当前位置:文档之家› 杂化轨道理论(图解)

杂化轨道理论(图解)

杂化轨道理论(图解)
杂化轨道理论(图解)

杂化轨道理论(图解)

杂化轨道理论(图解)一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数101246含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特和美国的马利肯两位化学家提出分子轨道理论,简称MO理论。马利肯由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz 2 dx 2-y 2 dxy dxz dyz 二、共价键理论与分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)与1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。她们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总就是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k ?u`veilent]bond[b ?nd])。用黑点代表价电子(即最外层s,p 轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l ?un ]pair[pε?]electron[i`lektr ?n])。Lewis 结构式的书写规则又称八隅规则(即8电子结构)。 评价 贡献:Lewis 共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与 PCl 5 SF 6 BeCl 2 BF 3 NO,NO 2 … 中心原子周围价电子数 10 12 4 6 含奇数价电子的分子 … ③、不能解释某些分子的性质。含有未成对电子的分子通常就是顺磁性的(即它们在磁场中表现出磁性)例如O 2。 2、1927年德国的海特勒Heitler 与美籍德国人的伦敦London 两位化学家建立了现代价键理论,简称VB 理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F 、Hund)与美国的马利肯(R 、S 、Mulliken)两位化学家提出分子轨道理论,简称MO 理论。马利肯(R 、S 、Mulliken)由于建立与发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO 法与VB 法就是两种根本不同的物理方法;都就是电子运动状态的近似描述;在一定条

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子

(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis 结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外很多。 PCl 5SF6BeCl 2 BF3NO,NO2… 中心原子周围价电子数10 12 4 6 含奇数价电子 的分子 … ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO 理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件下它们具有等价性。 O2 :2 O原子电子组态 1s2 2s2 2p4 →O2,8×2=16个电子,外层电子:12个电子,

图解杂化轨道理论

一.杂化轨道理论的基本要点 (1)概念:原子在形成分子时,为了增强成键能力,同一原子中能量相近的不同类型(s 、p 、d…)的几个原子轨道可以相互叠加进行重新组合,形成能量、形状和方向与原轨道不同的新的原子轨道。这种原子轨道重新组合的过程称为原子轨道的杂化,所形成的新的原子轨道称为杂化轨道。 (2)注意事项: ①、只有在形成分子的过程中,中心原子能量相近的原子轨道才能进行杂化,孤立的原子不可能发生杂化。②、只有能量相近的轨道才能互相杂化。常见的有:ns np nd ,(n-1)d ns np ; ③、杂化前后,总能量不变。但杂化轨道在成键时更有利于轨道间的重叠,即杂化轨道的成键能力比未杂化的原子轨道的成键能力增强,形成的化学键的键能大。这是由于杂化后轨道的形状发生了变化,电子云分布集中在某一方向上,成键时轨道重叠程度增大,成键能力增强。 ④、杂化所形成的杂化轨道的数目等于参加杂化的原子轨道的数目,亦即杂化前后,原子轨道的总数不变。⑤、杂化轨道的空间构型取决于中心原子的杂化类型。不同类型的杂化,杂化轨道的空间取向不同,即一定数目和一定类型的原子轨道间杂化所得到的杂化轨道具有确定的空间几何构型,由此形成的共价键和共价分子相应地具有确定的几何构型。 什么叫杂化?同一原子的能量相近的原有的原子轨道“混杂”起来,重新组合形成新轨道的过程,叫做杂化。什么叫杂化轨道?新组合的原子轨道叫做杂化轨道。 为什么要杂化?杂化轨道形成的化学键的强度更大,体系的能量更低。杂化的动力:受周围原子的影响。 为什么杂化后成键,体系的能量降低?杂化轨道在一个方向上更集中,便于轨道最大重叠。 杂化轨道的构型决定了分子的几何构型:杂化轨道有利于形成σ键,但不能形成π键。由于分子的空间几何构型是以σ键为骨架,故杂化轨道的构型就决定了其分子的几何构型。 二.最常见的杂化轨道类型简介 杂化轨道基本类型sp sp 2 sp 3 参加杂化的原子轨道 1个s 和1个p 1个s 和2个p 1个s 和3个p 杂化轨道数目2个sp 杂化轨道 3个sp 2杂化轨道 4个sp 3杂化轨道 每个杂化轨道的成分21s ,2 1p 31s ,3 2p 41s ,4 3p 杂化轨道间的夹角 180° 120°109°28′ 课题:杂化轨道理论解读 总第( )期 命题人:

杂化轨道理论(高中)

高中杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz 二、共价键理论和分子结构 价键法(VB法)价键理论一: 1、要点: ⑴、共价键的形成条件:①、先决条件:原子具有未成对电子;②、配对电子参与成键的原子轨道要满足对称匹配、能量相近以及最大重叠的原则;③、两原子具有成单的自旋相反的电子配对,服从保里不相容原理。 ⑵、共价键的本质:是由于原子相互接近时轨道重叠,原子间通过共用自旋相反的电子使能量降低而成键。 ⑶、共价键的特征:①、饱和性,一个原子有几个未成对电子(包括激发后形成的未成对电子),便和几个自旋相反的电子配对成键;而未成对电子数是有限的,故形成化学键的数目是有限的。②、根据原子轨道最大重叠原理,原子轨道沿其角度分布最大值方向重叠,即共价键具有一定的方向性。 ⑷、共价键的类型:单键、双键和叁键。 ①、σ键和π键。 ⅰ、σ键:沿键轴方向重叠,呈圆柱形对称,称为σ轨道,生成的键称为σ键σ是希腊字母,相当于英文的s,是对称Symmetry[`simitri]这个字的第一个字母)。 σ键形成的方式: ⅱ、π键:两个p轨道彼此平行地重叠起来,轨道的对称面是通过键轴的平面,这个对称面就叫节面,这样的轨道称为π轨道,生成的键称为π键(π相当于英文的p,是平行parallel[`p?r?lel]的第一个字母)。 π键的形成过程: ,

σ键和π键的比较 σ键 (共价键中都存在σ键) π键 (只存在不饱和共价键中) 重 叠 方 式 (成建方向) 沿两电子云(原子轨道)的键轴方向以 “头碰头”的方式遵循原子轨道最大程度重叠原理进行重叠 两互相平行的电子云(原子轨道)以“肩并肩”的方式遵循原子轨道最大程度重叠原理进行重叠 重叠程度 重叠程度较大 重叠程度较小 电子云形状 共价键电子云(重叠部分)呈轴对称 共价键电子云(重叠部分)呈镜像对称 牢 固 程 度 强度较大,键能大,较牢固,不易断裂 强度较小,键能较小,不很牢固,易断裂 化学活泼性 不活泼,比π键稳定 活泼,易发生化学反应 类 型 s-s 、s-p 、、p-p 、 s- SP 杂化轨道、s- SP 2 杂化轨道、s- SP 3 杂化轨道、杂化轨道间 p -p π键,、p -p 大π键 是否能旋转 可绕键轴旋转 不可旋转, 存在 的规 律 共价单键是σ键,共价双键有一个σ键,有一个π键;共价叁键有一个σ键,有两个π键。 可单独存在任何共价键中 不单独存在,与σ键共存 概 念 含有未成对(单)电子的原子轨道沿两电叠子云(原子轨道)的键轴方向以“头碰头”的方式遵循原子轨道最大程度重叠原理进行重所形成的具有沿键呈轴对称特征的共价键 含有未成对(单)电子的两个互相平行的电子云(原子轨道)以“肩并肩”的方式 遵循原子轨道最大程度重叠原理进行重叠 所形成的具有镜像对称特征的共价键 2、价键理论二:杂化轨道理论,价键理论简明地阐明了共价键的形成过程和本质,成功解释了共价键的方向性和饱和性,但在解释一些分子的空间结构方面却遇到了困难。例如CH 4分子的形成,按照价键理论,C 原子只有两个未成对的电子,只能与两个H 原子形成两个共价键,而且键角应该大约为90°。但这与实验事实不符,因为C 与H 可形成CH 4分子,其空间构型为正四面体,∠HCH = 109°28′。为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林和斯莱脱(Slater )在电子配对理论的基础上,提出了杂化轨道理论(hybrid orbital theory),丰富和发展了现代价键理论。 ⑴、杂化轨道理论的基本要点 原子在形成分子时,为了增强成键能力,同一原子中能量相近的不同类型(s 、p 、d …) 的几个原子轨道可以相互叠加进行重新组合,形成能量、形状和方向与原轨道不同的新的原子轨道。这种原子轨道重新组合的过程称为原子轨道的杂化,所形成的新的原子轨道称为杂化轨道。 注意:①、只有在形成分子的过程中,中心原子能量相近的原子轨道才能进行杂化,孤立的原子不可能发生杂化。②、只有能量相近的轨道才能互相杂化。常见的有:ns np nd , (n-1)d ns np ;③、杂化前后,总能量不变。但杂化轨道在成键时更有利于轨道间的重叠,即杂化轨道的成键能力比未杂化的原子轨道的成键能力增强,形成的化学键的键能大。这是 健 型 项 目

杂化轨道理论

杂化轨道理论 在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫做杂化轨道。 1基本介绍 杂化轨道理论(hybrid orbital theory)是1931年由鲍林(Pauling L)等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但是它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。 核外电子在一般状态下总是处于一种较为稳定的状态,即基态。而在某些外加作用下,电子也是可以吸收能量变为一个较活跃的状态,即激发态。在形成分子的过程中,由于原子间的相互影响,单个原子中,具有能量相近的两个能级中,具有能量较低的能级的一个或多个电子会激发而变为激发态,进入能量较高的能级中去,即所谓的跃迁现象,从而新形成了一个或多个能量较高的能级。此时,这一个或多个原来处于较低能量的能级的电子所具有的能量增加到与原来能量较高的能级中的电子相同。这样,这些电子的轨道便混杂在一起,这便是杂化,而这些电子的状态也就是所谓的杂化态。 用化学语言讲,杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心电子所用的电子轨道不是原来纯粹的s轨道或p轨道,而是若干不同类型、能量相近的电子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的电子轨道——杂化轨道,以满足化学结合的需要。这一过程称为电子轨道的杂化。 2基本要点 只有最外电子层中不同能级中的电子可以进行轨道杂化,且在第一层的两个电子不参与反应。 不同能级中的电子在进行轨道杂化时,电子会从能量低的层跃迁到能量高的层,并且杂化以后的各电子轨道能量相等又高于原来的能量较低的能级的能量而低于原来能量较高的能级的能量。当然的,有几个原子轨道参加杂化,杂化后就生成几个杂化轨道。 杂化轨道成键时,要满足原子轨道最大重叠原理。 杂化后的电子轨道与原来相比在角度分布上更加集中,从而使它在与其他原子的原子轨道成键时重叠的程度更大,形成的共价键更加牢固。 3理论说明 (1)s-p型杂化 只有s轨道和p轨道参与的杂化,主要有以下三种类型:sp1杂化,sp2杂化,sp3杂化。 sp杂化轨道角度分布及其空间伸展方向示意图 (2)s-p-d型杂化 ns轨道,np轨道,nd轨道一起参与杂化称为s-p-d型杂化,主要有以下几种类型: 此外还有以内层的(n-1)d轨道,ns轨道,np轨道一起参与的杂化方式,它主要存在于

高中化学人教版选修3教案:杂化轨道理论简介+配合物理论简介 Word版含答案

第2课时杂化轨道理论简介 配合物理论简介 1.了解杂化轨道理论的基本内容。 2.能根据有关理论判断简单分子或离子的立体构型。(重点) 3.了解配位键的特点及配合物理论,能说明简单配合物的成键情况。(难点) 杂化轨道理论简介 1.用杂化轨道理论解释甲烷分子的形成 在形成CH4分子时,碳原子的一个2s轨道和三个2p轨道发生混杂,形成四个能量相等的sp3杂化轨道。四个sp3杂化轨道分别与四个H原子的1s轨道重叠成键形成CH4分子,所以四个C—H键是等同的。 可表示为 2.杂化轨道的类型与分子立体构型的关系 杂化类型sp sp2sp3 参与杂化的原子轨道及数目n s111 n p123 杂化轨道数目234 杂化轨道间的夹角180°120°109°28′

杂化轨道示意图 立体构型直线形平面三角形正四面体形 实例BeCl2、CO2、 CS2 BCl3、BF3、BBr3CF4、SiCl4、SiH4 [思考探究] 在形成多原子分子时,中心原子价电子层上的某些能量相近的原子轨道发生混杂,重新组合成一组新的轨道的过程,叫做轨道的杂化。双原子分子中,不存在杂化过程。例如sp杂化、sp2杂化的过程如下: 问题思考: (1)观察上述杂化过程,分析原子轨道杂化后,数量和能量有什么变化? 【提示】杂化轨道与参与杂化的原子轨道数目相同,但能量不同。s轨道与p轨道的能量不同,杂化后,形成的一组杂化轨道能量相同。 (2)2s轨道与3p轨道能否形成sp2杂化轨道? 【提示】不能。只有能量相近的原子轨道才能形成杂化轨道。2s与3p不在同一能级,能量相差较大。 (3)用杂化轨道理论解释NH3、H2O的立体构型? 【提示】NH3分子中N原子的价电子排布式为2s22p3。1个2s轨道和3个2p经杂化后形成4个sp3杂化轨道,其中3个杂化轨道中各有1个未成对电子,分别与H原子的1s轨道形成共价键,另1个杂化轨道中是成对电子,不与H原子形成共价键,sp3杂化轨道为正四面体形,但由于孤电子对的排斥作用,使3个N—H键的键角变小,成为三角锥形的立体构型。 H2O分子中O原子的价电子排布式为2s22p4。1个2s轨道和3个2p轨道经

杂化轨道理论(图解)

杂化轨道理论(图解) 、原子轨道角度分布图 rpl 经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯 (Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层 结构特别稳定这一事实,提出各元素原子总是力 图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯 塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子 对而形成的化学键称为共价键(covalent [k?u'veilent]bond[b ?nd])。用黑点代表价电子(即最外层s, P轨 道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀 有气体原子的电子结构。为了方 便,常用短线代替黑点,用“一”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键, 表示3对电子形成的共价叁键。原子单独拥有的未成键的电 子对叫做孤对电子(lone[l ?un]pair[p rgr 41;41 二 二、共价键理论和分子结构 ㈠、共价键理论简介 41丄 41'龍H —Ifii V y 4P HII/—I Px I dx2-y2I I dxy | | dxz | | dyz | ■ 1 if t 同闻*

£?lectron[i'lektr ?n])。 Lewis结构式的书写规则又称八隅规则(即8电子结构)评价贡献:Lewis 共价概念初步解释了一些简单非金属原 子间形成共价分子的过程及其与离子键的区别。局限性:①、 未能阐明共价键的本质和特性;②、八隅规则的例外很多。 ③、不能解释某些分子的性质。含有未成对电子的分子通常 是顺磁性的(即它们在磁场中表现出磁性)例如 2、1927年德国的海特勒Heitler和美籍德国人的伦敦 London两位化学家建立了现代价键理论,简称VB理论(电 子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年一1932年,德国的洪特和美国的马利肯两位化 学家提出分子轨道理论,简称M0理论。马利肯由于建立和 发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运 动状态的近似描述;在一定条件下它们具有等价性。 ? O2 :2 O原子电子组态1S22S2 2p47O2,8X 2=1个电子, 外层电子:12个电子, ? KK( (T 2S)2((T*2S)2((T 2pz)2 ( n 2px)2( n 2py)2( n *2pX)1 ( n

原子轨道杂化理论

原子轨道杂化理论 原子轨道杂化理论 高二论文联盟下学期选修的《物质结构与性质》一书中对杂化轨道理论的介绍比较简单,也比较模糊,学生理解起来比较困难,我根据所学的知识以及教学中的经验对这部分内容做以下总结: 1.原子轨道为什么需要杂化 (1)杂化的原因:原子在形成分子时能量相近的不同原子轨道相互影响,形成能量相近的新轨道,增强了成键的能力和分子的稳定性。 (2)杂化后轨道的变化:在成键过程中,由于原子间的相互影响,同一原子中几个能量相近的不同类型的原子轨道混合,重新分配能量和确定轨道空间伸展方向,组成数目相等的新的轨道,这个过程即为杂化。杂化的结果是轨道成分变了,轨道的能量变了,轨道的形状也变了。这些新轨道的能量是等同的,形状是完全相同的。因此杂化轨道比原来的轨道成键能力强,使生成的分子更稳定。 (3)杂化轨道成键能力强的原因:由于成键原子轨道杂化后,轨道角度分布图的形状发生了变化,杂化轨道在某些方向上的角度分布比未杂化的p轨道和s轨道的角度分布大得多,它的大头在成键时与原来的轨道相比,能够形成更大的重叠,因此杂化轨道比原有的原子轨道成键能力更强。毕业论文 2.原子轨道为什么可以杂化 并非所有的原子轨道都可以杂化,只有能量相近的外层原子轨道

才有可能参与杂化。孤立的原子本身不会杂化,只有当原子相互结合的过程中才会杂化,而且在双原子分子中不存在杂化现象。 3.杂化轨道的类型 按参加杂化的原子轨道种类,轨道的杂化有sp和spd两种主要类型。高中阶段我们只掌握sp型杂化。按参加杂化的s轨道和p轨道的数目sp型杂化分为sp1、sp2、sp3三种杂化。 4.杂化过程 以CH4分子的形成为例。 基态C原子的外层电子构型为2s22p1x2p1y。在与H原子结合时,2s上的一个电子被激发到2pz轨道上,C原子以激发态21S2p1x2p1y2p1z参与化学结合。当然,电子从2s激发到2p上需要能量,但由于可以多生成两个共价键,放出更多的能量而得到补偿。 在成键之前,激发态C原子的四个单电子分占的轨道2s、2px、2py、2pz会互相“混杂”,线性组合成毕业论文

有机化学-杂化轨道理论

杂化轨道理论 价键理论简明地阐明了共价键的形成过程和本质,成功解释了共价键的方向性和饱和性,但在解释一些分子的空间结构方面却遇到了困难。例如CH 4分子的形成,按照价键理论,C 原子只有两个未成对的电子,只能与两个H 原子形成两个共价键,而且键角应该大约为90°。但这与实验事实不符,因为C 与H 可形成CH 4分子,其空间构型为正四面体,∠HCH = 109.5°。为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林提出了杂化轨道理论(hybrid orbital theory ),丰富和发展了现代价键理论。1953年,我国化学家唐敖庆等统一处理了s-p-d-f 轨道杂化,提出了杂化轨道的一般方法,进一步丰富了杂化理论的内容。 1.杂化轨道理论的基本要点 杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心原子所用的原子轨道(即波函数)不是原来纯粹的s 轨道或p 轨道,而是若干不同类型、能量相近的原子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的原子轨道——杂化轨道(hybrid orbital),以满足化学结合的需要。这一过程称为原子轨道的杂化(hybridization )。 下面以CH 4分子的形成为例加以说明。 基态C 原子的外层电子构型为2s 22p x 12p y 1。在与H 原子结合时,2s 上的一个电子被激发到2p z 轨道上,C 原子以激发态2s 12p x 12p y 12p z 1参与化学结合。当然,电子从2s 激发到2p 上需要能量,但由于可多生成二个共价键,放出更多的能量而得到补偿。 在成键之前,激发态C 原子的四个单电子分占的 轨道2s 、2p x 、2p y 、2p z 会互相“混杂”,线性组合成 四个新的完全等价的杂化轨道。此杂化轨道由一个s 轨道和三个p 轨道杂化而成,故称为sp 3杂化轨道。 经杂化后的轨道一头大,一头小,其方向指向正四面 体的四个顶角,能量不同于原来的原子轨道(图1.6)。 形成的四个sp 3杂化轨道与四个H 原子的1s 原子轨道重叠,形成(sp 3-s )σ键,生成CH 4分子。 杂化轨道成键时,同样要满足原子轨道最大重叠原理。由于杂化轨道的电子云分布更为集中,杂化轨道的成键能力比未杂化的各原子轨道的成键能力强,故形成CH 4分子后体系能量降低,分子的稳定性增强。 CH 4分子形成的整个杂化过程可示意如下: 化合物的空间构型是由满足原子轨道最大重叠 的方向所决定的。在CH 4分子中,四个sp 3杂化轨道 图1.6 sp 3杂化轨道示意图 图1.7 CH 4 分子的空间结构 激发 杂化 sp 3杂化轨道 4个电子能量相等 2s 2 p 基态C 原子 2s 2p 1个2s 电子激发 到2p 轨道 与4 个H 原子的1s 电子结合 sp 3-s 重叠成键

相关主题
文本预览
相关文档 最新文档