

“分子” 基态电子组态 键级 不成对电子数 磁性 NF 2 2 顺磁性 NF + 2.5 1 顺磁性 NF -

1.5

1

顺磁性

【3.10】试用分子轨道理论讨论SO 分子的电子结构,说明基态时有几个不成对电子。

解:在SO 分子的紫外光电子能谱中观察到6个峰。它们所对应的分子轨道的归属和性质已借助于量子力学半经验计算(CNDO )得到指认。结果表明,SO 分子的价电子结构与O 2分子和S 2分子的价电子结构相似。但SO 是异核双原子分子,因而其价电子组态可表述为:

其中,1,3σσ和1π轨道是成键轨道,2σ和2π轨道是反键轨道。这些价层分子轨道是由O

原子的2s 、2p 轨道和S 原子的3s 、3p 轨道叠加成的。

根据价层分子轨道的性质和电子数,可算出SO 分子的键级为:

在简并的2π轨道上各有一个电子,因而SO 分子的不成对电子数为2,若忽略轨道运

动对磁距的影响,则SO e e

=。

【3.11】CF 和CF +

的键能分别为548和7531

KJ mol -?,试用分子轨道理论探讨其键级(按

2F 能级次序)。

解:CF 的基态价电子组态为:

因而其键级为()1

83 2.52-=。而CF +比CF 少一个反键电子,因而,其键级为3。所以CF +

的键能比CF 的键能大。

【3.12】下列AB 型分子:2N ,NO ,2O ,2C ,2F ,CN ,CO ,XeF 中,哪几个是得电子变为AB -后比原来按中性分子键能大?哪几个是失电子变为AB +

后比原来中性分子键能大?

解:就得电子而言,若得到的电子填充到成键分子轨道上,则AB -

比AB 键能大;若得到的电子填充到反键分子轨上,则AB -

比AB 键能小。就失电子而言,若从反键分子轨道上失去电子,则AB +

比AB 键能大;若从成键轨道上失去电子,则AB +

比AB 键能小。根据这些原则和题中各分子的电子组态,就可以的出如下结论:

得电子变为AB -

后比原中性分子键能大者有C 2和CN 。失电子变为AB +

后比原中性分

子键能大者有NO ,O 2,F 2和XeF 。N 2和CO 无论得电子变为负离子(N 2-,CO -

)还是失电子变为正离子(N 2+

,CO +

),键能都减小。

【3.13】写出2Cl ,CN 的价电子组态和基态光谱项。 解:2Cl :

()()()()()()()22

222

22

33333333z

x

y

z

y

n z z

p p p p μσσ

σππππ 0,0S =Λ=,基态光谱项:1

∑。

CN :()()()()2

241

1213σσπσ

1/2,0S =Λ=,基态光谱项:2

【3.14】OH 分子于1964年在星际空间被发现。

(a ) 试按分子轨道理论只用O 原子的2p 轨道和H 原子的1s 轨道叠加,写出其电子组态 (b ) 在哪个根子轨道中有不成对电子?

(c ) 此轨道是由O 和H 的原子轨道叠加形成,还是基本上定域于某个原子上? (d ) 已知OH 的第一电离能为13.2eV ,HF 的第一电离能为16.05eV ,它们的差值几

乎和O 原子与F 原子的第一电离能

()15.818.6eV eV 和的差值相同,为什么?

(e ) 写出它的基态光谱项。

解:(a )H 原子的1s 轨道和O 原子的2z p 轨道满足对称性匹配、能级相近(它们的能级都约为-13.6eV )等条件,可叠加形成σ轨道。OH 的基态价电子组态为

()()()

223

121σσπ。

()2

1σ实际上是O 原子的()2

2s ,而()3

1π实际上是O 原子的()()1

2

22x y p p 或

()()2122x y p p 。因此,OH 的基态价电子组态亦可写为()()()322

22s p σσπ。2s σ和2p π是

非键轨道,OH 有两对半非键电子,键级为1。 (b )在1π轨道上有不成对电子。 (c )1π轨道基本上定域于O 原子。

(d )OH 和HF 的第一电离能分别是电离它们的1π电子所需要的最小能量,而1π轨道是非键轨道,即电离的电子是由O 和F 提供的非键电子,因此,OH 和HF 的第一电离能差值与O 原子和F 原子的第一电离能差值相等。

(e )1/2,1S =Λ=,基态光谱项为:2

【3.15】79

H Br 在远红外区有一系列间隔为1

16.94cm -的谱线,计算HBr 分子的转动惯量和平衡核间距。

解:双原子分子的转动可用刚性转子模型来模拟。据此模型,可建立起双原子分子的Schr?dinger 方程。解之,便得到转动波函数R ψ、转动能级E R 和转动量子数J 。由E R 的表达式可推演出分子在相邻两能级间跃迁所产生的吸收光的波数为: 而相邻两条谱线的波数之差(亦即第一条谱线的波数)为: B 为转动常数:

由题意知,H 79Br 分子的转动常数为 B =16.94cm -1/2=8.470 cm -1

所以,其转动惯量为:

3422

2181

6.62621088(8.47010)(2.997910)h J s I Bc m m s ππ---??==????? H 79Br 的约化质量为:

所以,其平衡核间距为:

【3.16】1216

C O 的核间距为112.83pm ,计算其纯转动光谱前4条谱线所应具有的波数。

解: 12C 16O 的折合质量为: 因而其转动常数为:

第一条谱线的波数以及相邻两条谱线的波数差都是2B ,所以前4条谱线的波数分别为: 亦可用式:

()21v B J =+

进行计算,式中的J 分别为0,1,2,和3。 【3.17】

()

12162CO C O 的转动惯量为462

7.16710kg m -??。

(a ) 计算2CO 分子中C C =键的键长;

(b ) 假定同位素置换不影响C O =键的键长,试计算12C 、18O 和13C 、16

O 组成的2

CO 分子的转动惯量。

提示:线型分子A B C --的转动惯量I 可按下式计算:

解:(a )由于CO 2分子的质心和对称中心重合,C 原子对分子转动惯量无贡献,所以: (b )由于假定同位素置换不改变C=O 键键长,因而有:

由于(a )中一开始就阐明的原因,13

162C O 的转动惯量和12162C O 的转动惯量相等,即:

线型分子A B C 的转动惯量为:

本题亦可按此式进行计算。

【3.18】在2N 、HCl 和HBr 混合气体的远红外光谱中,前几条谱线的波数分别为:16.70,

20.70,33.40,41.85,50.10,62.371

cm -。计算产生这些谱线的分子的键长

():35.457;:79.916;:14.007Cl Br N 。

解:N 2是非极性分子,不产生红外光谱,故谱线是由HCl 和HBr 分子产生的。分析谱线波数的规律,可知这些谱线由下列两个系列组成:

第一系列:16.70,33.40,50.101

cm - 第二系列:120.70,41.58,62.37cm -

由于HBr HCl r r >,HBr HCl μμ>,因而()2HBr

HCl I

I I r μ>=。根据

2

2

8h B Ic π=知,HBr HCl B B <,所以,第一系列谱线是由HBr 产生的,第二组谱线是由HCl 产生的。对HBr : 对HCl :

【3.19】在127

H

I 的振动光谱图中观察到1

2309.5cm -强吸收峰。若将HI 的简正振动看作谐

振子,请计算或说明:

(a ) 这个简正振动是否为红外活性; (b ) HI 简正振动频率; (c ) 零点能; (d ) 127

H

I 的力常数。

解:按简谐振子模型,H 127I 的振动光谱中只出现一条谱线,其波数就是经典振动波数e v -

,亦即2309.51

cm -。既然只出现一条谱线,因此下列关于H 127I 分子振动光谱的描述都是指与这条谱线对应的简正振动的。

(a ) H 127I 分子是极性分子,根据选律,它应具有红外活性。 (b ) 振动频率为:

(c ) 振动零点能为:

(d ) H 127I 的约化质量为: H 127I 的力常数为:

【3.20】在CO 的振动光谱中观察到1

2169.8cm -强吸收峰,若将CO 的简正振动看做谐振子,计算CO 的简正振动频率、力常数和零点能。 解:

【3.21】写出2O 、2O +和2O -

的基态光谱项,今有3个振动吸收峰,波数分别为1097、1580和18651

cm -,请将这些吸收峰与上述3种微粒关联起来。

解:写出O 2,O 2+

和O 2-

的价电子组态,推求它们的量子数S 和Λ,即可求出基态光谱

项。根据价电子组态,比较力常数大小,即可根据表达式v =

序。结果如下:

【3.22】在35

H Cl 的基本振动吸收带的中心处,有波数分别为2925.78、2906.25、2865.09

和2843.561

cm -的转动谱线,其倍频为1

5668.0cm -,请计算: (a ) 非谐性常数; (b ) 力常数; (c ) 键长; (d ) 平衡解离能。 解:

(a ) 在此振---转光谱中,波数为2925.78和2906.251

cm -的谱线属R 支,波数为2865.09

2843.561

cm -的谱线属P 支,在两支转动谱线的中心即振动基频:

已知倍频为1

25668.0v cm -=,根据非谐振子模型,得联立方程如下:

解得:12

2989.01, 1.728710e v cm x --==?

(b ) 由

e v =

(c ) 由e v 和x 得

(d ) 由H 35Cl 的振—转光谱P 支=2865.091

cm -,2843.561

cm -可得

【3.23】已知2N 的平衡解离能1955.42e D KJ mol -=?,其基本振动波数为12330cm -。计

算光谱解离能0D 值。

解:按简谐振子模型,N 2的光谱解离能为:

按非谐振子模型,N 2的光谱解离能为: 【3.24】2

H ()g 的光谱解离能为4.4763eV ,振动基频波数为14395.24cm -。若()2D g 与

2H ()g 的力常数、核间距和e D 等相同,计算()2D g 的光谱解离能。

解:按双原子分子的谐振子模型,D 2的光谱解离能为:

因此,只要求出2D e D 和2D e v ,即可算出20D D 。

依题意,D 2 平衡解离能为:

仍依题意,

22D H k k =,由式

12

12e k v π

μ??=

?

??可推得

所以:

【3.25】H O O H ---和H C C H -≡-分子的简正振动数目各有多少? 画出H C C H -≡-简正振动方式,并分别表明其红外活性或Raman 活性。

解:由n 个原子组成的非线型分子有3n -6个简正振动,而由n 个原子组成的线型分子

有3n-5个简正振动。因此,H 2O 2和C 2H 2的简正振动数目分别为3×4-6=6和3×4-5=7。C 2H 2 的简正振动方式如下:

(Raman 活性) (Raman 活性) (红外活性) (Raman 活性,二重简并) (红外活性, 二重简并)

【3.26】画出2SO 的简正振动方式,已知与3个基频对应的频带波数分别为1361,1151,5191

cm -,指出每种频率所对应的振动,说明是否为红外活性或Raman 活性。(参看4.6节)。

解:SO 2分子有3种(3n -6=3×3-6)简正振动,其中2种(n -1)为伸缩振动,1种(2n -5)为弯曲振动。这些简正振动方式示意如下:

对称伸缩振动 不对称伸缩振动 弯曲振动

一般说来,改变键长所需要的能量比改变键角所需要的能量大,因此,伸缩振动的频率比弯曲振动的频率大。而不对称伸缩振动的频率又比相应的对称伸缩振动的频率大。据此,

可将3个波数(1

v c v -=)与三种简正振动方式一一联系起来。

简单说来,SO 2 分子的三种振动方式均使其偶极距发生变化,因而皆是红外活性的。同时,这三种振动方式又使SO 2 的极化率发生变化,所以,又都是Raman 活性的。

根据分子的对称性,用特征标表可判断简正振动是否为红外活性和Raman 活性。

【3.27】用()21.22H e e V 作为激发源,2N 的3个分子轨道的电子电离所得光电子动能为多

少?(按图3.6.3估计)。

解:图3.27是N 2的光电子能谱图,与各谱带相应的分子轨道也在图中标出。

图3.27 N 2的光电子能谱图

根据该谱图估计,基态N 2 分子的各价层分子轨道的绝热电离能分别为

1g σ:40eV ;

1u σ:10.80eV ;1u π:16.70eV ;2g σ:15.60eV 。He Ⅰ线的能量为21.22eV ,

它只能使1,1u u σπ和

2g σ电子电离。

对气体样品,忽略能谱仪本身的功函数,光电子的动能k E 可由下式计算:

式中He E ,b E 和A I 分别为激发源的能量、电离轨道的能级(电子结合能)和电离轨道的绝热电离能。将有关数据带入,可得从N 2 分子的1,1u u σπ和2g σ三个分子轨道电离出的

光电子功能,它们分别为:

【3.28】什么是垂直电离能和绝热电离能?试以2N 分子的电力能谱图为例(参看图3.6.3),说明3个轨道的数据。

解:分子价层电子的电离必然伴随着振动和转动能级的改变。因此,分子的紫外光电子能谱(UPS)并非呈现一个个单峰,而是有精细结构。但由于分子的转动能级间隔太小,通常所用的激发源(如He I 线和He II 线)产生的UPS 只能分辨气体分子的振动精细结构。分子从其振动基态(0υ=)跃迁到分子离子的振动基态('0υ=)的电离过程叫绝热电离,相应的电离能称为绝热电离能,用I A 表示。它对应于UPS 中各振动精细结构的第一个小峰。分子亦可从振动基态跃迁到分子离子跃迁概率最大的振动态,即Franck —Condon 跃迁,这一电离过程称为垂直电离,相应的电离能称为垂直电离能,用I V 表示,它对应于各振动精细结构中强度最大的小峰。

从图 3.27中估计,相应于N 2分子

2g σ轨道的15.6A V I I eV ≈≈;相应于1u π轨道的

16.7A I eV ≈,而16.9V I eV ≈,两者之差(0.2eV )即2

N +

(1u π)的振动能级间隔;相应于

1u σ轨道的18.8A V I I eV ≈≈。这与从分子轨道理论得到的下述结论是一致的:若电子从非

键轨道电离,I A 和I V 相等;若电子从弱成键轨道或弱反键轨道电离.则I A 和I V 近似相等。若电子从强成键或强反键轨道电离,则I A 和I V 不等,两者棚差一个或数个振动能级间隔。 【3.29】怎样根据电子能谱区分分子轨道的性质。

答:紫外光电子能谱不仅能够直接测定分子轨道的能级,而且还可区分分子轨道的性质。这主要是通过分析分子离子的振动精细结构(即谱带的形状和小峰间的距离)来实现的。 (1)非键电子电离,平衡核间距不变,分子从其振动基态跃迁到分子离子振动基态的概率最大,I A =I V 。当然,分子也可从其振动基态跃迁到分于离子的其他振动态,但跃迁概率很小。因此,若“电离轨道”是非键轨道,则跃迁概率集中,相应谱带只呈现一个尖锐的强峰和一两个弱峰,且强度依次减小(弱峰的产生主要源于非Franck —Condon 跃迁)。

(2)成键电子电离,分子离子的平衡核间距比原分子的平衡核间距大。反键电子电离,分子离子的平衡核间距比原分子的平衡核间距小。核间距增大或减小的幅度与成键或反键的强弱有关。此时垂直跃迁的概率最大。但到分子离子其他振动能级的跃迁也有一定的概率,因此分子离子的振动精细结构比较复杂,谱带的序列较长,强度最大的峰不再是第一个峰。“电离轨道”的成键作用越强,垂百跃迁对应的振动量子数'υ越大,分子离子的振动能级间隔越小。“电离轨道”的反键作用越强,垂直跃迁对应的振动量子数'υ越大,分子离子的振动能级间隔也越大。

(3)若分子离子的平衡核间距与分子(基态)的平衡核间距相差很大,则分子离子的振动能级间隔很小,电子能谱仪已不能分辨,谱线表现为连续的谱带。

综上所述,根据紫外光电子能谱的振动精细结构(谱带形状和带中小峰间的距离),便可判断被打出电子所在的分子轨道的性质:若谱带中有一个强峰和一两个弱峰,则相关分子轨道为非键轨道或弱键轨道。至于是弱成键轨道还是弱反键轨道,须进一步看振动能级间隔的大小。振动能级间隔变小者为弱成键轨道,反之为弱反健轨道。若谱带的振动序列很长且振动能级间隔变小(与原分子相比),则相关分子轨道为强成键轨道,若谱带的振动序列很长且振动能级间隔变大,则相关分子轨道为强反键轨道。例如,在N 2的紫外光电子能谱中(参见图3.27),与

2g σ和1u σ轨道对应的谱带振动序列很短,跃迁概率集中,说明2g σ和1u σ皆

为弱键轨道。但

2g σ谱带的振动能级间隔小(2100cm -1),1u σ谱带的振动能级间隔大

(2390cm -1),所以

2g σ为弱成键轨道,1u σ为弱反键轨道。而相应于1u π轨道的谱带振动序

列很长,包含的峰很多,峰间距较小(1800cm -1),而且第一个峰不是最大峰,所以1u π为强成键轨道。与

1g σ对应的谱线已变成连续的谱带,说明1g σ是特强成键分子轨道。

【3.30】由紫外光电子能谱实验知,NO 分子的第一电离能为9.26eV ,比CO 的()114.01I eV 小很多,试从分子的电子组态解释其原因。

解:基态CO 分子的价层电子组态为: 基态NO 分子的价层电子组态为:

CO 分子的第一电离能是将其3σ电子击出所需要的最低能量,NO 分子的第一电离能则是将其2π电子击出所需要的最低能量。3σ电子是成键电子,能量较低。2π电子是反键电子,能量较高。所以,NO 分子的第一电离能比CO 分子的第一电离能小很多。

【3.31】三氟代乙酸乙酯的XPS 谱中,有4个不同化学位移的C 1s 峰,其结合能大小次序如何?为什么?

解:三氟代乙酸乙酯分子

在此分子中,碳原子的有效电负性的大小次序为C 1>C 2>C 3>C 4,所以,1s 电子结合能大小次序为C 1>C 2>C 3>C 4 。

【3.32】银的下列4个XPS 峰中,强度最大的特征峰是什么? Ag 4s 峰,Ag 3p 峰, Ag 3s 峰,Ag 3d 峰

解:X 射线光电子能谱特征峰也有一些经验规律:就给出峰的轨道而言,主量子数小的峰比主量子数大的峰强;主量子数相同时,角量子数大者峰强;主量子数和角量子数都相同时,总量子数大者峰强。根据这些经验规律,Ag 的3d 峰最强。

【3.33】由于自旋-轨道耦合,Ar 的紫外光电子能谱第一条谱线分裂成强度比为2:1的两个峰,它们所对应的电离能分别为15.759和15.937eV 。

(a ) 指出相应于此第一条谱线的光电子是从Ar 原子的哪个轨道被击出的; (b ) 写出Ar 原子和Ar +

离子的基态光谱支项; (c ) 写出与两电离能对应的电离过程表达式; (d ) 计算自旋-轨道耦合常数。 解:

(a ) 从Ar 原子的某一轨道(设其轨道角量子数为l )打出一个电子变成Ar +

后,在该轨

道上产生一空穴和一未成对电子。自旋—轨道耦合的结果产生了两种状态,可分别用量子数1j 和2j 表示:

1211

,22j l j l =+=-。这两种状态具有不同的能量,其差值为自旋—轨道耦合常数。因自旋—轨道耦合产生的两个峰的相对强度比为:

依据题意,()1:2:1l l +=,因此1l =,即电子是从3p 轨道上被打出的。 (b ) Ar 原子:

电子组态 ()()()()()

22626

12233s s p s p

量子数 0,0;0,0;0L S m L m S J =====

光谱支项 1

0S Ar +

离子:

电子组态 ()()()()()

22625

12233s s p s p

量子数

1131

1,1;,;,

2222L S m L m S J =====

光谱支项

2

2

3/21/2,P P (c ) 根据Hund 规则,

221/2

3/2

P P

E E >所以两电离过程及相应的电离能分别为:

Ar (1

0S ) Ar + (23/2P )+e - 15.759I eV =

Ar (10S ) Ar + (21/2P

)+e - 15.937I eV = 微粒的状态及能量关系可简单示意如下: (d ) 自旋—轨道耦合常数为:

15.937eV -15.759eV =0.178Ev 此即图3.33所示的两个分裂峰之间的“距离”。

图3.33 Ar 的紫外光电子能谱(一部分)

结构化学基础习题及答案(结构化学总复习)

结构化学基础习题和答案 01.量子力学基础知识 【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1 为单位的能量。 解:81 141 2.99810m s 4.46910s 670.8m c νλ--??===? 41 71 1 1.49110cm 670.810cm νλ --= = =?? 3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N s ν--==??????=? 【1.2】 实验测定金属钠的光电效应数据如下: 波长λ/nm 312.5 365.0 404.7 546.1 光电子最大动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν 0)。 解:将各照射光波长换算成频率v ,并将各频率与对应的光电子的最大动能E k 列于下表: λ/nm 312.5 365.0 404.7 546.1 v /1014s -1 9.59 8.21 7.41 5.49 E k /10 -19 J 3.41 2.56 1.95 0.75 由表中数据作图,示于图1.2中 E k /10-19 J ν/1014g -1 图1.2 金属的 k E ν -图 由式

0k hv hv E =+ 推知 0k k E E h v v v ?= =-? 即Planck 常数等于k E v -图的斜率。选取两合适点,将k E 和v 值带入上式,即可求出h 。 例如: ()()1934141 2.70 1.0510 6.60108.5060010J h J s s ---?==?-? 图中直线与横坐标的交点所代表的v 即金属的临界频率0v ,由图可知, 141 0 4.3610v s -=?。因此,金属钠的脱出功为: 341410196.6010 4.36102.8810W hv J s s J ---==???=? 【1.3】金属钾的临阈频率为5.464×10-14s -1 ,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少? 解:2 01 2hv hv mv =+ ()1 2 018 1 2 341419 312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kg υ------??=? ??? ???????-??? ?????? =?????? ? 1 34 141 2 31512 6.62610 4.529109.109108.1210J s s kg m s ----??????=?????=? 【1.4】计算下列粒子的德布罗意波的波长: (a ) 质量为10-10kg ,运动速度为0.01m ·s -1 的尘埃; (b ) 动能为0.1eV 的中子; (c ) 动能为300eV 的自由电子。 解:根据关系式: (1)3422101 6.62610J s 6.62610m 10kg 0.01m s h mv λ----??===???

结构化学复习考试题

复习题一 一、单向选择题 1、 为了写出一个经典力学量对应的量子力学算符,若坐标算符取作坐标本身,动量算符 应是(以一维运动为例) ( ) (A) mv (B) i x ??h (C) 2 22x ?-?h 2、 丁二烯等共轭分子中π电子的离域化可降低体系的能量,这与简单的一维势阱模型是 一致的, 因为一维势阱中粒子的能量 ( ) (A) 反比于势阱长度平方 (B) 正比于势阱长度 (C) 正比于量子数 3、 将几个简并的本征函数进行线形组合,结果 ( ) (A) 再不是原算符的本征函数 (B) 仍是原算符的本征函数,且本征值不变 (C) 仍是原算符的本征函数,但本征值改变 4、N 2、O 2、F 2的键长递增是因为 ( ) (A) 核外电子数依次减少 (B) 键级依次增大 (C) 净成键电子数依次减少 5、下列哪种说法是正确的 ( ) (A) 原子轨道只能以同号重叠组成分子轨道 (B) 原子轨道以异号重叠组成非键分子轨道 (C) 原子轨道可以按同号重叠或异号重叠,分别组成成键或反键轨道 6、下列哪组点群的分子可能具有偶极矩: ( ) (A) O h 、D n 、C nh (B) C i 、T d 、S 4 (C) C n 、C nv 、 7、晶体等于: ( ) (A) 晶胞+点阵 (B) 特征对称要素+结构基元 (C) 结构基元+点阵 8、 著名的绿宝石——绿柱石,属于六方晶系。这意味着 ( ) (A) 它的特征对称元素是六次对称轴 (B) 它的正当空间格子是六棱柱 (C) 它的正当空间格子是六个顶点连成的正八面体 9、布拉维格子不包含“四方底心”和 “四方面心”,是因为它们其实分别是: ( ) (A) 四方简单和四方体心 (B) 四方体心和四方简单 (C) 四方简单和立方面心 10、某晶面与晶轴x 、y 、z 轴相截, 截数分别为4、2、1,其晶面指标是 ( ) (A) (124) (B) (421) (C) (1/4,1/2,1) 11、与结构基元相对应的是: ( ) (A) 点阵点 (B) 素向量 (C) 复格子

应用化学《结构化学》期末考试试卷A答案

贵州师范大学2008 — 2009 学年度第 一 学期 《结构化学》课程期末考试试卷评分标准 (应用化学专业用,A 卷;闭卷) 物理常数: m e = 9.109×10-31 kg; e = 1.602×10-19 C; c = 2.998×108 m/s; h = 6.626×10-34 J ·s; 一、填空题(本大题共20空,每空 2 分,共 40 分)请将正确答案填在横线上。 1. 结构化学是研究 物质的微观结构及其宏观性能关系 的科学。 2. 测不准原理意义是: 不可能同时准确测定微观体系的位置坐标和动量 。 3. 态叠加原理是: 由描述某微观体系状态的多个波函数ψi 线性组合而成的波函数ψ也能描述这个微观体系的状态 。 4. 若Schr?dinger (薛定谔)方程?ψ = E ψ成立,力学量算符?对应的本征值是 E 。 5. 变分原理: 用试探波函数求解所得到体系的能量总是不低于体系基态真实的能量 。 6. H 2+成键轨道是 ψ1 ,反键轨道是 ψ2 ,电子总能量是ab S E ++= 11β α,键级为 0.5 。 7. 等性sp 3 杂化,杂化指数是 3 。该杂化轨道p p s s sp c c 22223φφ+=Φ,则2 1c +2 2c = 1 。 8. 根据休克尔分子轨道(HMO)理论,苯分子中六个π电子的离域能是: 2β 。 9. O 2分子的键级是 2 , 分子中有 2 个单电子,分子是顺磁性,磁矩为2.828 B. M.。 10. 丁二烯分子C (1)H 2—C (2)H —C (3)H —C (4)H 2的四个π分子轨道和能级分别是: ψ1 = 0.3717φ1 + 0.6015φ2 + 0.6015φ3 + 0.3717φ4, E 1 = α + 1.618β ψ2 = 0.6015φ1 + 0.3717φ2 - 0.3717φ3 - 0.6015φ4, E 2 = α + 0.618β ψ3 = 0.6015φ1 - 0.3717φ2 - 0.3717φ3 + 0.6015φ4, E 3 = α - 0.618β ψ4 = 0.3717φ1 - 0.6015φ2 + 0.6015φ3 - 0.3717φ4, E 4 = α - 1.618β 由此可知,丁二烯π分子轨道的HOMO 是ψ2, LUMO 是 ψ3 , 四个π电子的总能量是4α + 4.742β, 这四个π电子的稳定化能是 |0.742β| ; C (1)—C (2)之间总键级为 1.894 , C (2)—C (3)之间的总键级为 1.447 ; 已知碳原子的最大成键度是4.732,则C (1)的自由价为 0.838 , C (2)的自由价为 0.391 。 二、单项选择题(本大题共10小题,每小题2分,共20分) 11. (A) 12. (C) 13. (D) 14. (A) 15. (A) 16. (D) 17. (D) 18. (D) 19. (B) 20. (B) 三、判断题(本大题共10小题,每小题1分,共10分):对的在括号内画√,错的画× 21. × 22. √ 23. √ 24. √ 25. √ 26. √ 27. √ 28. √ 29. √ 30. √ 四、名词解释(本题共5小题,每小题2分,共10分) 31. [分子]: 保持物质化学性质不变的最小微粒 32. [分子轨道]: 描述分子中电子运动状态的数学函数式 33. [算符]: 用于计算力学量的运算规则 34. [分裂能]: 配位中心原子(过渡金属原子或离子)在配位场作用下其d 轨道分裂为高能级和低能级,高–低能级差即分裂能 35. [John –Teller(姜泰勒)效应]: 过渡金属原子或离子在配位场作用下其d 轨道分裂后使d 轨道中电子分布不均而导致配合物偏离正多面体的现象 五、计算题(本大题共4小题,任选两小题,每小题10分,共20分) 36. 对共轭体系: 将π电子简化为一维势箱模型,势箱长度约为1.3×10-9 米,计算π电子跃迁时所吸收光的最大波长。 解:分子中共有10个π电子,电子排布为: 252 42322 21ψψψψψ。电子从能量最高的占据轨道5ψ跃迁到能量最低的轨道6ψ上所需要的能量: 19 2 93123422222210925.3) 103.1(101.98)10626.6()56(8)56(----?=??????-=-=?ml h E n (焦) ()() 1119 8 3410064.510 925.310998.210626.6---?=????=?=E hc λ(米)

结构化学试卷附答案

结构化学试卷附答案Newly compiled on November 23, 2020

《结构化学》课程 A卷 专业班级:命题教师:审题教师: 学生姓名:学号:考试成绩: 一、判断题(在正确的后画“√”,错误的后面画“×”,10小题,每小题1分,共10分) 得分:分 1、自轭算符的本征值一定为实数。() 2、根据测不准原理,任一微观粒子的动量都不能精确测定。() 3、一维势箱中的粒子其能量是量子化的,并且存在零点能。() 4、原子中全部电子电离能之和等于各电子所在原子轨道能总和的负值。() 5、同核双原子分子中两个2p轨道组合总是产生型分子轨道。() 6、具有未成对电子的分子是顺磁性分子,所以只有含奇数个电子的分子才是顺磁性 的。() 7、在休克尔分子轨道法中不需要考虑?H 的具体形式。() 8、既具有偶极矩,又具有旋光性的分子必属于C n点群。() 9、含不对称 C 原子的分子具有旋光性。() 10、分子的偶极距一定在分子的每一个对称元素上。() 二、单项选择题(25小题,每小题1分,共25分)得分:分 1、关于光电效应,下列叙述正确的是:() A 光电流大小与入射光子能量成正比 B 光电流大小与入射光子频率成正比 C 光电流大小与入射光强度没关系 D 入射光子能量越大,则光电子的动能越大

2、在一云雾室中运动的α粒子(He 的原子核), 其 27416.8410,10m kg v m s --=?=?质量速度,室径210x m -=,此时可观测到它的运动 轨迹,这是由于下列何种原因: ( ) A 该粒子不是微观粒子 B 测量的仪器相当精密 C 该粒子的运动速度可测 D 云雾室的运动空间较大 3、对于"分子轨道"的定义,下列叙述中正确的是: ( ) A 分子中电子在空间运动的波函数 B 分子中单个电子空间运动的波函数 C 分子中单电子完全波函数(包括空间运动和自旋运动) D 原子轨道线性组合成的新轨道 4、若K d =?τψ2 ,利用下列哪个常数乘可以使之归一化 ( ) A . K B . K 2 C .K /1 5、对算符而言,其本征函数的线性组合具有下列性质中的 ( ) A .是该算符的本征函数 B .不是该算符的本征函数 C .不一定是该算符的本征函数 D .与该算符毫无关系 6、下列函数是算符d /dx 的本征函数的是: ( ) A. e 2x B. cos(x) C. x D. sin(x 3) 7、处于状态sin()x a πψ= 的一维势箱中的粒子,其出现在x =2 a 处的概率密度为 ( ) A. 0.25ρ= B. 0.5ρ= C. 2/a ρ= D. ()1/2 2/a ρ= 8、He +在321ψ状态时,物理量有确定值的有 ( ) A .能量 B .能量和角动量及其沿磁场分量 C .能量、角动量 D .角动量及其沿磁场分量

最新结构化学复习题及答案精编版

2020年结构化学复习题及答案精编版

一、 填空题(每空1 分,共 30分) 试卷中可能用到的常数:电子质量(9.110×10-31kg ), 真空光速(2.998×108m.s -1), 电子电荷(-1.602×10-19C ),Planck 常量(6.626×10-34J.s ), Bohr 半径(5.29×10-11m ), Bohr 磁子(9.274×10-24J.T -1), Avogadro 常数(6.022×1023mol -1) 1. 导致"量子"概念引入的三个著名实验分别是 黑体辐射___, ____光电效应____ 和___氢原子光谱_______. 2. 测不准关系_____?x ? ?p x ≥ ________________。 3. 氢原子光谱实验中,波尔提出原子存在于具有确定能量的( 稳定状态(定 态) ),此时原子不辐射能量,从( 一个定态(E 1) )向(另一个定态(E 2))跃迁才发射或吸收能量;光电效应实验中入射光的频率越大,则( 能量 )越大。 4. 按照晶体内部结构的周期性,划分出一个个大小和形状完全一样的平行六面体,以代表晶体结构的基本重复单位,叫 晶胞 。 5. 方程中,a 称为力学量算符?Skip Record If...?的 本征值 。 6. 如 果某一微观体系有多种可能状态,则由它们线性组合所得的状态也是体系的可能状态,这叫做 态叠加 原理。 7. 将多电子原子中的其它所有电子对某一个电子的排斥作用看成是球对称的,是只与径向有关的力场,这就是 中心力场 近似。 8. 原子单位中,长度的单位是一个Bohr 半径,质量的单位是一个电子的静止质量,而能量的单位为 27.2 eV 。 9. He + 离子的薛定谔方程为____?Skip Record If...? ______ ___。 10. 钠的电子组态为1s 22s 22p 63s 1,写出光谱项__2S____,光谱支项____2S 0______。 11. 给出下列分子所属点群:吡啶____C 2v ___,BF 3___D 3h ___,NO 3-_____ D 3h ___,二茂铁____D 5d _________。 12. 在C 2+,NO ,H 2+,He 2+,等分子中,存在单电子σ键的是____ H 2+____,存在三电子σ键的是______ He 2+_____,存在单电子π键的是____ NO ____,存在三电子π键的是____ C 2+__________。 13. 用分子轨道表示方法写出下列分子基态时价电子组态,键级,磁性。 O 2的价电子组态___1σg 21σu 22σg 22σu 23σg 21πu 41πg 2_([Be 2] 3σg 21πu 41πg 2)_键级__2___磁性__顺磁性___。 NO 的价电子组态____1σ22σ23σ24σ21π45σ22π(KK1σ22σ21π43σ22π)___键级 ____2.5_______磁性________顺磁性__________。 14. d z 2sp 3杂化轨道形成______三方双锥形____________几何构型。 d 2sp 3杂化轨道形成_________正八面体形 ___________几何构型。 15. 原子轨道线性组合成分子轨道的三个原则是___对称性一致(匹配)原则____,____最大重叠原则_____和___能量相近原则_____ 16. 事实证明Li 的2s 轨道能和H 的1s 轨道有效的组成分子轨道,说明原因(对称性一致(匹配)原则 )、( 最大重叠原则 )、( 能量相近原则 )。 ψψa A =?

《结构化学》期末考试试卷(A)

只供学习与交流 化学本科《结构化学》期末考试试卷(A )(时间120分钟) 一、填空题(每小题2分,共20分) 1、测不准关系::__________________________ _____________________________________________。 2、对氢原子 1s 态, (1)2 ψ在 r 为_________处有最高值;(2) 径向分布函数 2 2 4ψr π 在 r 为 ____________处有极大值; 3、OF , OF +, OF -三个分子中, 键级顺序为________________。 4、判别分子有无旋光性的标准是__________。 5、属于立方晶系的晶体可抽象出的点阵类型有____________。 6、NaCl 晶体的空间点阵型式为___________,结构基元为___________。 7 、双原子分子刚性转子模型主要内容:_ ________________________________ _______________________________________________。 8、双原子分子振动光谱选律为:_______________________________________, 谱线波数为_______________________________。 9、什么是分裂能____________________________________________________。 10、分子H 2,N 2,HCl ,CH 4,CH 3Cl ,NH 3中不显示纯转动光谱的有: __________________,不显示红外吸收光谱的分子有:____________。 二、选择题(每小题2分,共30分) 1、对于"分子轨道"的定义,下列叙述中正确的是:----------------- ( ) (A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子中单电子完全波函数(包括空间运动和自旋运动) (D) 原子轨道线性组合成的新轨道 2、含奇数个电子的分子或自由基在磁性上:---------------------------- ( ) (A) 一定是顺磁性 (B) 一定是反磁性 (C) 可为顺磁性或反磁性 (D )无法确定 3、下列氯化物中, 哪个氯的活泼性最差?--------------------------------- ( ) (A) C 6H 5Cl (B) C 2H 5Cl (C) CH 2═CH —CH 2Cl (D) C 6H 5CH 2Cl 4、下列哪个络合物的磁矩最大?------------------------------------ ( ) (A) 六氰合钴(Ⅲ)离子 (B) 六氰合铁(Ⅲ)离子 (C) 六氨合钴(Ⅲ)离子 (D) 六水合锰(Ⅱ)离子 5、下列络合物的几何构型哪一个偏离正八面体最大?------------------------------------ ( ) (A) 六水合铜(Ⅱ) (B) 六水合钴(Ⅱ) (C) 六氰合铁(Ⅲ) (D) 六氰合镍(Ⅱ) 6、2,4,6-三硝基苯酚是平面分子,存在离域π键,它是:--------- ( ) (A) 16 12∏ (B) 18 14∏ (C) 18 16∏ (D)20 16∏ 学院: 年级/班级: 姓名: 学号: 装 订 线 内 不 要 答 题

结构化学 第三章习题(周公度)

第三章 共价键和双原子分子的结构化学 1试计算当Na +和Cl -相距280pm 时,两离子间的静电引力和万有引力;并说明讨论化学键作用力时,万有引力可以忽略不计。 (已知万有引力 2 21r m m G F =,G=6.7*10-11N.m 2.kg -2; 静电引力2 21r q q K F =,K=9.0*109N.m 2.C -2) 解:已知Na 摩尔质量为 22.98977 g/mol Cl 摩尔质量为 35.453 g/mol )(10 *946.2) 10 *280() 10*602.1(10 *0.99 2 12 2 19 9 2 21N r q q K F ---=== )(10*9207.1) 10*022.6(*)10 *280(10 *453.35*10*98977.2210 *7.642 2 23 2 12 3 3 11 221N r m m G F -----=== 万有引力要比静电引力小得多,在讨论化学键作用时万有引力可以忽略不计 2、写出O 2.,O 2+,O 2-,O 22-的键级、键长长短次序及磁性 解: O 2的分子轨道及电子排布如下 4、试比较下列同核双原子:B 2,C 2,N 2,O 2,F 2的键级、键能和键长的大小关系,在相邻两个分子间填入“<”或“>”符号表示 解 键级:B 2(1)O 2(2)>F 2(1) 键能:B 2(1)O 2(2)>F 2(1) 键长:B 2(1)>C 2(2)> N 2(3) O 2 > O 2 > O 2 有 有 有 无+ 2-

结构化学考试试题.doc

北京大学1992 年研究生入学考试试题 考试科目:物理化学 ( 含结构化学 ) 考试时间: 2 月 16 日上午 招生专业:研究方向: 结构化学( 40 分) 1.用速度 v=1×109cms-1的电子进行衍射实验,若所用晶体粉末 MgO的面间距为 ?, 粉末样品到底片的距离为 2.5cm,求第 2 条衍射环纹的半径。(8 分) 2.判断下列轨道间沿 z 轴方向能否成键,如能成键,请在相应的位置上填上分子轨 道的名称。 p p z d xy d xz x p x p z d xy d xz (4 分) 3. 实验测得 HI 分子基本光带和第一泛音带的带心分别为 - 1 - 1 2230cm 和 4381cm ,求: (1)HI 的力常数;(2)HI 的光谱解离能。(原子量: H=1,I =)( 7 分) 4.判断下列分子和离子的形状和所属点群: SO32 SO 3 XeOF4 NO 2 NO 2 (5 分) 5. 已知 [Fe(CN) 6] 3-、[FeF 6] 3-络离子的磁矩分别为β、β(β为玻尔磁子)( Fe 原子 序数= 26), (1)分别计算两种络合物中心离子未成对电子数; (2)用图分别表示中心离子 d 轨道上电子排布情况; (3)两种络合物其配位体所形成的配位场是强场还是弱场?(3 分) 6.* 有一立方晶系 AB型离子晶体, A 离子半 555555,PLKNOPCVKJPKGJPFJH;L/’.IK 7. /9*632JKL[PKLP[JLH[PKLPJH[KLPJ[HKLPJ[OLJP[OI;I[OLP[OLPILOPKJ=[KLK’径 8. 为 167pm,B 离子半径为 220pm,按不等径球堆积的观点,请出:(4) B 的堆积方式; (5) A 占据 B 的什么空隙; (6) A 占据该类空隙的分数; (7)该晶体的结构基元; (8)该晶体所属点阵类型。(10分)金刚石、石墨及近年发现的球碳分子(例如足球烯,C60)是碳的三种主要同素异形体,请回答: (9)三者中何者可溶于有机试剂,理由是什么? (10)据推测,有一种异形体存在于星际空间,而另一种异形体在死火山口被发现,说明何者在星际空间存在,何者在火山口存在,解释原因。

应用化学结构化学期末考试试卷B

应用化学结构化学期末考 试试卷B Last updated on the afternoon of January 3, 2021

贵州师范大学2008—2009学年度第一学期 《结构化学》课程期末考试试卷 (应用化学专业,B 卷; 闭卷) 姓名学号 学院年级专业 本试卷共3页,满分100 e kg;e =×10-19 C;c =×108 m/s;h =×10-34 J ·s; 20空,每空2分,共40分)请将正确答案 1.结构化学是在原子、分子 的水平上深入到电子层次,研究的科学。 年,Heisenberg(海森堡)发现 微观粒子不可能同时具有确定的坐标与动量,即测不准原理。该原理可用数学表达式来描述,此数学表达式是:。 3.用于描述诸如电子、原子、分子等微观粒子状态的合格波函数必须满足三个条件,即单值性、连续性和平方可积性。单值性是指。 4.若ψ是描述某电子运动状态的本征函数,是该电 子的总能量算符,E 是该电子的总能量。若Schr?dinger(薛定谔)方程ψ=E ψ成立,则力学量算符对应的本征值应该 是。 5.变分原理即用试探波函数 ψ求得的体系平均能量ē总是不低于体系基态真 实的能量E 0。该原理的 数学表达式是:。 6.若C 原子采用等性sp 3杂化,则杂化轨道 p p s s sp c c 22223φφ+=Φ的杂

化指数是。该杂化轨道,其中2 1c 和2 2c 分别表示。 7.根据HMO 理论,基态乙烯分子的两个π电子能量是2α+2β,基态苯分子的六个π电子能量是6α+8β。由此可知,苯分子中六个π电子的离域能是:。 8.求解H 2+的Schr?dinger(薛定谔)方程可得H 2+的两个分子轨道: ()b a ab S φφψ++= 2211, 能级是 ab S E ++= 11β α; ()b a ab S φφψ--= 221 2,能级是ab S E --= 12β α。因 此,H 2+的电子总能量是,键级为。 9.研究表明,F 2分子的电子组态 是:(σ1s )2<( s *)2<(σ2p )22p *)2 =(π2p *)2。由此可知F 2 分子的键级是,分子的磁矩为.。 10.理论研究表明,二亚甲基乙基双基分子结构中的中心碳原子的总成键度为,它是共轭体系中碳原子总键度最大的情况。通常定义某个碳原子的总成键度与的差值为该原子的自由价。根据休克尔分子轨道理论计算表明,丁二烯分子C (1)H 2—C (2)H —C (3)H — C (4)H 2的四个π分子轨道和能级分别是: ψ1=φ1+φ2+φ3+φ4,E 1=α+β ψ2=φ1+φφφ4,E 2=α+β ψ3=φφφ3+φ4,E 3=αβ ψ4=φφ2+φφ4,E 4=αβ 由此可知,丁二烯π分子轨道的HOMO 是ψ2,LUMO 是,四个π电子的总能量是;C (1)—C (2)之间总键级为,C (2)—C (3)之间的总键级为;则C (1)的自由价为,C (2)的自由价为。 二、单项选择题(本大题共10小题,每小题2分,共2 确答案填在括号内。

结构化学试题及答案

兰州化学化学化工学院 结构化学试卷及参考答案 2002级试卷A —————————————————————————————————————— 说明: 1. 试卷页号 5 , 答题前请核对. 2. 题目中的物理量采用惯用的符号,不再一一注明. 3. 可能有用的物理常数和词头: h Planck常数J·s=×10-123N=×10mol -31m=×10 电子质量kg e-34 0-9-12, n: 10 p : 10 词头:—————————————————————————————————————— 一.选择答案,以工整的字体填入题号前[ ]内。(25个小题,共50分) 注意:不要在题中打√号,以免因打√位置不确切而导致误判 [ ] 1. 在光电效应实验中,光电子动能与入射光的哪种物理量呈线形关系:A .波长 B. 频率 C. 振幅 [ ] 2. 在通常情况下,如果两个算符不可对易,意味着相应的两种物理量A.不能同时精确测定 B.可以同时精确测定 C.只有量纲不同的两种物理量才不能同时精确测定 Yθφ)图,[ ] 3. (θφ的变化A.即电子云角度分布图,反映电子云的角度部分随空间方位,θφ的变化,反映原子轨道的角度部分随空间方位即波函数角度分布图,B. C. 即原子轨道的界面图,代表原子轨道的形状和位相 [ ] 4. 为了写出原子光谱项,必须首先区分电子组态是由等价电子还是非等价电子形成的。试判断下列哪种组态是等价组态: 21111 C. 2p2s2s2p B. 1sA.-2-,何者具有最大的顺磁性 , OO , O[ ] 5. 对于222-2- C.O A. B.OO222[] 6. 苯胺虽然不是平面型分子,但-NH与苯环之间仍有一定程度的共轭。据2此判断 A.苯胺的碱性比氨弱 B.苯胺的碱性比氨强 C.苯胺的碱性与氨相同 -的分子轨道与N相似:] 7. 利用以下哪一原理,可以判定CO、CN[2 A.轨

结构化学复习题

结构化学复习题 一.选择题 1. 比较 2O 和 2O + 结构可以知道 ( C ) A. 2O 是单重态 ; B .2O +是三重态 ; C .2O 比2O + 更稳定 ; D .2O + 比2O 结合能大 2. 平面共轭分子的π型分子轨道( B ) A.是双重简并的.; B .对分子平面是反对称的; C.是中心对称的; D .参与共轭的原子必须是偶数. 3. 22H O 和22C H 各属什么点群?( B ) A.,h h D D ∞∞ ; B .2,h C D ∞ ; C .,h D C ν∞∞ ; D .,h D D ν∞∞ ; E22,h C C 4. 下列分子中哪一个有极性而无旋光性?( B ) A.乙烯 ; B.顺二卤乙烯 ; C 反二卤乙烯; D.乙烷(部分交错); E. 乙炔 5. 实验测得Fe (H 2O )6的磁矩为5.3μ.B,则此配合物中央离子中未成对电子数为( C ) A. 2 ; B .3 ; C .4 ; D .5. 6. 波函数归一化的表达式是 ( C ) A. 2 d 0ψ τ=? ; B.2d 1ψτ>? ; C. 2d 1ψτ=? ; D.2 d 1ψτ?? ;D . 0?d d H E ψψτ ψψτ ** ≥?? 9. He +体系321ψ的径向节面数为:( D ) A . 4 B. 1 C. 2 D. 0 10. 分子的三重态意味着分子中 ( C ) A.有一个未成对电子; B.有两个未成对电子; C.有两个自旋相同的未成对电子; D.有三对未成对电子. 11. 下列算符不可对易的是 ( C ) A.∧ ∧y x 和 ; B y x ????和 ; C .?x p x i x ∧?=?h 和 ; D .x p y ∧∧和 12. 在关于一维势箱中运动粒子的()x ψ和2 ()x ψ的下列说法中,不正确的是 ( B ) A. ()x ψ为粒子运动的状态函数;B. 2 ()x ψ表示粒子出现的概率随x 的变化情况;A C . ()x ψ可以大于或小于零, 2 ()x ψ无正、负之分; D.当n x ∞→,2 x ψ图像中的峰会多而密集,连成一片,表明粒子在0

《结构化学》期末考试试卷(B)

化学本科《结构化学》期末考试试卷(B )(时间120分钟) 一、填空题(每小题2分,共20分) 1、一维无限深势阱中的粒子,已知处于基态时,在——————处几率密度最大。 2、原子轨道是原子中单电子波函数,每个轨道最多只能容纳——————个电子。 3、O 2的键能比O 2+的键能——————。 4、在极性分子AB 中的一个分子轨道上运动的电子,在A 原子的A ψ原子轨道上出现几 率为36%,在B 原子的B ψ原子轨道上出现几率为64%, 写出该分子轨道波函数———————————————。 5、分裂能:—————————————————————————————。 6、晶体按对称性分共有—————晶系。晶体的空间点阵型式有多少种:———。 7、从CsCl 晶体中能抽出—————点阵。结构基元是:———。 8、对氢原子 1s 态: 2ψ在 r 为_______________处有最高值; 9、谐振子模型下,双原子分子振动光谱选律为:_____________________________。 10、晶体场稳定化能:__________________________________________________。 二、选择题(每小题2分,共30分) 1、微观粒子的不确定关系,如下哪种表述正确? ( ) (A )坐标和能量无确定值 (B )坐标和能量不可能同时有确定值 (C )若坐标准确量很小,则动量有确定值, (D )动量值越不准确,坐标值也越不准确。 2、决定多电子原子轨道的能量的因素是: ( ) (A )n (B)n,l,Z (C)n+0.7l (D)n,m 3、氢原子3d 状态轨道角动量沿磁场方向的分量最大值是 (A )η5 (B )η4 (C )η3 (D )η2 4、杂化轨道是: ( ) (A )两个原子的原子轨道线性组合形成的一组新的原子轨道。 (B )两个分子的分子轨道线性组合形成的一组新的分子轨道。 (A )一个原子的不同类型的原子轨道线性组合形成的一组新的原子轨道。 (A )两个原子的原子轨道线性组合形成的一组新的分子轨道。 5、八面体配合物中哪能个电子结构不发生畸变? (A )252)()(g g e t (B )362)()(g g e t (C )242)()(g g e t (D )232)()(g g e t 6、对于"分子轨道"的定义,下列叙述中正确的是:----- ------------ ( ) (A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子中单电子完全波函数(包括空间运动和自旋运动) (D) 原子轨道线性组合成的新轨道 学院: 年级/班级: 姓名: 学号: 装 订 线 内 不 要 答 题

结构化学 选修3知识点总结(人教版)全国卷适用

一、考纲考点展示 《选修3:物质的结构与性质》高考试题中9种常考点

普通高等学校招生全国统一考试理科综合(化学部分)考试大纲的说明(节选) 必修2:物质结构和元素周期律 ①了解元素、核素和同位素的含义。 ②了解原子构成。了解原子序数、核电荷数、质子数、中子数、核外电子数以及它们之间的相互关系。 ③了解原子核外电子排布。 ④掌握元素周期律的实质。了解元素周期表(长式)的结构(周期、族)及其应用。 ⑤以第3周期为例,掌握同一周期内元素性质的递变规律与原子结构的关系。 ⑥以IA和VIIA族为例,掌握同一主族内元素性质递变规律与原子结构的关系。 ⑦了解金属、非金属在元素周期表中的位置及其性质递变的规律。 ⑧了解化学键的定义。了解离子键、共价键的形成。 选修3:物质结构与性质 1.原子结构与元素的性质 ⑴了解原子核外电子的排布原理及能级分布,能用电子排布式表示常见元素(1~36号)原子核外电 子、价电子的排布。了解原子核外电子的运动状态。 ⑵了解元素电离能的含义,并能用以说明元素的某些性质。 ⑶了解原子核外电子在一定条件下会发生跃迁,了解其简单应用。 ⑷了解电负性的概念,知道元素的性质与电负性的关系。 2.化学键与物质的性质 ⑴理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。 ⑵了解共价键的形成,能用键能、键长、键角等说明简单分子的某些性质。 ⑶了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 ⑷理解金属键的含义,能用金属键理论解释金属的一些物理性质。了解金属晶体常见的堆积方式。 ⑸了解杂化轨道理论及常见的杂化轨道类型(sp、sp2、sp3) ⑹能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或者离子的空间结构。 3.分子间作用力与物质的性质 ⑴了解化学键和分子间作用力的区别。 ⑵了解氢键的存在对物质性质的影响,能列举含有氢键的物质。 ⑶了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。 ⑷能根据晶胞确定晶体的组成并进行相关的计算。

结构化学考试题讲解学习

1首先提出能量量子化假定的科学家是: ( ) (A) Einstein (B) Bohr (C) Schrodinger (D) Planck 1 下列算符中,哪些不是线性算符( ) A ?2 B i d dx C x D sin 2考虑电子的自旋, 氢原子n=2的简并波函数有( )种 A3 B 9 C 4 D 1 3 关于四个量子数n 、l 、m 、m s ,下列叙述正确的是: ( ) A .由实验测定的 B .解氢原子薛定谔方程得到的: C .解氢原子薛定谔方程得到n 、l 、m .由电子自旋假设引入m s D .自旋假设引入的 4 氢原子3d 状态轨道角动量沿磁场方向的分量最大值是( ) A.5h B.4h C.3h D.2h 5 氢原子ψ321状态的角动量大小是( ) A 3 η B 2 η C 1 η D 6 η 6 H 2+的H ?= 21?2- a r 1 - b r 1 +R 1, 此种形式的书写没有采用下列哪种方法: () (A) 中心力场近似 (B) 单电子近似 (C) 原子单位制 (D) 波恩-奥本海默近似 7 对于"分子轨道"的定义,下列叙述中正确的是:() (A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子空间运动的轨道 (D) 原子轨道线性组合成的新轨道 8 类氢原子体系ψ432的总节面数为() A 4 B 1 C 3 D 0 9 下列分子键长次序正确的是: ( ) A.OF-> OF> OF+ B. OF > OF - > OF + C. OF +> OF> OF - D. OF > OF + > OF - 10 以Z 轴为键轴,按对称性匹配原则,下列那对原子轨道不能组成分子轨道: A.s dz2 B. s dxy C. dyz dyz D. y p y p

结构化学 第三章习题及答案

习题 1. CO 是一个极性较小的分子还是极性较大的分子?其偶极矩的方向如何?为什么? 2. 下列AB型分子:N2,NO,O2,C2,F2,CN,CO,XeF中,哪几个是得电子变为AB–后比原来中性分子键能大?哪几个是失电子变为AB+ 后比原来中性分子键能大? 3. 按分子轨道理论说明Cl2的键比Cl2+ 的键强还是弱?为什么? 4. 下列分子中,键能比其正离子的键能小的是____________________ 。键能比其负离子的键能小的是________________________ 。 O2,NO,CN,C2,F2 5. 比较下列各对分子和离子的键能大小: N2,N2+( ) O2,O2+( ) OF,OF–( ) CF,CF+( ) Cl2,Cl2+( ) 6. 写出O2+,O2,O2–和O22–的键级、键长长短次序及磁性。 7. 按分子轨道理论写出NF,NF+ 和NF–基态时的电子组态,说明它们的键级、不成对电子数和磁性。 8. 判断NO 和CO 哪一个的第一电离能小,原因是什么? 9. HF分子以何种键结合?写出这个键的完全波函数。 10.试用分子轨道理论讨论SO分子的电子结构,说明基态时有几个不成对电子。 11.下列AB型分子:N2,NO,O2,C2,F2,CN,CO,XeF中,哪几个是得电子变为AB–后比原来中性分子键能大?哪几个是失电子变为AB+ 后比原来中性分子键能大? 12.OH分子于1964年在星际空间被发现。 (a)试按分子轨道理论只用O原子的2 p轨道和H原子的1 s轨道叠加,写出其电子组态。 (b)在哪个分子轨道中有不成对电子? (c)此轨道是由O和H的原子轨道叠加形成,还是基本上定域于某个原子上? (d)已知OH的第一电离能为13.2eV,HF的第一电离能为16.05eV,它们的差值几乎与O原子和F原子的第一电离能(15.8eV和18.6eV)的差值相同,为什么? (e)写出它的基态光谱项。 13.试写出在价键理论中描述H2运动状态的、符合Pauli 原理的波函数,并区分其单态和三重态。

结构化学期末复习试题15套

习题5 一、填空题 1能量为100eV 的自由电子的德布罗依波波长为 cm 。 2、氢原子的一个主量子数为n=3的状态有 个简并态。 3、He 原子的哈密顿算符为 4、氢原子的3Px 状态的能量为 eV 。角动量为 角动量在磁场方向的分量为 ;它有 个径向节面, 个角度节面。 5、氟原子的基态光谱项为 6、与氢原子的基态能量相同的Li 2+ 的状态为 二、计算题 一维势箱基态l x l πψsin 2=,计算在2l 附近和势箱左端1/4区域内粒子出现的几率。 三、 简答题 计算环烯丙基自由基的HMO 轨道能量。写出HMO 行列式;求出轨道能级和离域能;比较它的阴离子和阳离子哪个键能大。 四、 简答题 求六水合钴(钴2价)离子的磁矩(以玻尔磁子表示)、CFSE ,预测离子颜色,已知其紫外可见光谱在1075纳米有最大吸收,求分裂能(以波数表示)。 五、 简答题 金属镍为A1型结构,原子间最近接触间距为2.482m 1010-?,计算它的晶胞参数和理论密度。 六、简答题 3CaTiO 结晶是pm a 380=的立方单位晶胞,结晶密度4.103/cm g ,相对分子质量为 135.98,求单位晶胞所含分子数,若设钛在立方单位晶胞的中心,写出各原子的分数坐标。 七、名词解释 1、原子轨道;分子轨道;杂化轨道; 2、电子填充三原则;杂化轨道三原则;LCAO-MO 三原则

习题5参考答案 一、 1.8 10225.1-?; 2.9; 3.() 12 2221222212222?r e r e r e m H +--?+?-= 。; 4.6.139 1 ?- ; 2;不确定;1;1。;. 5.2/32 P ;.6.3S ;3P ;3d ; 二、 在2/l 的几率即几率密度=;22sin 2222 l l l l l =?=?? ? ??πψ ππππ21 412sin 241sin 24/0 2 4/0-=?? ????-=??? ??=?l L l x l l l dx l x l P 三、 βα21+=E βα-==32E E β-=离域E , βπ2-=阴,E , βπ4-=阳,E ,可见阳离子键能大。 四、 ()()=+=+=B B n n μμμ2332 3.87B μ;CFSE=Dq 8- 1 7 930210107511 --=?= = ?cm cm λ ;未落在可见区,离子为无色。 五、 A1型结构,24a r = m r 210492.210÷?=-,m a 1010524.3-?= () 3 323 3331095.81002.61071.584--??=????==m kg a N a NM A ρ 六、 1、198 .1351002.61.4)108.3(23 8=????==-M N V N A ρ 2、如设Ti 为中心位置:)2 1 ,21, 21(Ti ;则Ca 应在顶角位置:Ca(0,0,0);O 在面心,)2 1,0,21)(21,21,0)(0,21,21(:O

相关主题
文本预览
相关文档 最新文档