山东省潍坊市2019-2020学年高二12月联考数学试卷Word版含解析
- 格式:doc
- 大小:2.95 MB
- 文档页数:23
山东省潍坊市2019-2020学年高考第三次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()cos ||sin f x x x =+,则下列结论中正确的是 ①函数()f x 的最小正周期为π; ②函数()f x 的图象是轴对称图形;③函数()f x ; ④函数()f x 的最小值为1-. A .①③ B .②④ C .②③ D .②③④【答案】D 【解析】 【分析】 【详解】因为(π)cos(π)sin(π)|cos ||sin (|)f x x x x x f x +=+++=-≠,所以①不正确; 因为()cos ||sin f x x x =+,所以 cos sin ()|()|(sin |22c )|os 2x x x f x x πππ+++==++, ()2f x π-=cos sin sin |c |()|()|22os ππ++--=x x x x ,所以() ()22f x f x ππ+=-, 所以函数()f x 的图象是轴对称图形,②正确;易知函数()f x 的最小正周期为2π,因为函数()f x 的图象关于直线2x π=对称,所以只需研究函数()f x 在3[,]22ππ上的极大值与最小值即可.当322x ππ≤≤时,()cos sin )4f x x x x π=-+=-,且5444x πππ≤-≤,令42x ππ-=,得34x π=,可知函数()f x 在34x π=,③正确;因为5444x πππ≤-≤,所以1)4x π-≤-≤()f x 的最小值为1-,④正确. 故选D .2.已知随机变量X 服从正态分布()1,4N ,()20.3P X >=,()0P X <=( ) A .0.2 B .0.3C .0.7D .0.8【答案】B 【解析】 【分析】利用正态分布密度曲线的对称性可得出()()02P X P X <=>,进而可得出结果. 【详解】()1,4X N Q :,所以,()()020.3P X P X <=>=.故选:B. 【点睛】本题考查利用正态分布密度曲线的对称性求概率,属于基础题.3.已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为1F 、2F ,抛物线()220y px p =>与双曲线C 有相同的焦点.设P 为抛物线与双曲线C 的一个交点,且125cos 7PF F ∠=,则双曲线C 的离心率为( ) A .2或3 B .2或3C .2或3D .2或3【答案】D 【解析】 【分析】设1PF m =,2PF n =,根据125cos 7PF F ∠=和抛物线性质得出257PF m =,再根据双曲线性质得出7m a =,5n a =,最后根据余弦定理列方程得出a 、c 间的关系,从而可得出离心率.【详解】过P 分别向x 轴和抛物线的准线作垂线,垂足分别为M 、N ,不妨设1PF m =,2PF n =,则121125cos 7mMF PN PF PF PF F ===∠=, P Q 为双曲线上的点,则122PF PF a -=,即527mm a -=,得7m a =,5n a ∴=, 又122F F c =,在12PF F ∆中,由余弦定理可得2225494257272a c a a c+-=⨯⨯,整理得22560c ac a -+=,即2560e e -+=,1e >Q ,解得2e =或3e =. 故选:D. 【点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题. 4.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍”的原则取整数,相关数据:lg30.4771≈,lg 20.3010≈) A .2 B .3C .4D .5【答案】C 【解析】 【分析】由题意可利用等比数列的求和公式得莞草与蒲草n 天后长度,进而可得:131212212112nn ⎛⎫- ⎪-⎝⎭⨯=--,解出即可得出. 【详解】由题意可得莞草与蒲草第n 天的长度分别为1113,122n n n n a b --⎛⎫=⨯=⨯ ⎪⎝⎭据题意得:131212212112nn ⎛⎫- ⎪-⎝⎭⨯=--, 解得2n =12, ∴n 122lg lg ==232lg lg +≈1. 故选:C . 【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.5.函数()2f x ax =-与()xg x e =的图象上存在关于直线y x =对称的点,则a 的取值范围是( )A .,4e ⎛⎤-∞ ⎥⎝⎦B .,2e ⎛⎤-∞ ⎥⎝⎦C .(],e -∞ D .(2,e ⎤-∞⎦【答案】C 【解析】 【分析】由题可知,曲线()2f x ax =-与ln y x =有公共点,即方程2ln ax x -=有解,可得2ln xa x+=有解,令()2ln x h x x +=,则()21ln x h x x --'=,对x 分类讨论,得出1x e =时,()h x 取得极大值1h e e ⎛⎫= ⎪⎝⎭,也即为最大值,进而得出结论. 【详解】解:由题可知,曲线()2f x ax =-与ln y x =有公共点,即方程2ln ax x -=有解,即2ln xa x +=有解,令()2ln x h x x +=,则()21ln x h x x --'=, 则当10x e<<时,()0h x '>;当1x e >时,()0h x '<,故1x e =时,()h x 取得极大值1h e e ⎛⎫= ⎪⎝⎭,也即为最大值, 当x 趋近于0时,()h x 趋近于-∞,所以a e ≤满足条件. 故选:C. 【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.6.已知复数z 在复平面内对应的点的坐标为(1,2)-,则下列结论正确的是( ) A .2z i i ⋅=- B .复数z 的共轭复数是12i - C .||5z = D .13122z i i =++ 【答案】D 【解析】 【分析】首先求得12z i =-+,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项. 【详解】由题意知复数12z i =-+,则(12)2z i i i i ⋅=-+⋅=--,所以A 选项不正确;复数z 的共轭复数是12i --,所以B 选项不正确;||z ==C 选项不正确;12(12)(1)1311222z i i i i i i -+-+⋅-===+++,所以D 选项正确. 故选:D 【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.7.已知(0,)απ∈,且tan 2α=,则cos2cos αα+=( )A .35B .35C .35D .35【答案】B 【解析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得cos α的值,之后借助于倍角公式,将待求的式子转化为关于cos α的式子,代入从而求得结果. 详解:根据题中的条件,可得α为锐角,根据tan 2α=,可求得cos α=,而223cos 2cos 2cos cos 11555αααα+=+-=+-=,故选B. 点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解. 8.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,下列命题正确的是( ) A .若m αP ,m βP ,n α∥,n β∥,则αβP B .若m n ∥,m α⊥,n β⊥,则αβP C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m n ⊥,m αP ,n β⊥,则αβ⊥ 【答案】B 【解析】 【分析】根据空间中线线、线面位置关系,逐项判断即可得出结果. 【详解】A 选项,若m αP ,m βP ,n α∥,n β∥,则αβP 或α与β相交;故A 错;B 选项,若m n ∥,m α⊥,则n α⊥,又n β⊥,,αβ是两个不重合的平面,则αβP ,故B 正确;C 选项,若m n ⊥,m α⊂,则n α⊂或n α∥或n 与α相交,又n β⊂,,αβ是两个不重合的平面,则αβP 或α与β相交;故C 错;D 选项,若m n ⊥,m αP ,则n α⊂或n α∥或n 与α相交,又n β⊥,,αβ是两个不重合的平面,则αβP 或α与β相交;故D 错;故选B 【点睛】本题主要考查与线面、线线相关的命题,熟记线线、线面位置关系,即可求解,属于常考题型. 9.已知抛物线C :214y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于A ,B 两点,若2PA AF =u u u r u u u r,则AB 为( ) A .409B .40C .16D .163【答案】D 【解析】 【分析】如图所示,过AB 分别作AC l ⊥于C ,BD l ⊥于D ,利用APC BPD ∆∆:和FPM BPD ∆∆:,联立方程组计算得到答案. 【详解】如图所示:过AB 分别作AC l ⊥于C ,BD l ⊥于D .2PA AF=u u u r u u u r ,则2433AC FM ==, 根据APC BPD ∆∆:得到:AP ACBP BD =,即4343AP BD AP BD =++, 根据FPM BPD ∆∆:得到:AF FM BP BD =,即42343AP BD AP BD +=++,解得83AP =,4BD =,故163AB AF BF AC BD =+=+=. 故选:D .本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力. 10.已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )A .24πB .28πC .32πD .36π【答案】C 【解析】 【分析】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为23,高为1的等腰三角形,侧棱长为4,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积. 【详解】 由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为23,高为1的等腰三角形, 侧棱长为4,如图:由底面边长可知,底面三角形的顶角为120o ,由正弦定理可得2324sin120AD ==o,解得2AD =, 三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心, 所以222222OA =+=该几何体外接球的表面积为:(24232S ππ=⋅=.故选:C本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.11.已知1F,2F是椭圆22221(0) x yC a ba b+=>>:的左、右焦点,过2F的直线交椭圆于,P Q两点.若2211||,||,||,||QF PF PF QF依次构成等差数列,且1||PQ PF=,则椭圆C的离心率为A.23B.34C.155D.105【答案】D【解析】【分析】【详解】如图所示,设2211||,||,||,||QF PF PF QF依次构成等差数列{}n a,其公差为d.根据椭圆定义得12344a a a a a+++=,又123a a a+=,则1111111()(2)(3)4()2a a d a d a d aa a d a d++++++=⎧⎨++=+⎩,解得25d a=,12342468,,,5555a a a a a a a a====.所以18||5QF a=,16||5PF a=,24||5PF a=,6||5PQ a=.在12PF F△和1PFQV中,由余弦定理得2222221246668()()(2)()()()55555cos4666225555a a c a a aF PFa a a a+-+-∠==⋅⋅⋅⋅,整理解得105cea==故选D.12.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数2R的值判断拟合效果,2R越小,模型的拟合效果越好;③若数据123,,,,nx x x xL的方差为1,则1232+1,2+1,2+1,,2+1nx x x xL的方差为4;④已知一组具有线性相关关系的数据()()()11221010,,,,,,x y x y x yL,其线性回归方程ˆˆˆy bx a=+,则“()00,x y满足线性回归方程ˆˆˆy bx a=+”是“1210010x x xx+++=L,1210010y y yy++=L”的充要条件;其中真命题的个数为( )A.4 B.3 C.2 D.1【解析】 【分析】①根据线性相关性与r 的关系进行判断, ②根据相关指数2R 的值的性质进行判断, ③根据方差关系进行判断,④根据点()00,x y 满足回归直线方程,但点()00,x y 不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断. 【详解】①若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故①正确; ②用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好,故②错误;③若统计数据123,,,,n x x x x L 的方差为1,则1232+1,2+1,2+1,,2+1n x x x x L 的方差为224=,故③正确; ④因为点()00,x y 满足回归直线方程,但点()00,x y 不一定就是这一组数据的中心点,即1210010x x x x +++=L ,1210010y y y y ++=L 不一定成立,而回归直线必过样本中心点,所以当1210010x x x x +++=L ,1210010y y y y ++=L 时,点 ()00,x y 必满足线性回归方程 ˆˆˆybx a =+;因此“()00,x y 满足线性回归方程ˆˆˆy bx a =+”是“1210010x x x x +++=L ,1210010y y y y ++=L ”必要不充分条件.故 ④错误; 所以正确的命题有①③. 故选:C. 【点睛】本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
丰满区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-,B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,2. 已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .33. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 4. 在等差数列中,已知,则( )A .12B .24C .36D .485. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .6. 在区域内任意取一点P (x ,y ),则x 2+y 2<1的概率是( )A .0B .C .D .7. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A .B .C .D .8. 函数y=(x 2﹣5x+6)的单调减区间为( )A .(,+∞)B .(3,+∞)C .(﹣∞,)D .(﹣∞,2)9. 设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D .10.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )A .10 13B .12.5 12C .12.5 13D .10 1511.已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数,若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(,-∞B .(,-∞C .(0,D .)+∞12.已知集合{}2|10A x x =-=,则下列式子表示正确的有( ) ①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个二、填空题13.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .14.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.15.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,则++…+= . 16.已知数列的前项和是, 则数列的通项__________17.【泰州中学2018届高三10月月考】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是 18.△ABC 中,,BC=3,,则∠C=.三、解答题19.已知等差数列{a n }满足a 2=0,a 6+a 8=10. (1)求数列{a n }的通项公式;(2)求数列{}的前n 项和.20.本小题满分10分选修45-:不等式选讲 已知函数2()log (12)f x x x m =++--. Ⅰ当7=m 时,求函数)(x f 的定义域;Ⅱ若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.21.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C 的方程和离心率; (Ⅱ) 设动直线与y 轴相交于点,点关于直线的对称点在椭圆上,求的最小值.22.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .23.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F 为其左、右焦点,直线的参数方程为22x y ⎧=⎪⎪⎨⎪=⎪⎩(为参数,t R ∈).(1)求直线和曲线C 的普通方程; (2)求点12,F F 到直线的距离之和.24.已知集合A={x|x 2﹣5x ﹣6<0},集合B={x|6x 2﹣5x+1≥0},集合C={x|(x ﹣m )(m+9﹣x )>0} (1)求A ∩B(2)若A ∪C=C ,求实数m 的取值范围.丰满区第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 2. 【答案】B【解析】解:由得a+2i=bi ﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i (a ,b ∈R ),则﹣a=1,b=2,a+b=1.故选B .【点评】本题考查复数相等的意义、复数的基本运算,是基础题.3. 【答案】A【解析】解:令f (x )=x 3﹣,∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,∴f (x )=x 3﹣在R 上单调递增;又f (1)=1﹣=>0, f (0)=0﹣1=﹣1<0,∴f (x )=x 3﹣的零点在(0,1),∵函数y=x 3与y=()x的图象的交点为(x 0,y 0),∴x 0所在的区间是(0,1). 故答案为:A .4. 【答案】B 【解析】,所以,故选B答案:B5.【答案】D【解析】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D6.【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y2<1表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y2<1的概率是=;故选C.【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.7.【答案】D【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题8.【答案】B【解析】解:令t=x2﹣5x+6=(x﹣2)(x﹣3)>0,可得x<2,或x>3,故函数y=(x2﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).本题即求函数t在定义域(﹣∞,2)∪(3,+∞)上的增区间.结合二次函数的性质可得,函数t在(﹣∞,2)∪(3,+∞)上的增区间为(3,+∞),故选B.9.【答案】A【解析】考点:二元一次不等式所表示的平面区域.10.【答案】C【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5而中位数是把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可∴中位数是13故选:C.【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.11.【答案】B 【解析】试题分析:因为函数()x F x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x x xxe e e e e g x h x e g x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022x x x xe e e e a --+--≥恒成立, ()2222x x x xx x x xe e e ea e e e e-----++∴≤=-- ()2x x x x e e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,220t e e -∴<≤-, 此时不等式2t t +≥当且仅当2t t=,即t =时, 取等号,a ∴≤,故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.12.【答案】C 【解析】试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系.二、填空题13.【答案】 [1,5)∪(5,+∞) .【解析】解:整理直线方程得y ﹣1=kx ,∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y 轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y≥1即是y2≥1得到m≥1∵椭圆方程中,m≠5m的范围是[1,5)∪(5,+∞)故答案为[1,5)∪(5,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.14.【答案】18.2【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,∵x=20,∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2.【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.15.【答案】.【解析】解:点An(n,)(n∈N+),向量=(0,1),θn是向量与i的夹角,=,=,…,=,∴++…+=+…+=1﹣=,故答案为:.【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.16.【答案】【解析】 当时,当时,,两式相减得:令得,所以答案:17.【答案】【解析】试题分析:设,由题设可知存在唯一的整数0x ,使得在直线的下方.因为,故当时,,函数单调递减; 当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案3,12e ⎡⎫⎪⎢⎣⎭. 考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.18.【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C 为三角形的内角,且c <a , ∴0<∠C <,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C 的范围.三、解答题19.【答案】【解析】解:(1)设等差数列{a n }的公差为d ,∵a 2=0,a 6+a 8=10.∴,解得,∴a n ﹣1+(n ﹣1)=n ﹣2.(2)=.∴数列{}的前n 项和S n =﹣1+0+++…+,=+0++…++,∴=﹣1++…+﹣=﹣2+﹣=,∴S n =.20.【答案】【解析】Ⅰ当7m =时,函数)(x f 的定义域即为不等式1270x x ++-->的解集.[来由于1(1)(2)70x x x ≤-⎧⎨-+--->⎩,或12(1)(2)70x x x -<<⎧⎨+--->⎩,或2(1)(2)70x x x ≥⎧⎨++-->⎩. 所以3x <-,无解,或4x >.综上,函数)(x f 的定义域为(,3)(4,)-∞-+∞Ⅱ若使2)(≥x f 的解集是R ,则只需min (124)m x x ≤++--恒成立.由于124(1)(2)41x x x x ++--≥+---=- 所以m 的取值范围是(,1]-∞-.21.【答案】【解析】【知识点】圆锥曲线综合椭圆 【试题解析】(Ⅰ)因为椭圆C :,所以,, 故,解得, 所以椭圆的方程为.因为, 所以离心率.(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得. 所以. 当且仅当,即时等号成立.所以的最小值为.22.【答案】证明见解析.【解析】考点:直线与平面平行的判定与证明.23.【答案】(1)直线的普通方程为2y x =-,曲线C 的普通方程为22143x y +=;(2)【解析】试题分析:(1)由公式cos sin xyρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式.24.【答案】【解析】解:由合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(m+9﹣x)>0}.∴A={x|﹣1<x<6},,C={x|m<x<m+9}.(1),(2)由A∪C=C,可得A⊆C.即,解得﹣3≤m≤﹣1.。
芒康县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线2. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .3. 已知在数轴上0和3之间任取一实数,则使“2log 1x ”的概率为( )A .14 B .18 C .23 D .1124. 已知i 是虚数单位,则复数等于( )A .﹣ +iB .﹣ +iC .﹣iD .﹣i5. 等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( )A .6B .5C .3D .46. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .7. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )A .B .﹣C .3D .﹣38. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)9. 在△ABC 中,已知a=2,b=6,A=30°,则B=( )A .60°B .120°C .120°或60°D .45°10.已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)(11.若,[]0,1b ∈,则不等式221a b +≤成立的概率为( )A .16π B .12π C .8π D .4π12.已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A .B .C .D .二、填空题13.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.14.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .15.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.16.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB 的距离是 .17.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.18.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .三、解答题19.(本小题满分12分)已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.(1)求证://EF 平面ABC ; (2)求证:平面⊥AEF 平面B B AA 11.20.设f (x )=x 2﹣ax+2.当x ∈,使得关于x 的方程f (x )﹣tf (2a )=0有三个不相等的实数根,求实数t 的取值范围.21.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.22.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;23.已知椭圆C :+=1(a >b >0)与双曲线﹣y 2=1的离心率互为倒数,且直线x ﹣y ﹣2=0经过椭圆的右顶点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设不过原点O 的直线与椭圆C 交于M 、N 两点,且直线OM 、MN 、ON 的斜率依次成等比数列,求△OMN 面积的取值范围.24.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.芒康县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.2.【答案】A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.3.【答案】C【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C.考点:几何概型. 4. 【答案】A【解析】解:复数===,故选:A .【点评】本题考查了复数的运算法则,属于基础题.5. 【答案】D【解析】解:∵等比数列{a n }中a 4=2,a 5=5, ∴a 4•a 5=2×5=10,∴数列{lga n }的前8项和S=lga 1+lga 2+…+lga 8 =lg (a 1•a 2…a 8)=lg (a 4•a 5)4 =4lg (a 4•a 5)=4lg10=4 故选:D .【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.6. 【答案】C【解析】解;∵f ′(x )=f ′(x )>k >1,∴>k >1,即>k >1,当x=时,f ()+1>×k=,即f ()﹣1=故f ()>,所以f ()<,一定出错, 故选:C .7. 【答案】A【解析】解:设幂函数为y=x α,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x ﹣3,由f (x )=27,得:x ﹣3=27,所以x=.故选A .8. 【答案】 B【解析】解:由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2lnx ,即<在[1,e]上有解,令h (x )=,则h ′(x )=,∵1≤x ≤e ,∴h ′(x )≥0,∴h (x )max =h (e )=,∴<h (e )=,∴m <.∴m 的取值范围是(﹣∞,). 故选:B .【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.9. 【答案】C 【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B ∈(0°,180°), ∴B=120°或60°. 故选:C .10.【答案】A 【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()x x x f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A . 考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点. 11.【答案】D 【解析】考点:几何概型. 12.【答案】B【解析】解:由于α是△ABC 的一个内角,tan α=,则=,又sin 2α+cos 2α=1,解得sin α=,cos α=(负值舍去).则cos (α+)=coscos α﹣sinsin α=×(﹣)=.故选B .【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.二、填空题13.【答案】【解析】解:∵f (x )=a xg (x )(a >0且a ≠1),∴=a x ,又∵f ′(x )g (x )>f (x )g ′(x ),∴()′=>0,∴=a x 是增函数,∴a >1,∵+=.∴a 1+a ﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n }.∵数列{}的前n 项和大于62,∴2+22+23+ (2)==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n >5.∴n 的最小值为6. 故答案为:6.【点评】本题考查等比数列的前n 项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.14.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.15.【答案】.【解析】由题意,y ′=ln x +1−2mx令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,函数()()ln f x x x mx =-有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点,等价于函数y =ln x 与y =2mx −1的图象有两个交点,,当m =12时,直线y =2mx −1与y =ln x 的图象相切, 由图可知,当0<m <12时,y =ln x 与y =2mx −1的图象有两个交点,则实数m 的取值范围是(0,12),故答案为:(0,12).16.【答案】 .【解析】解:根据点A ,B 的极坐标分别是(2,),(3,),可得A 、B 的直角坐标分别是(3,)、(﹣,),故AB 的斜率为﹣,故直线AB 的方程为 y ﹣=﹣(x ﹣3),即x+3y ﹣12=0,所以O 点到直线AB 的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.17.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1l o g 3)(l o g 33-<x x f 可化为1log 3)(log 33-<-x x f ,即)1()(log 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.18.【答案】 9 .【解析】解:双曲线﹣=1的a=2,b=3,可得c 2=a 2+b 2=13,又||MF1|﹣|MF 2||=2a=4,|F 1F 2|=2c=2,∠F 1MF 2=90°,在△F 1AF 2中,由勾股定理得: |F 1F 2|2=|MF 1|2+|MF 2|2=(|MF 1|﹣|MF 2|)2+2|MF 1||MF 2|,即4c 2=4a 2+2|MF 1||MF 2|, 可得|MF 1||MF 2|=2b 2=18,即有△F 1MF 2的面积S=|MF 1||MF 2|sin ∠F 1MF 2=×18×1=9.故答案为:9.【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a 、b 、c 之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.三、解答题19.【答案】(1)详见解析;(2)详见解析. 【解析】试题解析:证明:(1)连接C A 1,∵直三棱柱111C B A ABC -中,四边形C C AA 11是矩形, 故点F 在C A 1上,且F 为C A 1的中点,在BC A 1∆中,∵F E 、分别是11AC B A 、的中点,∴BC EF //. 又⊄EF 平面ABC ,⊂BC 平面ABC ,∴//EF 平面ABC .考点:1.线面平行的判定定理;2.面面垂直的判定定理.20.【答案】【解析】设f(x)=x2﹣ax+2.当x∈,则t=,∴对称轴m=∈(0,],且开口向下;∴时,t取得最小值,此时x=9∴税率t的最小值为.【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识.考查的知识全面而到位!21.【答案】【解析】【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.22.【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.(2)当0a =时,()ln f x bx x =-.假设存在实数b ,使()(]()ln 0,e g x bx x x =-∈有最小值3,11()bx f x b x x-'=-=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4()e 13,f x f be b e==-==(舍去).………8分②当10e b <<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤⎥⎝⎦上单调递增, ∴2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭,满足条件.……………………………10分③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4()e e 13,ef xg b b ==-==(舍去),………11分综上,存在实数2e b =,使得当(]0,e x ∈时,函数()f x 最小值是3.……………………………12分23.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x ﹣y ﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m •(k ≠0,m ≠0),M (x 1,y 1)、N (x 2,y 2)联立消去y 并整理得:(1+4k 2)x 2+8kmx+4(m 2﹣1)=0…则,于是…又直线OM 、MN 、ON 的斜率依次成等比数列.∴…由m ≠0得:又由△=64k 2m 2﹣16(1+4k 2)(m 2﹣1)=16(4k 2﹣m 2+1)>0,得:0<m 2<2 显然m 2≠1(否则:x 1x 2=0,则x 1,x 2中至少有一个为0,直线OM 、ON 中至少有一个斜率不存在,与已知矛盾) …设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.24.【答案】【解析】解:(Ⅰ)该连锁分店一年的利润L(万元)与售价x的函数关系式为:L(x)=(x﹣7)(x﹣10)2,x∈[7,9],(Ⅱ)L′(x)=(x﹣10)2+2(x﹣7)(x﹣10)=3(x﹣10)(x﹣8),令L′(x)=0,得x=8或x=10(舍去),∵x∈[7,8],L′(x)>0,x∈[8,9],L′(x)<0,∴L(x)在x∈[7,8]上单调递增,在x∈[8,9]上单调递减,∴L(x)max=L(8)=4;答:每件纪念品的售价为8元,该连锁分店一年的利润L最大,最大值为4万元.【点评】本题考查了函数的解析式问题,考查函数的单调性、最值问题,是一道中档题.。
平舆县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.如图,正六边形ABCDEF中,AB=2,则(﹣)•(+)=()A.﹣6 B.﹣2C.2D.62.若关于x的方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,且满足x1<x2<x3,则a的取值范围为()A.a>B.﹣<a<1 C.a<﹣1 D.a>﹣13.如图,△ABC所在平面上的点P n(n∈N*)均满足△P n AB与△P n AC的面积比为3;1,=﹣(2x n+1)(其中,{x n}是首项为1的正项数列),则x5等于()A.65 B.63 C.33 D.314.若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是()A.(2,4)B.(2,﹣4)C.(4,﹣2)D.(4,2)5.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM 与平面AA1C1C所成角的正切值为()A.B.C.D.6.不等式的解集为()A.或B.C.或D.7.有下列四个命题:①“若a2+b2=0,则a,b全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q≤1”,则x2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为()A.①②B.①③C.②③D.③④8.如果(m∈R,i表示虚数单位),那么m=()A.1 B.﹣1 C.2 D.09.执行如图所以的程序框图,如果输入a=5,那么输出n=()A.2 B.3 C.4 D.510.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.2日和5日B.5日和6日C.6日和11日D.2日和11日11.已知抛物线x2=﹣2y的一条弦AB的中点坐标为(﹣1,﹣5),则这条弦AB所在的直线方程是()A.y=x﹣4 B.y=2x﹣3 C.y=﹣x﹣6 D.y=3x﹣212.f()=,则f(2)=()A.3 B.1 C.2 D.二、填空题13.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是.14.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .15.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .16.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .17.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想. 18.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .三、解答题19.如图,过抛物线C :x 2=2py (p >0)的焦点F 的直线交C 于M (x 1,y 1),N (x 2,y 2)两点,且x 1x 2=﹣4. (Ⅰ)p 的值;(Ⅱ)R ,Q 是C 上的两动点,R ,Q 的纵坐标之和为1,RQ 的垂直平分线交y 轴于点T ,求△MNT 的面积的最小值.20..(1)求证:(2),若.21.已知关x的一元二次函数f(x)=ax2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数a和b得到数对(a,b).(1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率;(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.22.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线.(1)求证:AD=122b2+2c2-a2;(2)若A=120°,AD=192,sin Bsin C=35,求△ABC的面积.23.已知抛物线C :y 2=2px (p >0)过点A (1,﹣2).(Ⅰ)求抛物线C 的方程,并求其准线方程;(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L 的距离等于?若存在,求直线L 的方程;若不存在,说明理由.24.(本小题满分10分)求经过点()1,2P 的直线,且使()()2,3,0,5A B -到它的距离相等的直线 方程.平舆县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:根据正六边形的边的关系及内角的大小便得:===2+4﹣2+2=6.故选:D.【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式.2.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.3.【答案】D【解析】解:由=﹣(2x n+1),得+(2x n+1)=,设,以线段P n A、P n D作出图形如图,则,∴,∴,∵,∴,则,即x n+1=2x n+1,∴x n+1+1=2(x n+1),则{x n+1}构成以2为首项,以2为公比的等比数列,∴x5+1=2•24=32,则x5=31.故选:D.【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.4.【答案】C【解析】解:复数z满足iz=2+4i,则有z===4﹣2i,故在复平面内,z对应的点的坐标是(4,﹣2),故选C.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.5.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A(,),B(,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1∴离心率的取值范围是1<e<故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.6.【答案】A【解析】令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A7.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.8.【答案】A【解析】解:因为,而(m∈R,i表示虚数单位),所以,m=1.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.9.【答案】B【解析】解:a=5,进入循环后各参数对应值变化如下表:p 15 20 结束q 5 25n 2 3∴结束运行的时候n=3.故选:B.【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点.解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.10.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.11.【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=﹣2,x12=﹣2y1,x22=﹣2y2.两式相减可得,(x1+x2)(x1﹣x2)=﹣2(y1﹣y2)∴直线AB的斜率k=1,∴弦AB所在的直线方程是y+5=x+1,即y=x﹣4.故选A,12.【答案】A【解析】解:∵f()=,∴f(2)=f()==3.故选:A.二、填空题13.【答案】甲.【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是=[(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是=[(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些;乙的5个数据分布在78~99之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些.故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.14.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:.故答案为:.15.【答案】.【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为.【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.16.【答案】(1,2).【解析】解:∵f(x)=log a x(其中a为常数且a>0,a≠1)满足f(2)>f(3),∴0<a<1,x>0,若f(2x﹣1)<f(2﹣x),则,解得:1<x<2,故答案为:(1,2).【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.17.【答案】2-【解析】由题意,得336160C m=-,即38m=-,所以2m=-.18.【答案】V【解析】【分析】四棱锥B﹣APQC的体积,底面面积是侧面ACC′A′的一半,B到侧面的距离是常数,求解即可.【解答】解:由于四棱锥B﹣APQC的底面面积是侧面ACC′A′的一半,不妨把P移到A′,Q移到C,所求四棱锥B﹣APQC的体积,转化为三棱锥A′﹣ABC体积,就是:故答案为:三、解答题19.【答案】【解析】解:(Ⅰ)由题意设MN:y=kx+,由,消去y得,x2﹣2pkx﹣p2=0(*)由题设,x1,x2是方程(*)的两实根,∴,故p=2;(Ⅱ)设R(x3,y3),Q(x4,y4),T(0,t),∵T在RQ的垂直平分线上,∴|TR|=|TQ|.得,又,∴,即4(y3﹣y4)=(y3+y4﹣2t)(y4﹣y3).而y3≠y4,∴﹣4=y3+y4﹣2t.又∵y3+y4=1,∴,故T(0,).因此,.由(Ⅰ)得,x1+x2=4k,x1x2=﹣4,=.因此,当k=0时,S△MNT有最小值3.【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题.20.【答案】【解析】解:(1)∵,∴a n+1=f(a n)=,则,∴{}是首项为1,公差为3的等差数列;(2)由(1)得,=3n﹣2,∵{b n}的前n项和为,∴当n≥2时,b n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,而b1=S1=1,也满足上式,则b n=2n﹣1,∴==(3n﹣2)2n﹣1,∴=20+4•21+7•22+…+(3n ﹣2)2n ﹣1,①则2T n =21+4•22+7•23+…+(3n ﹣2)2n,②①﹣②得:﹣T n =1+3•21+3•22+3•23+…+3•2n ﹣1﹣(3n ﹣2)2n ,∴T n =(3n ﹣5)2n+5.21.【答案】【解析】解:(1)(a ,b )共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况函数y=f (x )有零点,△=b 2﹣4a ≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件所以函数y=f (x )有零点的概率为(2)函数y=f (x )的对称轴为,在区间[1,+∞)上是增函数则有,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件所以函数y=f (x )在区间[1,+∞)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.22.【答案】 【解析】解:(1)证明:∵D 是BC 的中点,∴BD =DC =a2.法一:在△ABD 与△ACD 中分别由余弦定理得c 2=AD 2+a24-2AD ·a2cos ∠ADB ,① b 2=AD 2+a24-2AD ·a2·cos ∠ADC ,②①+②得c 2+b 2=2AD 2+a22,即4AD 2=2b 2+2c 2-a 2,∴AD =122b2+2c2-a2.法二:在△ABD 中,由余弦定理得AD 2=c 2+a24-2c ·a2cos B=c 2+a24-ac ·a2+c2-b22ac=2b2+2c2-a24,∴AD =122b2+2c2-a2.(2)∵A =120°,AD =1219,sin B sin C =35,由余弦定理和正弦定理与(1)可得 a 2=b 2+c 2+bc ,① 2b 2+2c 2-a 2=19,②b c =35,③ 联立①②③解得b =3,c =5,a =7,∴△ABC 的面积为S =12bc sin A =12×3×5×sin 120°=1534.即△ABC 的面积为1543.23.【答案】【解析】解:(I )将(1,﹣2)代入抛物线方程y 2=2px , 得4=2p ,p=2∴抛物线C 的方程为:y 2=4x ,其准线方程为x=﹣1(II )假设存在符合题意的直线l ,其方程为y=﹣2x+t ,由得y 2+2y ﹣2t=0,∵直线l 与抛物线有公共点,∴△=4+8t ≥0,解得t ≥﹣又∵直线OA 与L 的距离d==,求得t=±1∵t ≥﹣ ∴t=1∴符合题意的直线l 存在,方程为2x+y ﹣1=0【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.24.【答案】420x y --=或1x =. 【解析】。
平阳县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.在二项式的展开式中,含x4的项的系数是()A.﹣10 B.10 C.﹣5 D.52.有下列四个命题:①“若a2+b2=0,则a,b全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q≤1”,则x2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为()A.①②B.①③C.②③D.③④3.某程序框图如图所示,则输出的S的值为()A.11 B.19 C.26 D.574.已知定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(ax+1)≤f(x﹣2)对任意都成立,则实数a的取值范围为()A.[﹣2,0] B.[﹣3,﹣1] C.[﹣5,1] D.[﹣2,1)5.设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.26.已知正方体的不在同一表面的两个顶点A(﹣1,2,﹣1),B(3,﹣2,3),则正方体的棱长等于()A.4 B.2 C.D.27. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .08. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣10.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )11.已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为( )A .M >N >PB .P <M <NC .N >P >M12.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数二、填空题13.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 .【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 14.已知关于 的不等式在上恒成立,则实数的取值范围是__________15.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 . 16.△ABC 中,,BC=3,,则∠C=.17.-23311+log 6-log 242()= . 18.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题19.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件(2)求z=2x+y 的最大值,使式中的x 、y 满足约束条件+=1.20.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0. (1)求常数 a ,b 的值;(2)求f (x )在[﹣2,﹣]的最值.21.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60oABC ∠=,侧面PDC为等边三角形,且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.22.设函数f (x )=1+(1+a )x ﹣x 2﹣x 3,其中a >0. (Ⅰ)讨论f (x )在其定义域上的单调性;(Ⅱ)当x ∈时,求f (x )取得最大值和最小值时的x 的值. 23.在中,,,.(1)求的值;(2)求的值。
临高县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -2. 设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-3. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A.向右平移个单位 B.向右平移个单位 C.向左平移个单位 D.向左平移个单位4. 如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )AB CD5. 双曲线的渐近线方程是( )A .B .C .D .6. 在△ABC 中,已知a=2,b=6,A=30°,则B=( )A .60°B .120°C .120°或60°D .45°7. 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法8. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 9. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}10.复数i i -+3)1(2的值是( )A .i 4341+-B .i 4341-C .i 5351+-D .i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题. 11.若cos(﹣α)=,则cos(+α)的值是( )A.B.﹣ C.D.﹣12.已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,)D .[,1)二、填空题13.设R m ∈,实数x ,y 满足23603260y mx y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.14.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是. 15.已知f (x )=,则f[f (0)]= .16.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π; ③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .17.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .三、解答题19.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任意一点,且椭圆的离心率为.(1)求椭圆C的方程;(2)直线l1,l2是椭圆的任意两条切线,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,求出点B的坐标;若不存在,请说明理由.20.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差.21.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1)cos 2cos a B b A c -=, (Ⅰ)求tan tan AB的值;(Ⅱ)若a =4B π=,求ABC ∆的面积.22.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).(Ⅰ)求矩阵M 的逆矩阵M ﹣1;(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程.23.如图,四面体ABCD 中,平面ABC ⊥平面BCD ,AC=AB ,CB=CD ,∠DCB=120°,点E 在BD 上,且CE=DE . (Ⅰ)求证:AB ⊥CE ;(Ⅱ)若AC=CE ,求二面角A ﹣CD ﹣B 的余弦值.24.已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值.求函数f(x)的解析式.临高县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A 【解析】 试题分析:42731,1i i i i i ==-∴==-,因为复数满足71i i z+=,所以()1,1i i i i z i z+=-∴=-,所以复数的虚部为,故选A. 考点:1、复数的基本概念;2、复数代数形式的乘除运算.2. 【答案】A 【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 3. 【答案】A【解析】解:由于函数y=sin (3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]= sin3x 的图象,故选:A .【点评】本题主要考查函数y=Asin (ωx+∅)的图象平移变换,属于中档题.4. 【答案】C 【解析】根据题意有:A 的坐标为:(0,0,0),B 的坐标为(11,0,0),C 的坐标为(11,7,0),D 的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|==13。
山东省潍坊市2019-2020年度高二下学期期中数学试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知函数 f(x) 在 x=1 处的导数为1,则()A . 3B .C .D .2. (2分) (2019高二上·宁波期中) 已知椭圆的焦点在轴上,若其离心率为,则的值是()A .B .C .D .3. (2分) (2018高三上·西安模拟) 已知双曲线与抛物线有一个公共的焦点,且两曲线的一个交点为,若,则双曲线的离心率为()A .B .C .D . 24. (2分)已知方程的图象是双曲线,那么k的取值范围是()A .B .C . 或D .5. (2分) (2017高二上·清城期末) 已知抛物线y2=2px(p>0)的焦点F恰好是双曲线 =1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为()A .B .C . 1+D . 1+6. (2分) (2015高二下·上饶期中) 设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2 ,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集为()A . (﹣∞,﹣2012)B . (﹣2012,0)C . (﹣∞,﹣2016)D . (﹣2016,0)7. (2分)已知椭圆的两个焦点分别为、,.若点在椭圆上,且,则点到轴的距离为()A .B .C .D .8. (2分)已知椭圆的左、右焦点分别为,若椭圆上存在点P使,则该椭圆的离心率的取值范围为()A .B . ()C . (0,)D . (, 1)9. (2分) (2017高二下·宾阳开学考) 以双曲线 =1的右顶点为焦点的抛物线的标准方程为()A . y2=16xB . y2=﹣16xC . y2=8xD . y2=﹣8x10. (2分) (2017高二下·雅安开学考) 抛物线y2=4x,直线l过焦点且与抛物线交于A(x1 , y1),B(x2 ,y2)两点,x1+x2=3,则AB中点到y轴的距离为()A . 3B .C .D . 411. (2分) (2017高二下·中原期末) 若函数f(x)= x3﹣(1+ )x2+2bx在区间[3,5]上不是单调函数,则函数f(x)在R上的极大值为()A . b2﹣ b3B . b﹣C . 0D . 2b﹣12. (2分) (2019高二上·漠河月考) 已知椭圆的离心率为 .双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2018·全国Ⅲ卷文) 已知向量,,,若,则________。
青田县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( ) A .4πα=B .3πα=C .34πα=D .23πα= 2. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A.向右平移个单位 B.向右平移个单位 C.向左平移个单位 D.向左平移个单位3. 设数集M={x|m ≤x ≤m+},N={x|n﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A.B.C.D.4. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( )A .3,6,9,12,15,18B .4,8,12,16,20,24C .2,7,12,17,22,27D .6,10,14,18,22,265.已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k 的值是( ) A .1B.C.D.6. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .7. sin45°sin105°+sin45°sin15°=( )A .0B.C.D .18. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β9. 下列计算正确的是( )A 、2133x x x ÷= B 、4554()x x = C 、4554x x x = D 、44550x x -=10.若a >b ,则下列不等式正确的是( )A.B .a 3>b 3C .a 2>b 2D .a >|b|11.如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, } B .{,, } C .{V|≤V≤} D .{V|0<V≤}12.已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞二、填空题13.在正方形A B CD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.14.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.15.已知α为钝角,sin(+α)=,则sin(﹣α)=.16.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角的余弦值是.17.长方体ABCD﹣A1B1C1D1的棱AB=AD=4cm,AA1=2cm,则点A1到平面AB1D1的距离等于cm.18.在△ABC中,a=4,b=5,c=6,则=.三、解答题19.在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=a.(1)求角C的大小;(2)若c=2,a 2+b 2=6,求△ABC 的面积.20.(本小题满分12分)1111]已知函数()()1ln 0f x a x a a x=+≠∈R ,.(1)若1a =,求函数()f x 的极值和单调区间;(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.21.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知1cos )sin 3(cos 2cos 22=-+C B B A. (I )求角C 的值;(II )若2b =,且ABC ∆的面积取值范围为2,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.22.本小题满分10分选修41-:几何证明选讲如图,ABC ∆是⊙O 的内接三角形,PA 是⊙O 的切线,切点为A ,PB 交AC 于点E ,交⊙O 于点D ,PE PA =,︒=∠45ABC ,1=PD ,8=DB . Ⅰ求ABP ∆的面积; Ⅱ求弦AC 的长. 23.已知,其中e 是自然常数,a ∈R(Ⅰ)讨论a=1时,函数f (x )的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,f (x )>g (x )+.24.椭圆C:=1,(a >b >0)的离心率,点(2,)在C 上.(1)求椭圆C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与l 的斜率的乘积为定值.青田县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C 的方程为22((1)4x y +-=,直线l 的普通方程为t a n (1)y x α-=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .2. 【答案】A【解析】解:由于函数y=sin (3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]= sin3x 的图象,故选:A .【点评】本题主要考查函数y=Asin (ωx+∅)的图象平移变换,属于中档题.3. 【答案】C【解析】解:∵集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n}, P={x|0≤x ≤1},且M ,N 都是集合P 的子集,∴根据题意,M 的长度为,N 的长度为, 当集合M ∩N 的长度的最小值时, M 与N 应分别在区间[0,1]的左右两端,故M ∩N 的长度的最小值是=.故选:C .4. 【答案】C【解析】解:从30件产品中随机抽取6件进行检验, 采用系统抽样的间隔为30÷6=5, 只有选项C 中编号间隔为5, 故选:C .5. 【答案】D【解析】解:∵ =(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.6.【答案】D【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x≠0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题7.【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos(45°﹣15°)=cos30°=.故选:C.【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.8.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D9. 【答案】B 【解析】 试题分析:根据()aa βααβ⋅=可知,B 正确。
兰考县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 某几何体的三视图如图所示,该几何体的体积是( )A. B. C. D.2. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}3. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x>},则f (10x )>0的解集为( )A .{x|x <﹣1或x >﹣lg2}B .{x|﹣1<x <﹣lg2}C .{x|x >﹣lg2}D .{x|x <﹣lg2}4. 若1sin()34πα-=,则cos(2)3πα+=A 、78-B 、14- C 、14 D 、785. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( ) A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.6. 若函数f (x )=﹣a (x ﹣x 3)的递减区间为(,),则a 的取值范围是( )A .a >0B .﹣1<a <0C .a >1D .0<a <17. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(1,2)8. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C ) 13(D )12- 9. 下列4个命题:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个10.设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直11.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-112.已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点 二、填空题13.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .14.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .15.函数()xf x xe =在点()()1,1f 处的切线的斜率是 .16.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .17.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 .18.已知||=1,||=2,与的夹角为,那么|+||﹣|=.三、解答题19.在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2:=1.(Ⅰ)在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C1的异于极点的交点为A,与C2的交点为B,求|AB|.20.(本小题满分12分)如图长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=4,D1F=8,过点E,F,C的平面α与长方体的面相交,交线围成一个四边形.(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面α将长方体分成的两部分体积之比.21.已知:函数f (x )=log 2,g (x )=2ax+1﹣a ,又h (x )=f (x )+g (x ).(1)当a=1时,求证:h (x )在x ∈(1,+∞)上单调递增,并证明函数h (x )有两个零点;(2)若关于x 的方程f (x )=log 2g (x )有两个不相等实数根,求a 的取值范围.22.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.23.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.24.将射线y=x(x≥0)绕着原点逆时针旋转后所得的射线经过点A=(cosθ,sinθ).(Ⅰ)求点A的坐标;(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.兰考县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.2.【答案】C【解析】解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.3.【答案】D【解析】解:由题意可知f(x)>0的解集为{x|﹣1<x<},故可得f(10x)>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x<﹣lg2故选:D4. 【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-5. 【答案】B 【解析】6. 【答案】A【解析】解:∵函数f (x )=﹣a (x ﹣x 3)的递减区间为(,)∴f ′(x )≤0,x ∈(,)恒成立即:﹣a (1﹣3x 2)≤0,,x ∈(,)恒成立∵1﹣3x 2≥0成立∴a >0 故选A 【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.7. 【答案】A【解析】解:集合A={x|y=ln (x ﹣1)}=(1,+∞),集合B={y|y=2x }=(0,+∞) 则A ∪B=(0,+∞) 故选:A .【点评】本题考查了集合的化简与运算问题,是基础题目.8. 【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C.9. 【答案】C【解析】解:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”,①正确; ②若“¬p 或q ”是假命题,则¬p 、q 均为假命题,∴p 、¬q 均为真命题,“p 且¬q ”是真命题,②正确;③由p :x (x ﹣2)≤0,得0≤x ≤2,由q :log 2x ≤1,得0<x ≤2,则p 是q 的必要不充分条件,③错误;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2,④正确. ∴正确的命题有3个. 故选:C .10.【答案】C 【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1考点:两条直线的位置关系. 11.【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D. 考点:等比数列的性质. 12.【答案】D 【解析】试题分析:因为直线 a 平面α,直线b ⊆平面α,所以//a b 或与异面,故选D.考点:平面的基本性质及推论.二、填空题13.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.14.【答案】 3x ﹣y ﹣11=0 .【解析】解:设过点P (4,1)的直线与抛物线的交点 为A (x 1,y 1),B (x 2,y 2),即有y 12=6x 1,y 22=6x 2,相减可得,(y 1﹣y 2)(y 1+y 2)=6(x 1﹣x 2),即有k AB ====3,则直线方程为y ﹣1=3(x ﹣4), 即为3x ﹣y ﹣11=0.将直线y=3x ﹣11代入抛物线的方程,可得 9x 2﹣72x+121=0,判别式为722﹣4×9×121>0, 故所求直线为3x ﹣y ﹣11=0. 故答案为:3x ﹣y ﹣11=0.15.【答案】2e 【解析】 试题分析:()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .考点:利用导数求曲线上某点切线斜率. 16.【答案】2- 【解析】1111]试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值17.【答案】.【解析】解:∵F 是抛物线y 2=4x 的焦点, ∴F (1,0),准线方程x=﹣1, 设M (x 1,y 1),N (x 2,y 2), ∴|MF|+|NF|=x 1+1+x 2+1=6, 解得x 1+x 2=4,∴△MNF 的重心的横坐标为,∴△MNF的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.18.【答案】.【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)曲线为参数)可化为普通方程:(x﹣1)2+y2=1,由可得曲线C1的极坐标方程为ρ=2cosθ,曲线C2的极坐标方程为ρ2(1+sin2θ)=2.(Ⅱ)射线与曲线C1的交点A的极径为,射线与曲线C2的交点B的极径满足,解得,所以.20.【答案】【解析】解:(1)交线围成的四边形EFCG (如图所示). (2)∵平面A 1B 1C 1D 1∥平面ABCD , 平面A 1B 1C 1D 1∩α=EF , 平面ABCD ∩α=GC , ∴EF ∥GC ,同理EG ∥FC . ∴四边形EFCG 为平行四边形, 过E 作EM ⊥D 1F ,垂足为M , ∴EM =BC =10,∵A 1E =4,D 1F =8,∴MF =4. ∴GC =EF =EM2+MF2=102+42=116,∴GB =GC2-BC2=116-100=4(事实上Rt △EFM ≌Rt △CGB ).过C 1作C 1H ∥FE 交EB 1于H ,连接GH ,则四边形EHC 1F 为平行四边形,由题意知,B 1H =EB 1-EH =12-8=4=GB .∴平面α将长方体分成的右边部分由三棱柱EHG -FC 1C 与三棱柱HB 1C 1GBC 两部分组成. 其体积为V 2=V 三棱柱EHG -FC 1C +V 三棱柱HB 1C 1GBC =S △FC 1C ·B 1C 1+S △GBC ·BB 1=12×8×8×10+12×4×10×8=480, ∴平面α将长方体分成的左边部分的体积V 1=V 长方体-V 2=16×10×8-480=800. ∴V1V2=800480=53, ∴其体积比为53(35也可以).21.【答案】【解析】解:(1)证明:h (x )=f (x )+g (x )=log 2+2x ,=log 2(1﹣)+2x ;∵y=1﹣在(1,+∞)上是增函数,故y=log 2(1﹣)在(1,+∞)上是增函数;又∵y=2x 在(1,+∞)上是增函数; ∴h (x )在x ∈(1,+∞)上单调递增;同理可证,h (x )在(﹣∞,﹣1)上单调递增;而h (1.1)=﹣log 221+2.2<0, h (2)=﹣log 23+4>0;故h (x )在(1,+∞)上有且仅有一个零点,同理可证h (x )在(﹣∞,﹣1)上有且仅有一个零点,故函数h (x )有两个零点;(2)由题意,关于x 的方程f (x )=log 2g (x )有两个不相等实数根可化为 1﹣=2ax+1﹣a 在(﹣∞,﹣1)∪(1,+∞)上有两个不相等实数根;故a=;结合函数a=的图象可得,<a <0;即﹣1<a <0.【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题.22.【答案】【解析】【解析】(Ⅰ)()2x a f x -=≤得,22a x a -≤≤+由题意得2042a a -≤⎧⎨≤+⎩,故22a ≤≤,所以2a = …… 5分(Ⅱ)03a ≤≤,∴112a -≤-≤,∴12a -≤,()()2f ax af x ax a a x a ax a ax a -=---=---()()2212ax a ax a a a a a a ≤---=-=-≤()()()2222f x a f x a x a x x a x a a -++=-+≥--==,∴()()()()f x a f x a f ax af x -++≥-.…… 10分23.【答案】【解析】解:(1)当m=0时,f (x )=﹣1<0恒成立,当m ≠0时,若f (x )<0恒成立,则解得﹣4<m <0综上所述m 的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x ∈[1,3],f (x )<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣ 当 m >0时,g (x )是增函数, 所以g (x )max =g (3)=7m ﹣6<0,解得.所以当m=0时,﹣6<0恒成立. 当m <0时,g (x )是减函数. 所以g (x )max =g (1)=m ﹣6<0,解得m <6. 所以m <0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.24.【答案】【解析】解:(Ⅰ)设射线y=x (x ≥0)的倾斜角为α,则tan α=,α∈(0,).∴tanθ=tan(α+)==,∴由解得,∴点A的坐标为(,).(Ⅱ)f(x)=•=3sinθ•sin2x+2cosθ•2cos2x=sin2x+cos2x=sin(2x+)由x∈[0,],可得2x+∈[,],∴sin(2x+)∈[﹣,1],∴函数f(x)的值域为[﹣,].【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题.。
保密★启用前2019—2020学年度第二学期监测高二数学2020.5本试卷共4页,共150分,考试时间120分钟.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设函数()f x x =,则0(1)(1)limx f f x x∆→+∆-=∆A .0B .1C .2D .1-2.若33210n n A A =,则n =A .6B .7C .8D .93.一物体做直线运动,其位移s (单位:m )与时间t (单位:s )的关系是25s t t =-+,则该物体在2t s =时的瞬时速度为 A .3B .7C .6D .14.函数334y x x =-+有A .极大值6,极小值2B .极大值2,极小值6C .极小值1-,极大值2D .极小值2,极大值85.已知函数()f x 与()f x '的图象如图所示,则不等式组()()03f x f x x '<⎧⎨<<⎩解集为A .()0,1B .()1,3C .()1,2D .()1,46.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有不同的选法种数为 A .420B .660C .840D .8807.设01a <<,离散型随机变量X 的分布列是则当a 在2(0,)3内增大时 A .()D X 增大B .()D X 减小C .()D X 先减小后增大 D .()D X 先增大后减小8.已知函数212()x x f x ee mx +-=--在R 上为增函数,则m 的取值范围为A .(,-∞B .)+∞C .(,-∞D .)+∞二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.关于()11a b -的说法,正确的是A .展开式中的二项式系数之和为2048B .展开式中只有第6项的二项式系数最大C .展开式中第6项和第7项的二项式系数最大D .展开式中第6项的系数最大 10.已知函数32()f x x ax bx c =+++,则A .函数()y f x =一定存在最值B .0x R ∃∈,()00f x =C .若0x 是()f x 的极值点,则()00f x '=D .若0x 是()f x 的极小值点,则()f x 在区间()0,x -∞单调递增 11.甲、乙两类水果的质量(单位:kg )分别服从正态分布()211,Nμσ,()222,N μσ,其正态分布的密度曲线如图所示,则下列说法正确的是A .乙类水果的平均质量20.8kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从的正态分布的参数2 1.99σ= 12.已知函数2l ()n f x xx =+,则以下结论正确的是 A .函数()f x 的单调减区间是(0,2) B .函数()y f x x =-有且只有1个零点 C .存在正实数k ,使得()f x kx >成立D .对任意两个正实数1x ,2x ,且12x x >,若()()12f x f x =,则124x x +> 三、填空题:本题共4小题,每小题5分,共20分. 13.曲线2ln y x x =+在点()1,1处的切线方程为______.14.用1,2,3,4,5这5个数字组成的没有重复数字的四位数中,能被5整除的数的个数为______(用数字作答)15.盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色相同外完全相同.从盒中一次随机取出4个球,设X 表示取出的三种颜色球的个数的最大数,则()3P X ==______.16.设函数32()(,,,0)f x ax bx cx a b c R a =++∈≠,若不等式()()2xf x af x '-≤对一切x R ∈恒成立,则a =______,b ca+的取值范围为____.(第一空2分,第二空3分) 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)求下列函数的导数:(1)3()(1cos )(1)f x x x =+-;(2)()21x xf x x =-+. 18.(12分)2020年寒假是特殊的寒假,因为抗击疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为11:13,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.(1)完成22⨯列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;(2)从被调查的对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取3名学生,作线上学习的经验介绍,其中抽取男生的个数为ξ,求出ξ的分布列及期望值.参考公式:附:22()()()()()n ad bc K a b a c b d c d -=++++19.(12分)已知函数l (n )x e af x a x x x=--. (1)当0a =时,求函数()f x 的单调区间;(2)若函数()f x 在1x =处取得极大值,求实数a 的取值范围. 20.(12分)某工厂生产某种型号的农机具零配件,为了预测今年7月份该型号农机具零配件的市场需求量,以合理安排生产,工厂对本年度1月份至6月份该型号农机具零配件的销售量及销售单价进行了调查,销售单价x (单位:元)和销售量y (单位:千件)之间的6组数据如下表所示:(1)根据1至6月份的数据,求y 关于x 的线性回归方程(系数精确到0.01);(2)结合(1)中的线性回归方程,假设该型号农机具零配件的生产成本为每件3元,那么工厂如何制定7月份的销售单价,才能使该月利润达到最大?(计算结果精确到0.1)参考公式:回归直线方程ˆˆˆybx a =+,()()()121ˆnii i nii xx y y b xx ==--=-∑∑参考数据:66211605.82,168.24ii i i i xx y ====∑∑.21.(12分)为保护环境,某市有三家工厂要建造污水处理厂.三家工厂分别位于矩形ABCD 的顶点AB 及CD 的中点P 处,已知20km AB =,10km CB =按照规划要求污水处理厂建在矩形ABCD 的区域上(含边界),且与A ,B 等距离的一点O 处,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km .(1)按下列要求写出函数关系式:①设()BAO rad θ∠=,将y 表示成θ的函数关系式; ②设()km OP x =,将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.22.(12分)已知函数()()()221ln f x a x x a =--++. (1)当1a =时,讨论函数()f x 的单调性;(2)若函数()f x 在区间1(0,)2上无零点,求a 的取值范围高二数学试题参考答案2020.5一、单项选择题:本题共8小题,每小题5分,共40分. 1-4BCDA5-8BBDC二、多项选择题:本题共4小题,每小题5分,共20分. 9.AC10.BC11.ABC12.ABD三、填空题:本题共4小题,每小题5分,共20分. 13.320x y --=14.2415.136316.3[1,)6-+∞四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)33()(1cos )(1)(1cos )(1)f x x x x x '''=+-++-32sin (1)3(1cos )x x x x =---+322sin sin 33cos x x x x x x =-+--.(2)1()21211x x x f x x x =-=--++, 则21()2ln 2(1)x f x x '=-+. 18.解:(1)因为男生人数为:11120551113⨯=+,所以女生人数为1205565-=, 于是可完成2×2列联表,如下:根据列联表中的数据,得到2K 的观测值22120(30152550)960 6.713 6.63555658040143k ⨯⨯-⨯==≈>⨯⨯⨯,所以有99%的把握认为对“线上教育是否满意与性别有关”.(2)由(1)可知男生抽3人,女生抽5人,依题可知ξ的可能取值为0,1,2,3,并且ξ服从超几何分布,33538()(0,1,2,3)k k C C P k k C ξ-===,即 35385((0)28C P C ξ===,21533815(1)28C C P C ξ=== 12533815(2)56C C P C ξ===,33381(3)56C P C ξ===. 可得分布列为可得5151519()0123282856568E ξ=⨯+⨯+⨯+⨯=. 19.解:(1)()f x 的定域为()0,+∞,当0a =时,()x e f x x =,2(1)()x e x f x x -'=令()0f x >得1x >,令()0f x '<得, 所以()f x 的增区间为(1,)+∞,减区间为()0,1.(2)2()(1)()x e a x f x x --'=①当a e ≤时,若,()1x ∈+∞,则0xxe a e e ≥-->,此时2()(1)()0x e a x f x x--'=>,()f x 在(1,)+∞单调递增, 所以函数()f x 在1x =处不可能取得极大值,a e ≤不合题意. ②当a e >时,ln 1a >函数()f x 在1x =处取得极大值. 综上可知,a 的取值范围是(),e +∞.20.解:(1)由条件知,10x =,176y =, 217168.24610886ˆ0.3060.88610299b-⨯⨯==-≈--⨯,从而1788ˆ()10 5.866291a=--⨯≈, 故y 关于x 的线性回归方程为ˆ0.30 5.86yx =-+. (2)假设7月份的销售单价为x 元,则由(1)可知,7月份零配件销量为ˆ0.30 5.86yx =-+, 故7月份的利润2(0.3 5.86)(3)0.3 6.7617.5x x x x ω=-+-=-+-, 其对称轴33.811.33x =≈, 故7月份销售单价为11.3元时,该月利润才能达到最大.21.解:(1)①由条件知PQ 垂直平分AB ,若()BAO rad θ∠=,则10cos cos AQ OA θθ==,故10cos OB θ=, 又1010tan OP θ=-, 所以10101010tan cos cos y OA OB OP θθθ=++=++-, 所求函数关系式为2010sin 10(0)cos 4y θπθθ-=+<≤.②若()km OP x =,则10OQ x =-,所OA OB ===所求函数关系式为10)y x x =+<≤ (2)选择函数模型①,210cos cos (2010sin )(sin )cos y θθθθθ-⋅---'=210(2sin 1)cos θθ-=令0y '=得1sin 2θ=,所以6πθ=, 当(0,)6πθ∈时,'0y <,y 是θ的减函数;当(,)64ππθ∈时,0y '>,y 是θ的增函数;所以当6πθ=时,min 10y =+这时点位于线段AB 的中垂线上,且距离AB 边km 3处. (若选择②请自行解答)22.(12分)解:(1)当1a =时,()12ln f x x x =--,定义域为(0,)+∞,则2()1f x x'=-, 令()0f x '>,得2x >,令()0f x '<,得02x <<,∴()f x 的单调递减区间为()0,2,单调递增区间为(2,)+∞ (2)∵函数()f x 在区间1(0,)2上无零点,∴在区间1(0,)2上,()0f x >恒成立或()0f x <恒成立()()()221ln f x a x x a =--++()()212ln a x x =---,111()(2)2(1ln )222f a a =-⋅-++ 1(4ln 22)2a =+-. ①当1()02f ≥时,24ln2a ≥-,在区间1(0,)2,()(2)(1)2(4ln2)()ln 12ln x f x a x x x =---≥---, 记()(4ln2)(1)ln g x x x =---,111()(4ln 2)(1)2ln 0222g =---= 则2()4ln 2g x x'=-, 在区间1(0,)2上,2()4ln 24ln 240g x x'=-<-< ∴在区间1(0,)2上,()g x 单调递减,∴1()()02g x g >=即()()4ln212ln 0x x --->,∴()(4ln2)(1)0l 2n x x f x ≥--->,即()0f x >在区间1(0,)2上恒成立,满足题意; ②当1()02f <时4ln22a <+, 24ln 2110162a e e --<<=< 22222ln ()(2)2(1)(2)(1)a a a f e a e e a a e ----=--++=-+. ∵24ln20a ->>,210a e-+>, ∴()()22(2)10a a f e a e--=-+>, ∴()f x 在21(,)2a e -上有零点, 即函数()f x 在区间1(0,)2上有零点,不符合题意综上所述,24ln2a ≥-.。