当前位置:文档之家› 薄膜面板各部分组成材质

薄膜面板各部分组成材质

薄膜面板各部分组成材质
薄膜面板各部分组成材质

薄膜面板各部分组成材质

什么叫薄膜面板通称的PVC面板薄膜面板名称常见薄膜开关面板各部分组成材质一、面板层二、垫胶层三、控制电路上层和下层四、夹胶层五、背面胶层什么叫薄膜面板通称的PVC面板薄膜面板名称常见薄膜开关面板各部分组成材质一、面板层二、垫胶层三、控制电路上层和下层四、夹胶层五、背面胶层

薄膜面板是在PVC、PC、PET等软性塑胶材料丝印上既定的图形、文字说明等并配以不同材质的双面胶

制作而成的用于起标识或保护作用的塑胶制品。

薄膜面板采用不同的材料,决定了它的价格与性能,采用丝印工艺制作出来的薄膜面板,最大的特点在于:

1,字清晰直观的图形和文字,并能适应不同的平面和弯曲平面。

2,不同材料的选择,可使PVC、PC、PET等材料。

3,薄膜面板具有:防水、防变形、防污染、防高温、粘性极强等特点。

一、面板层

面板层一般在低于0.25MM的PET、PC等无色透光片材丝印上精美图案和文字制作而成,因面板层最主

要的作用在于起标识和按键作用,所以选用材料必须具有高透明度、高油墨附着力、高弹性、防折性等特点。

二、垫胶层

垫胶层最主要的作用是将面板层与电路层紧密相连,以达到密封和连接的效果,此层一般要求厚度在

0.02---0.05MM之间,具有高强的粘性和防老化性;在生产中,一般选用专用的薄膜开关双面胶,有些薄膜开关要求能防水防高温,因此垫胶层也必须根据需要而使用不同性质的材料。

三、控制电路上层和下层

此层均采用性能良好的聚酯薄膜(PET)作为开关电路图形的载体并在其上用特殊的工艺丝印上银浆碳浆

或金浆使其具有导电性能,其厚度一般在0.05--0.175MM以内,最常见的是用0.125MM PET

沃特弗薄膜控制电路上下层SMT贴片(8张)

四、夹胶层

它是处于上电路与下电路层之间并起密封和连接的作用,一般采用PET双面胶,其厚度有0.05--0.2MM不等; 在选择此层材质的时候应充分考虑产品的整体厚度,绝缘性,电路按键包手感和密封性。

五、背面胶层

背胶的采用与薄膜开关面板与何种材质相粘贴紧密相关,比较常采用的有普通双面胶、3M胶、防水胶等

在业界,我们把薄膜面板通称为薄膜开关面板,其实,在不同的行业中,薄膜开关面板有不同的叫法,比较常见的有以下几种:

1)薄膜开关

2)薄膜轻触键盘

3)贴纸

4)面膜

5)导电线路

6)按键开关

7)面贴

8)触摸开关等。

相关搜索:薄膜面板不透明薄膜面板本公司主营产品请参考产品分类,上面有具体的一些产品介绍,方便您了解我们的产品,如有需求请来电薄膜面板https://www.doczj.com/doc/f72415643.html,

薄膜面板开关按键技术资料

薄膜面板开关按键技术资料 薄膜开关、薄膜面板是近年来国际流行的一种集装饰性与功能性为一体的电子整机产品的新的操纵系统,已成为我国电子产品升级换代、出口产品不可缺少的配套部件。 薄膜开关、面板集开关按键、面板功能文字、标记、商标、透明窗及显示于一体,并且采用多层整体密封结构。因此它具有耐磨擦、防水、防尘、防有害气体、寿命长、性能稳定等特点。为了整机的整洁,面板可以擦洗,字符不受损伤,色彩丰富、保新性好,安装方便。不仅如此,薄膜开关、面板的应用,更能充分体现产品功能与色彩独具匠心的构思,以提高产品的外观质量和增加产品的时代气息。 薄膜开关、面板已广泛用于智能化电子测量仪器、医疗仪器计算机控制、数控机床、电子衡器、邮电通讯、复印机、电冰箱、微波炉、电风扇、洗衣机、电子游戏机等各类工业及家用电器产品。 薄膜开关

薄膜面板

薄膜面板 薄膜面板是一种由弹性薄膜(PVC/PC/PET)加工而成的具有一定功能字符指示的装饰性面板,具有防水、防尘、耐摩擦、不褪色等优良特点,目前广泛用于家用电器、通讯设备、仪

器仪表、工业控制等领域。 薄膜面板的印刷工艺要分为正面和反面印刷,分别应用于不同材质和类型的薄膜面板上。大致可以分为平面类和压鼓类。 平面类薄膜面板是最简单的面板类型,主要是用不同颜色的文字、线条、色块对各个功能部位加以指示或加以区分,用户可以根据自身的需要来选择不同的薄膜材料及双面胶。 压鼓类薄膜面板是在平面型薄膜面板的基础上新开发出的一种较为美观而且实用的面板。它的制作流程是,是在普通面板的基础上,通过一种压制模具,将面板经过热压后使按键部位微微凸起形成立体按键。这种立体键不仅能准确地给定键体的围,提高辨认速度,使操作者的触觉比较敏感,同时还增进了产品外观的装饰效果。 制作面板的薄膜应当具备哪些条件? 面板薄膜是将彩色油墨丝印至透明高分子聚合物背面,一旦丝印完成并切割成形,此层就成为彩色面膜层。面膜层为薄膜开关的组成部分,它能清楚地显示开关的功能、显示颜色、面膜类型以及开关的操作位置,它还能起保护作用。 作为薄膜开关的面板,它主要担负着产品外观的装饰与防护作用,因此用于制作面板的薄膜,至少应具备以下条件:①良好的外观:指制作面板的薄膜表面平整、光泽一致,没有机械性损伤、划痕、夹杂物及色斑等表面缺陷。②较好的耐候性:面板层是薄膜开关曝露在自然环境中的表面层,其面板材料要能在一定自然环境条件下,不变形、开裂、老化和变色等。③较好的耐化学性:面板层将有可能触及不同的化学药品,但对常见的大多数化学品而言,如醇类、醚类、矿物油类应有一定的耐受能力。④尺寸稳定性好:要求制作面板的薄膜,在一定的温度围(一般为-40℃~55℃)尺寸尺寸无明显变化。⑤弹性要求:要求面板层薄具有一定回弱性能,同时,弹性变形要小,可以用材料的延伸率判断,一般来说延伸率大,弹性变形量也大,加弹性能就差。根据上述要求,常用于面板的薄膜通常有聚碳酸酯(PC)、聚氯乙烯(PE)、聚酯及聚胺酯等几种薄膜。 如何选择薄膜面板的用材品种? 适合于制作面板层的薄膜材料,按照其种类通常可以分为PC、PVC、PET三种;按照其表面状态又可以分为砂面(半透3明膜)与光面(透明膜)。 PC材料的物理特性与化学特性的综合指标较好,其适应的油墨也较广泛,是薄膜开关 面板层应用最为普遍的材料。PC材料有砂面与光面之区分,选择砂面状材料的理由是因为

各种薄膜的区别和应用

| PC、PET、PMMA、PI、PP等膜片材特性及应用 一、PC薄膜 1. 特性 一种无定型、无臭、无毒、高度透明的无色或微黄色热塑性工程塑料,具有优良的物理机械性能,尤其是耐冲击性优异,拉伸强度、弯曲强度、压缩强度高、蠕变性小、尺寸稳定;具有良好的耐热性和耐低温性,在较宽的温度范围内具有稳定的力学性能、尺寸稳定性、电性能和阻燃性。 使用温度:-30~120℃,厚度:0.07~1.0mm,表面效果:光面、沙面、拉丝面 2. 适用范围:艾柯特胶带阻燃PC薄膜广泛用于电子元器件、电器外壳、开关面板、接线盒及充电器外壳、汽车仪器仪表及有阻燃要求的面板印刷等。印刷级磨砂PC薄膜适用于特种印刷、头盔、标牌、铭板、防护罩等。防刮花PC薄膜应用于手机、MP3、MP4、DVD、背光源等电子产品的视窗镜片。 二、PET薄膜 1. 特性 PET膜又名耐高温聚酯薄膜。具有优异的物理性能、化学性能及尺寸稳定性、透明性、可回收性。机械性能优良,其强韧性是所有热塑性塑料中最好的,抗张强度和抗冲击强度比一般薄膜高得多,且挺力好,尺寸稳定,还具有优良的耐热、耐寒性和良好的耐化学药品性和耐油性。 使用温度:-60~120℃,厚度:0.125mm-0.35mm,表面效果:光面、沙面、拉丝面 2. 适用范围:艾柯特胶带PET薄膜分为:PET热收缩膜、PET抗静电膜、PET高光亮膜、PET反光膜、化学涂布膜等,其中化学涂布膜主要是为了提高PET薄膜的表面性能,用丙烯酸乳液涂布可提高PET的印刷适性,用聚氨酯水溶液涂布能加强镀铝层与PET基膜的结合力;PET高光亮膜因其优异的机械性能和光学性能主要应用于高档真空镀铝产品和激光防伪基膜;PET反光膜因其优良的光学性能以及耐老化、热稳定好等特点,主要应用于反光广告牌、交通反光标识和工业安全标志等。 三、PMMA薄膜 1. 特性 PMMA膜又名聚甲基丙烯酸甲酯薄膜,无毒环保,具有良好的化学稳定性和耐候性。良好的综合力学性能,在通用塑料中居前列,而且PMMA树脂在破碎时不易产生尖锐的碎片。美国、日本等国家和地区已在法律中作出强制性规定,中小学及幼儿园建筑用玻璃必须采用PMMA树脂。 使用温度:-30~80℃,厚度:0.5mm-8mm,表面效果:光面、沙面、拉丝面 2. 适用范围:艾柯特胶带PMMA薄膜应用范围非常广,已广泛应用汽车工业(信号灯设备、仪表盘等)、医药行业(储血容器等)、工业应用(影碟、灯光散射器)、电子产品的按键(特别是透明的)、日用消费品(饮料杯、文具等)等。同时因其优异的光学特性,白光的穿透性高达92%。PMMA制品具有很低的双折射,特别适合制作影碟和高级光学镜片等。 四、PI薄膜 1. 特性 PI薄膜又称聚酰亚胺薄膜,是一种新型的耐高温有机聚合物薄膜,它是目前世界上性能最好的薄膜类绝缘材料,具有优良的力学性能、电性能、化学稳定性以及很高的抗辐射性能、耐高温和耐低温性能。

高分子膜材料的制备方法

高分子膜材料的制备 方法 xxx级 xxx专业xxx班 学号:xxxxxxx xxx

高分子膜材料的制备方法 xxx (xxxxxxxxxxx,xx) 摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。 关键词:膜分离,膜材料,膜制备方法 1.引言 膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。 2.膜材料的制备方法

2.1 浸没沉淀相转化法 1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。所谓相转化法制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。 2.1.1 浸没沉淀制膜工艺 目前所使用的膜大部分均是采用浸没沉淀法制备的相转化膜。在浸没沉淀相转化法制膜过程中,聚合物溶液先流延于增强材料上或从喷丝口挤出,而后迅速浸入非溶剂浴中,溶剂扩散进入凝固浴(J2),而非溶剂扩散到刮成的薄膜内(J1),经过一段时间后,溶剂和非溶剂之间的交换达到一定程度,聚合物溶液变成热力学不稳定溶液,发生聚合物溶液的液-液相分离或液-固相分离(结晶作用),成为两相,聚合物富相和聚合物贫相,聚合物富相在分相后不久就固化构成膜的主体,贫相则形成所谓的孔。 浸入沉淀法至少涉及聚合物/溶剂/非溶剂3个组分,为适应不同应用过程的要求,又常常需要添加非溶剂、添加剂来调整铸膜液的配方以及改变制膜的其他工艺条件,从而得到不同的结构形态和性能的膜。所制成的膜可以分为两种构型:平板膜和管式膜。平板膜用于板

薄膜的材料及制备工艺

薄膜混合集成电路的制作工艺 中心议题:多晶硅薄膜的制备 摘要:本文主要介绍了多晶硅薄膜制备工艺,阐述了具体的工艺流程,从低压化学气相沉积(LPCVD),准分子激光晶化(ELA),固相晶化(SPC)快速热退火(RTA),等离子体增强化学反应气相沉积(PECVD等,进行详细说明。 关键词:低压化学气相沉积(LPCVD);准分子激光晶化(ELA); 快速热退火(RTA)等离子体增强化学反应气相沉积(PECVD) 引言 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复杂。 1薄膜集成电路的概述

在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、器件,外加封装而成的混合集成电路。所装的分立微型元件、器件,可以是微元件、半导体芯片或单片集成电路。 2物理气相沉积-蒸发 物质的热蒸发利用物质高温下的蒸发现象,可制备各种薄膜材料。与溅射法相比,蒸发法显著特点之一是在较高的真空度条件下,不仅蒸发出来的物质原子或分子具有较长的平均自由程,可以直接沉积到衬底表面上,且可确保所制备的薄膜具有较高纯度。 3 等离子体辅助化学气相沉积--PECVD

传统的CVD技术依赖于较高的衬底温度实现气相物质间的化学反应与薄膜沉积。PECVD在低压化学气相沉积进行的同时,利用辉光放电等离子体对沉积过程施加影响。促进反应、降低温度。 降低温度避免薄膜与衬底间不必要的扩散与化学反应;避免薄膜或衬底材料结构变化与性能恶化;避免薄膜与衬底中出现较大的热应力等。 4低压化学气相沉积(LPCVD)

薄膜制备工艺期末复习

Thin Film Review 我们不敢保证每道题都考,但是标注“★”的我们觉得必考。 一、名词解释 1、薄膜:由单个的原子、离子、原子团无规则地入射到基板表面,经表面附着、迁徙、凝结、成核、 核生长等过程而形成的一薄层固态物质。 2、气体分子的平均自由程:气体分子在两次碰撞的间隔时间里走过的平均距离。 3、气体分子的最可几速度:平均运动速度f(v)最大时的速度 4、饱和蒸气压:一定温度下,蒸发气体与凝聚相平衡过程中所呈现的压力。(汽、固或汽、液两相 平衡时) 5、真空蒸发:在真空环境下,给待蒸发物质提供足够的热量以获得蒸发所必需的蒸气压。在适当的 温度下,蒸发粒子在基片上凝结,即可实现真空蒸发沉积。 6、PLD:pulsed laser deposition激光蒸发装置 7、溅射:是一个离子轰击物质表面,并在碰撞过程中发生能量与动量的转移,从而最终将物质表面 原子激发出来的复杂过程。 8、离子镀:使用电子束蒸发法提供沉积的源物质,同时以衬底作为阴极、真空室作为阳极组成一个 类似二级溅射(直流或射频)装置,在沉积前和沉积中采用高能量的离子流对衬底和薄膜进行溅射处理。 9、离子束辅助沉积:使用单独离子源轰击衬底表面。 10、分子束外延:在超高真空下(~10-9-10-11Torr),将薄膜诸组分元素的分子束流,直接喷到 衬底表面,从而在其上形成外延薄膜。 11、PECVD:(plasma enhanced chemical vapor deposition)等离子体辅助化学气相沉积:在低压 化学气相沉积过程进行的同时,利用辉光放电等离子体对沉积过程施加影响的技术。 12、ALD:(Atomic Layer Deposition)定义:原子层沉积是在一个加热反应的衬底上连续引入至少 两种气相前驱体源,化学吸附至表面饱和时自动终止。 13、溶胶-凝胶(Sol-Gel)法:溶胶-凝胶是一种液相化学合成方法,是指用金属的有机或无机化合物, 经过溶液、溶胶、凝胶过程,接着在溶胶或凝胶状态下成型,再经干燥和热处理等工艺流程制成不同形态的产物(包括粉体、纤维、薄膜、陶瓷)。 14、外延生长:在完整的单晶衬底上延续生长单晶薄膜; 15、薄膜的生长模式:岛状生长模式、层状生长模式、层状—岛状生长模式。 16、自发形核:整个形核过程完全是在相变自由能的推动下进行的。

薄膜面板设计应注意的几个问题

薄膜面板设计应注意的几个问题 文字是操作功能的媒介,直接向操作者提示功能的作用,或对仪器性能作出解说。当采用分立元件时,其面板通常是将文字标注在分立元件的附近。而薄膜开关的面板,一般没有外置的元件,是以色块来表示模拟的键盘或元件的。为此,文字可直接标注在这个功能键盘的色块上,这样更为方便、直观。文字除了上述的特定作用外,在某种程度上起着对产品外观的修饰作用,为此应注重文字的规范化。此外,对文字形体的选择还应兼顾到制作图文的工艺———丝网印刷的特点。因此,对于通常所用的例如仿宋体,因其笔画纤细无力,细微的笔峰较难表现,与色块的力度不相适应;宋体与正楷,古朴有余,新意不足,与新潮的设计风格难以协调。我们建议,采用照相排字法制备文字,并推荐采用黑体与细线圆角体。这种字体笔画横竖等宽,字体方整易辨,与整体设计适应性强,工艺的再现性也较好。 所谓形意图案,是指除法定部分标志符号外,根据仪器某一操作内容的特点而精心设计的一组特定的图形标志,以取代文字的陈述,形意图案是近年来在产品外观上逐步得到应用的一种以图代文的解说形式。由于薄膜面板得天独厚的条件,使它能充分地发挥形意图案的效果,从而使外观更具有时代的气息。形意图案的特点是寓意形象,简练明快,表达力强,增进记忆,能起到文字注释难以起到的效果。为此在设计时,也要遵循这些原则,图案切勿牵强附会,使人百思不得

其解,这样反而会影响对仪器的使用。初用形意图案时,宜再辅以功能的文字,待为人们所接受,约定俗成后,再单独运用。 由于薄膜开关的面板是采用透明状的聚碳酸脂(PC)经特殊表面处理的材料制作而成的,因此凡是仪器的显示部分,可与面板制成一个整体,无须挖孔开窗。这是金属面板无法实现的。透明窗孔有两种类型:一种是供显示元件指示参数用,称为显示窗;另一种是供发光二极管(LED)指示之用,以提供操作元件的执行情况,称为指示窗。各透明窗宜设计成透明有色,这样可隐蔽底部的元件,活跃面板的气氛,区分动作的功能。选择适当的透明色彩,还可以起到对发光数显示元件的滤色增光的作用,使数字显示更为清晰。转载请留下链接薄膜面板https://www.doczj.com/doc/f72415643.html, 谢谢。

薄膜开关材料

薄膜开关材料 一、面板(印刷层) 1、材料的种类:面板层的材料要求,除了平整性与印刷适应性外,更重要的是要具有可挠性及高弹性的特点。常用的材料见下表: 名称使用温度厚度(mm)表面效果理化特性价格适用范围 聚氯乙烯PVC 60℃0.175~0.5亚光/亮光 常温下对酸、碱和盐类稳定。 耐磨性好,耐燃自熄,消声 消震,电绝缘性好。热稳定 性较差 低廉普通标牌、面板 聚碳酸脂 PC -60~120℃0.175~0.25亚光/亮光 是制作薄膜开关电路最理想 的基材。 其中有纹理PET适合对表面 要求较高或具有液晶显示窗 的产品。 适中 适用范围最为广泛, 除可满足大多数薄 膜开关面板的要求 外,其中光面PC的 高透光率更可满足 带液晶显示窗的要 求。 聚脂PET -30~120℃0.1~0.2亚光/亮光 耐药品性良好,不溶于一般 有机溶剂,不耐碱。具有优 良的机械性能、电性能、刚 性、硬度和热塑性塑料中最 大的强韧性,吸水性低,耐 磨损、耐摩擦性优良,尺寸 稳定性高。拉伸强度能与铝 膜媲美,大大高于PC、PVC。 适中,但 经过表面 纹理处理 较贵 是制作薄膜开关电 路最理想的基 材。其中有纹理 PET适合对表面要 求较高或具有液晶 显示窗的产品。 2、材料的各项特性: 项目聚氯乙烯(PVC)聚碳酸酯(PC)聚酯(PET 弯折寿命差较好优良

耐化学腐蚀能力较好一般优良最高耐温60℃140℃160℃ 耐磨损能力差较好优良(纹理膜)绝缘性能极好较差优良 透明度一般较好极好压鼓清晰度优良优良优良 温度级别压鼓时有限制优良优良 抗紫外线能力是否否 3、材料的比较: 适合制作薄膜面板的材料主要有:PVC(聚氯乙烯)、PC(聚碳酸酯)、PET(聚酯),厚度一般分为0.125\0.175\0.25三种,从表面分为砂面、亚光面和光面三种。 PC材料的物理特性与化学特性的综合指标较好,其适应的油墨也较广泛,是薄膜开关面板层应用最为普遍的材料。PC材料有砂而与光面之区分,选择砂面状材料的理由是因为薄膜开关的使用多是电子整机产品,作为操纵控制系统的面板不希望受光线的干扰,而砂面状的表面只呈漫反射状,不会产生明亮的反;同时,由于表面呈紊乱的砂粒状,具有掩蔽划痕的作用,与之相反,光而材料就不具备以上特点。但是作为光面材料,已经在背面印刷后,色彩会显得更为鲜艳夺目,在装饰性要求较强且又不需经常触动的场合,往往选择光面材料制作面板,或者由于某些显示区域如LCD液晶显示屏的特殊需要而考虑,选用光面材料较为有利。 PVC薄膜材料的价格较低,约为PC材料的二分之一,当生产民用普及型的产品,如果选择PVC材料,可降低生产成本,同时PVC材料的延展性较好,可采用冷压加工立体的图文。光面PVC 板材一般的厚度在0.5毫米以上,两面约有PE或水胶纸保护,大部份用于制作装饰性的面板;砂面的PVC材料一般厚度在0.3毫米以下,它一般以定尺的片材供应,没有卷材。

(完整版)纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性[ 1 ] ,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切[ 2 ] [ 3 ] 。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法 纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。 2 化学制备方法 化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

薄膜制备技术论文

薄膜制备技术论文 高阻隔薄膜的制备技术 【摘要】本文介绍了包装领域中阻隔薄膜的几种基本的制备技术,并对其技术原理和技术特点做了简要的概述,重点介绍普通包装薄 膜表面沉积纳米SiOx作为阻隔材料的优越性和制备方法。纳米氧化 硅薄膜制备包括:物理气相沉积,化学气相沉积两种。物理气相沉 积技术较成熟,已广泛用于当今的众多薄膜生产厂家;化学气相沉积 技术由于沉积速率慢,生产成本高,耗资大,限制了工业化应用。 本文还介绍了一种能够克服上述限制因素的新技术,从而使薄膜的 阻隔性能大大提高。 【关键词】纳米氧化硅薄膜阻隔性能物理气相沉积化学气相沉积引言 社会发展表现在不仅对普通包装材料数量上的增加,对优质保质保鲜包装材料品种和质量的需求也在日益增加。如在食品和医药包 装领域中,包装材料的阻水阻气要求越来越高。高阻隔包装材料通 常指对气液渗透物具有高阻尼作用的材料,即防止氧的侵入以免商 品氧化变质,防止水或水蒸气的渗透以免商品受潮霉变,防止香气、香味和二氧化碳外逸,以免商品变味和变质等。目前阻隔性包装材 料已经成为包装材料的发展趋势,并广泛用于各种应用领域,如电 子显示领域的OLED[1]。 1阻隔材料的发展历程及趋势 阻隔包装材料的发展历程可分为三个阶段:第一代包装材料如PE、PP、PET、PVDC、PVC等。因其阻隔性达不到要求(见表1),使 用越来越少。采用高聚物(比如PEN)可以解决阻隔性和用金属探测 器检查问题,但是成本太高,并且难于循环利用。采用复合膜结构,如三层复合膜PA/黏合剂/PE、五层复合膜LDPE/粘合剂/EVOH/黏合 剂/LDPE等,阻隔性能大大提高,但工艺复杂、回收困难、污染环

薄膜材料及其制备技术-2015级研究生

《薄膜材料及其制备技术》作业 ——材料科学与工程学院2015级研究生 1,在T=291K 时,水的表面张力系数(或表面能)10.07 3N m s -=?,63118.01610v m mol a --=醋,如果水滴半径810r m -=,请计算此时的蒸汽压'p (用p 表示)以及水滴内外压强差p D 。(10分) 2,从热力学的角度证明:当从过饱和(压强为p ’)的气相析出凝聚相时,凝聚 相的临界晶核尺寸r c 满足:2exp()'/B c v p p K Tr a s =;并由此得到结论:①当凝聚体晶核的尺寸rr c 时,随时间的演化,晶核将长大;③当r=r c 时,晶核随时间既不消逝也不长大。(v a 为凝聚体原子或分子的体积;p ’为过饱和蒸气压;p 为饱和蒸气压;σ为表面能)(10分) 3,当有衬底存在时,气体的形核就称作非均匀形核,证明:形核功 3** 23cos cos []4G G q q -+D =D ?均 。式中,*G D 均为均匀形核时的形核功;θ为浸润角。由此可以判断:当薄膜能够充分浸润衬底时,薄膜的形核功为0。(10分) 4,试从微观键能的观点证明:描述浸润问题的Young 方程cos LV SV SL s q s s =-可以近似写作2cos 2 LL LS u u q =(其中,LL u 为单位面积的液相原子之间的键能;LS u 为固-液界面上单位面积的固-液原子之间的键能),进而说明若A 能够浸润B ,并不能够推出B 也能够浸润A 的结论。(10分) 5,请论述真空度对成膜质量的影响。(10分) 6,衬底温度(即生长温度)是如何影响薄膜生长模式的?(10分) 7,论述晶格失配(既失配应力)与薄膜生长模式的关系。(10分) 8,论述衬底表面对形核难易程度:凹面>平面>凸面。即凹面处最容易形核,而凸面处最难形核。(10分) 9,试解释二维成核的层状生长机理与Step-flow 生长机理,并进一步论证在何种情况下薄膜倾向于step-flow 生长。(10分) 10, 自行查找文献,阐述一种流行的薄膜生长技术及其特点,并举例讲述其具体制备薄膜的实例及成膜质量。(10分) *作业可以打印。不准抄袭,一经发现,即作零分处理。作业于2016年6月1日前汇总上交。

纳米膜的制备方法

纳米薄膜材料的制备 金属0802 3080702039 陈岑 一、纳米膜 纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。 纳米膜分离技术是近年来发展起来的膜分离技术,是指膜的纳米级分离过程。其通过截留相对分子量为300~100000(被分离物料粒径相当于0.3~100纳米)的膜进行分离、纯化,包括了纳滤和部分超滤技术所能分离的量程范围,也是一种以压力为驱动的膜分离过程。由于纳米膜分离技术的截断物质相对分子量范围比反渗透大,而比部分超滤小,因此,纳米膜分离技术可以截留能通过超滤膜的部分溶质,而让不能通过反渗透膜的物质通过,从而有助于降低目的截留溶质的损失。这种技术具有操作方便、处理效率高、无污染、安全和节能等诸多优点。 二、纳米膜的制备方法 1.模板法 2.分子束外延法 3.真空蒸发法 4.化学气相沉积法 5.其他方法 1.模板法合成纳米薄膜: 纳米颗粒的形成一般可分为两个阶段: 第一是晶核的生成。 第二是晶核的长大 要制备粒径均匀,结构相同的纳米颗粒,相当于让烧杯中天文数字的原子同时形成大小一样的晶核,并且同时长大到相同的尺寸。因此为了得到尺寸可控,无团聚的纳米颗粒,必须找到有效的“窍门”,来干预化学反应的过程。 2.分子束外延法 分子束外延(MBE)技术主要是一种可以在原子尺度上精确控制外延厚度、掺杂和界面平整度的超薄层薄膜制备技术。 所谓“外延”就是在一定的单晶体材料衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。 所谓“外延”就是在一定的单晶体材料衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。

薄膜材料制备原理、技术及应用知识点

薄膜材料制备原理、技术及应用知识点1 一、名词解释 1. 气体分子的平均自由程:自由程是指一个分子与其它分子相继两次碰撞之间,经过的直线路程。对个别分子而言,自由程时长时短,但大量分子的自由程具有确定的统计规律。气体分子相继两次碰撞间所走路程的平均值。 2. 物理气相沉积(PVD):物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 3. 化学气相沉积(CVD):化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。 4. 等离子体鞘层电位:等离子区与物体表面的电位差值ΔV p即所谓的鞘层电位。 在等离子体中放入一个金属板,由于电子和离子做热运动,而电子比离子的质量小,热速度就比离子大,先到达金属板,这样金属板带上负电,板附近有一层离子,于是形成了一个小局域电场,该电场加速了离子,减速电子,最终稳定了以后,就形成了鞘层结构,该金属板稳定后具有一个电势,称为悬浮电位。 5. 溅射产额:即单位入射离子轰击靶极溅出原子的平均数,与入射离子的能量有关。 6. 自偏压效应:在射频电场起作用的同时,靶材会自动地处于一个负电位下,导致气体离子对其产生自发的轰击和溅射。 7. 磁控溅射:在二极溅射中增加一个平行于靶表面的封闭磁场,借助于靶表面上形成的正交电磁场,把二次电子束缚在靶表面特定区域来增强电离效率,增加离子密度和能量,从而实现高速率溅射的过程。 8. 离子镀:在真空条件下,利用气体放电使气体或被蒸发物部分离化,产生离子轰击效应,最终将蒸发物或反应物沉积在基片上。结合蒸发与溅射两种薄膜沉积技术而发展的一种PVD方法。 9. 离化率:被离化的原子数与被蒸发气化的原子数之比称为离化率.一般离化装置的离化率仅为百分之几,离化率较高的空心阴极法也仅为20~40% 10. 等离子体辅助化学气相沉积(PECVD)技术:是一种用等离子体激活反应气体,促进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体化学气相沉积技术的基本原理是在高频或直流电场作用下,源气体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并实现化学气相沉积的技术。 11. 外延生长:在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的单晶层,犹如原来的晶体向外延伸了一段,故称外延生长。 12. 薄膜附着力:薄膜对衬底的黏着能力的大小,即薄膜与衬底在化学键合力或物理咬合力作用下的结合强度。 二、填空: 1、当环境中元素的分压降低到了其平衡蒸气压之下时,元素发生净蒸发。反之,元素发生净沉积。 2、在直流放电系统中,气体放电通常要经过汤生放电阶段、辉光放电阶段和弧光放电阶段三个放电过程,其中溅射法制备薄膜主要采用辉光放电阶段所产生的大量等离子体来形成溅射。 3、溅射仅是离子轰击物体表面时发生的物理过程之一,不同能量的离子与固体表面相互作用的过程不同,不仅可以实现对物质原子的溅射,还可以在固体表面形成沉积现象和离子注入现象。 4、溅射法所采有的放电气体多为Ar气,主要原因是惰性气体做为入射离子时,物质溅射产额高,从经济方面考虑,多使用Ar做为溅射气体。 5、直流溅射要求靶材具有良好的导电性,否则靶电流过小,靶电压过高,而射频溅射方法以交流电源提供高频电场,高频电场可经由其它阻抗形式进入沉积室,不再要求电极一定是导电体,使溅射过程摆脱对靶材导电性的要求。 6、磁控溅射存在的缺点。 1 微观永远大于宏观你永远大于人类今天永远大于永远■■■■■■■■纯属个人行为,仅供参考■■■■■■■■勿删■■■■■■■■■

二维纳米薄膜材料概述

二维纳米材料概述 -----纳米薄膜概述 班级:材料科学与工程103班 姓名:卢忠 学号:201011601322 摘要纳米科学技术是二十世纪八十年代末期诞生并快速崛起的新科技,而其二维纳米结构——纳米薄膜在材料应用以及前景上都占据着重要的地位。纳米薄膜材料是一种新型的薄膜材料,由于其特殊的结构和性能,它在功能材料和结构材料领域都具有良好的发展前景。本论文着重介绍纳米薄膜的制备方法、特性以及研究前景。纳米薄膜材料性能较传统的薄膜材料有更加明显的优势,特别是纳米磁性多层膜、颗粒膜作为一种新型的复合材料将是今后的研究方向。 关键词:纳米;薄膜材料

目录 一.薄膜材料定义 (1) 二.纳米薄膜的分类 (1) 三.纳米薄膜的制备方法 (2) 四.纳米薄膜特性 (4) 五.应用及前景 (6) 参考文献

一.薄膜材料定义:纳米薄膜是指尺寸在纳米量级的晶粒构成的薄膜或将纳米晶粒薄膜镶嵌于某种薄膜中构成的复合膜,以及层厚在纳米量级的单层或多层薄膜,通常也称作纳米颗粒薄膜和纳米多层薄膜。 二.纳米薄膜的分类 1.纳米薄膜,按用途分为两大类:纳米功能薄膜和纳米结构薄膜。 纳米功能薄膜:主要是利用纳米粒子所具有的光、电、磁方面的特性,通过复合使新材料具有基体所不具备的特殊功能。 纳米结构薄膜:主要是通过纳米粒子复合,提高材料在机械方面的性能。 2.按膜的功能分 纳米磁性薄膜 纳米光学薄膜 纳米气敏膜 纳滤膜、纳米润滑膜 纳米多孔膜 LB(Langmuir Buldgett)膜 SA(分子自组装)膜 3.按膜层结构分类 单层膜如热喷涂法的表面膜等 双层膜如在真空气相沉积的反射膜上再镀一层 多层膜指双层以上的膜系 4.按膜层材料分 金属膜,如Au、Ag等 合金膜,如Cr-Fe、Pb-Cu等 氧化物薄膜 非氧化物无机膜 有机化合物膜

纳米薄膜材料的制备方法

纳米薄膜材料的制备方法 摘要纳米薄膜材料是一种新型材料,由于其特殊的结构特点,使其作为功能材料和结构材料都具有良好的发展前景。本文综述了近几年来国内外对纳米薄膜材料研究的最新进展,包括对该类材料的制备方法、微结构、电、磁、光特性以及力学性能的最新研究成果。关键词纳米薄膜;薄膜制备; 微结构;性能 21 世纪,由于信息、生物技术、能源、环境、国防 等工业的快速发展, 对材料性能提出更新更高的要求,元器件的小型化、智能化、高集成、高密度存储和超快传输等要求材料的尺寸越来越小,航空航天、新型军事装备及先进制造技术使材料的性能趋于极端化。因此, 新材料的研究和创新必然是未来的科学研究的重要课题和发展基础,其中由于纳米材料的特殊的物理和化学性能, 以及 由此产生的特殊的应用价值, 必将使其成为科学研究的热点[1]。 事实上, 纳米材料并非新奇之物, 早在1000 多年以前, 我国古代利用蜡烛燃烧的烟雾制成碳黑作为墨的原料, 可能就是最早的纳 米颗粒材料;我国古代铜镜表面的防锈层, 经验证为一层纳米氧化锡颗粒构成的薄膜,这大概是最早的纳米薄膜材料。人类有意识的开展纳米材料的研究开始于大约50 年代,西德的Kanzig 观察到了BaTiO3 中的极性微区,尺寸在10~ 100纳米之间。苏联的G. A. Smolensky假设复合钙钛矿铁电体中的介电弥散是由于存Kanzig微区导致成分布不均匀引起的。60 年代日本的Ryogo Kubo在金属超微粒子理论中发现由于金属粒子的电子能级不连续,在低温下, 即当费米

能级附近的平均能级间隔> kT 时, 金属粒子显示出与块状物质不同的热性质[ 4]。西德的H. Gleiter 对纳米固体的制备、结构和性能进行了细致地研究[ 5]。随着技术水平的不断提高和分析测试技术手段的不断进步, 人类逐渐研制出了纳米碳管, 纳米颗粒,纳米晶体, 纳米薄膜等新材料, 这些纳米材料有一般的晶体和非晶体材料不具备的优良特性, 它的出现使凝聚态物理理论面临新的挑战。80 年代末有人利用粒度为1~ 15nm 的超微颗粒制造了纳米级固体材料。纳米材料由于其体积和单位质量的表面积与固体材料的差别,达到一定的极限, 使颗粒呈现出特殊的表面效应和体积效应,这些因素都决定着颗粒的最终的物理化学性能,如随着比表面积的显著增大,会使纳米粒子的表面极其活泼,呈现出不稳定状态,当其暴露于空气中时,瞬间就被氧化。此外, 纳米粒子还会出现特殊的电、光、磁学性能和超常的力学性能。 纳米薄膜的分类 纳米薄膜具有纳米结构的特殊性质, 目前可以分为两类: ( 1)含有纳米颗粒与原子团簇基质薄膜; ( 2) 纳米尺寸厚度的薄膜, 其厚度接近电子自由程和Denye 长度, 可以利用其显著的量子特性和统计特性组装成新型功能器件。例如, 镶嵌有原子团的功能薄膜会在基质中呈现出调制掺杂效应, 该结构相当于大原子超原子膜材料具有三维特征; 纳米厚度的信息存贮薄膜具有超高密度功能, 这类集成器件具有惊人的信息处理能力; 纳米磁性多层膜具有典型的周期性调制结构, 导致磁性材料的饱和磁化强度的减小或增强。对这

薄膜制备方法

薄膜制备方法 1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜 2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。 一、真空蒸镀即真空蒸发镀膜,是制备薄膜最一般的方法。这种方法是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。其设备主要由真空镀膜室和真空抽气系统两大部分组成。 保证真空环境的原因有①防止在高温下因空气分子和蒸发源发生反应,生成化合物而使蒸发源劣化。②防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等③在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。 蒸发镀根据蒸发源的类别有几种: ⑴、电阻加热蒸发源。通常适用于熔点低于1500℃的镀料。对于蒸发源的要求为a、熔点高 b、饱和蒸气压低 c、化学性质稳定,在高温下不与蒸发材料发生化学反应 d、具有良好的耐热性,功率密度变化小。 ⑵、电子束蒸发源。热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。特别适合制作高熔点薄膜材料和高纯薄膜材料。优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。c、热量可直接加到蒸发材料的表面,减少热量损失。 ⑶、高频感应蒸发源。将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失和磁滞损失(铁磁体),从而将镀料金属加热蒸发。常用于大量蒸发高纯度金属。 分子束外延技术(molecular beam epitaxy,MBE)。外延是一种制备单晶薄膜的新技术,它是在适当的衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜的方法。外延薄膜和衬底属于同一物质的称“同质外延”,两者不同的称为“异质外延”。 10—Pa的超真空条件下,将薄膜诸组分元素的分子束流,在严格监控之下,直接MBE是在8 喷射到衬底表面。其中未被基片捕获的分子,及时被真空系统抽走,保证到达衬底表面的总是新分子束。这样,到达衬底的各元素分子不受环境气氛的影响,仅由蒸发系统的几何形状和蒸发源温度决定。 二、离子镀是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用的同时,把蒸发物或其反应物蒸镀在基片上。 常用的几种离子镀: (1)直流放电离子镀。蒸发源:采用电阻加热或电子束加热;充入气体:充入Ar或充入少量反应气体;离化方式:被镀基体为阴极,利用高电压直流辉光放电离子加速方式:在数百伏至数千伏的电压下加速,离化和离子加速一起进行。 (2)空心阴极放电离子镀(HCD,hollow cathode discharge )。等离子束作为蒸发源,可充入Ar、其他惰性气体或反应气体;利用低压大电流的电子束碰撞离化,0至数百伏的加速电压。离化和离子加速独立操作。 (3)射频放电离子镀。电阻加热或电子束加热,真空,Ar,其他惰性气体或反应气体;利

薄膜材料的制备

对薄膜制备的综述 一.前言 随着薄膜科学技术与薄膜物理学的发展,薄膜在微电子、光学、窗器、表面改性等方面的应用日益广泛;而薄膜产业的日趋壮大又刺激了薄膜技术和薄膜材料的蓬勃发展。面对新技术革命提出的挑战,无机薄膜材料的制备方法也日新月异,与以往的制膜方法相比有了新的特点,方法也向着多元化的方向发展。这篇综述主要介绍了:薄膜材料的制备、举例发光薄膜的制备以及薄膜材料的发展前景。 二.薄膜材料的制备 主要内容:1.薄膜材料基础;2.薄膜的形成机理;3.物理气相沉积;4.化学气相沉积;5.化学溶液镀膜法;6.液相外延制膜法。 §1 薄膜材料基础 1. 薄膜材料的概念 采用一定方法,使处于某种状态的一种或几种物质(原材料)的基团以物理或化学方式附着于衬底材料表面,在衬底材料表面形成一层新的物质,这层新物质就是薄膜。简而言之,薄膜是由离子、原子或分子的沉积过程形成的二维材料。 2. 薄膜分类 (1)物态:气态、液态、固态(thin-solid-film)。 (2)结晶态:A非晶态:原子排列短程有序,长程无序。B晶态:a单晶:外延生长,在单晶基底上同质和异质外延;b多晶:在一衬底上生长,由许多取向相异单晶集合体组成。 (3)化学角度:有机和无机薄膜。 (4)组成:金属和非金属薄膜。 (5)物性:硬质、声学、热学、金属导电、半导体、超导、介电、磁阻、光学薄膜。 薄膜的一个重要参数:a厚度,决定薄膜性能、质量;b通常,膜厚小于数十微米,一般在1微米以下。

3. 薄膜应用 薄膜材料及相关薄膜器件兴起于20世纪60年代。是新理论、高技术高度结晶的产物。 (1)主要的薄膜产品: 光学薄膜、集成电路、太阳能电池、液晶显示膜、光盘、磁盘、刀具硬化膜、建筑镀膜制品、塑料金属化制品。 (2)薄膜是现代信息技术的核心要素之一: 薄膜材料与器件结合,成为电子、信息、传感器、光学、太阳能等技术的核心基础。 4.薄膜的制备方法 (1)代表性的制备方法按物理、化学角度来分,有: a物理成膜PVD、b化学成膜CVD (2)具体制备方法如下表流程图: §2 薄膜的形成机理 1.薄膜材料在现代科学技术中应用十分广泛,制膜技术的发展也十分迅速。制膜方法—分为物理和化学方法两大类;具体方式上—分为干式、湿式和喷涂三种,而每种方式又可分成多种方法。 2.薄膜的生长过程分为以下三种类型: (1) 核生长型(V olmer Veber型):这种生长的特点是到达衬底上的沉积原子首先凝聚成核,后续的沉积原子不断聚集在核附近,使核在三维方向上不断长大而最终形成薄膜。核生长型薄膜生长的四个阶段: a. 成核:在此期间形成许多小的晶核,按同济规律分布在基片表面上; b. 晶核长大并形成较大的岛:这些岛常具有小晶体的形状; c. 岛与岛之间聚接形成含有空沟道的网络; d. 沟道被填充:在薄膜的生长过程中,当晶核一旦形成并达到一定尺寸之后,另外再撞击的离子不会形成新的晶核,而是依附在已有的晶核上或已经形成的岛上。分离的晶核或岛逐渐长大彼此结合便形成薄膜。 这种类型的生长一般在衬底晶格和沉积膜晶格不相匹配时出现。大部分的

相关主题
文本预览
相关文档 最新文档