当前位置:文档之家› 我国的绿色生态工程

我国的绿色生态工程

我国的绿色生态工程
我国的绿色生态工程

我国的绿色生态工程

[教学目标]

1、知识目标:初步了解并能列举有关我国植保的法律法规;初步了解我国“三北”防护林工程的进展和远景;通过活动掌握绿化设计的要求与方法。

2、能力目标:指导学生阅读教材,培养学生的自学能力。

3、情感、态度、价值观:通过绿化校园活动,提高学生审美情趣,增强热爱学校的情感。[教学重难点]

1、教学重点:理解我国的绿色生态现状。

2、教学难点:正确对待我国的生态现状,树立环保从我做起的意识。

[教学方法]

本节课主要采用“自主学习、自主发展”的课堂教学模式。

第七章第3节我国的绿色生态工程课堂练习:

1、全国的“植树节”定在每年的( )

A、3月8日

B、3月12

C、5月1日

D、4月12

2、我国第一大植树造林工程是( )

A、平原绿化工程

B、长江中下游防护林建设工程

C、沿海防护林体系建设工程

D、“三北’’防护林工程

3、“三北”防护林工程包括几个骨干工程( )

A、5个

B、9个

C、8个

D、12个

4、被誉为“世界林业生态工程之最”的是( )

A、“罗斯福大草原工程”

B、“斯大林改造大自然计划”

C、北非五国的“绿色坝建设”

D、中国“三北”防护林工程

5、你认为下列哪一项不利于我国森林覆盖率的提高?

A、退耕还林还草

B、退田还湖

C、生产一次性木筷

D、大力植树造林

6、人们在山坡、沙第上绿化造林的主要目的是()

A、保持水土

B、放牧畜牧

C、获得木材、干草

D、绿化环境

答案:

1、B

2、D

3、C

4、D

5、C

6、A

数学建模作业温室中的绿色生态臭氧病虫害防治

摘要“温室中的绿色生态臭氧病虫害防治”是通过建立数学模型的方式来分析出害虫密度与水稻产量的关系.对于问题一,在自然条件下,忽略以中华稻蝗和稻纵卷叶螟之间的竞争关系,以这两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析。对于问题二,我们用matllab建立时间与植株中残留量的关系图,观察图像,发现图像近似二次函数,用拟合方法拟合、最小二乘法求出相应的所设方程未知数。对于第三题建立臭氧对温室植物与病虫害作用的数学模型,通过制作图像,观察图像在用各种拟合方法拟合图像后发现用二次指数函数拟合后的误差最小,同样运用matlab拟合函数,求出相应的未知数即可,再次运用同样的方法建立出臭氧分解速率与温度的函数,其同样近似于指数函数。最后结合图表给出的数据以及结合前面得出的两个函数,得出效率评价函数,更好地评估到臭氧在某个温度T时刻的杀虫效率。对于问题四,通过对温度与臭氧的扩散速率关系式,作出一个温室的模型,模拟风向,再结合假设,得出一个合理的分布图。对于第五题可以参考以求出的臭氧分解速率与温度的关系,病虫的残余量和浓度的关系等来综合考虑。 关键字:竞争曲线拟合效用评价函数分布图 1.问题的提出 1.1背景资料 2009年12月,哥本哈根国际气候大会在丹麦举行之后,温室效应再次成为国际社会的热点。如何有效地利用温室效应来造福人类,减少其对人类的负面影响成为全社会的聚焦点。 臭氧对植物生长具有保护与破坏双重影响,其中臭氧浓度与作用时间是关键因素,臭氧在温室中的利用属于摸索探究阶段。 假设农药锐劲特的价格为10万元/吨,锐劲特使用量10mg/kg-1水稻;肥料100元/亩;水稻种子的购买价格为5.60元/公斤,每亩土地需要水稻种子为2公斤;水稻自然产量为800公斤/亩,水稻生长自然周期为5个月;水稻出售价格为2.28元/公斤。 1.2 问题重述 (1)在自然条件下,建立病虫害与生长作物之间相互影响的数学模型;以中华稻蝗和稻纵卷叶螟两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析。 (2)在杀虫剂作用下,建立生长作物、病虫害和杀虫剂之间作用的数学模型;以水稻为例,给出分别以水稻的产量和水稻利润为目标的模型和农药锐劲特使用方案。

优化问题的数学模型及基本要素

第1章 优化设计 Chapter 1 Optimization Design 1-1 优化设计 1-1-1 最优化 (optimize, optimization ) 所谓最优化,通俗地说就是在一定条件下,在所有可能的计划、设计、安排中找出最好的一个来。换句话说,也就是在一定的条件下,人们如何以最好的方式来做一件事情。(Optimization deals with how to do things in the best possible manner) 结论的唯一性是最优化的特点,即公认最好。(It is the best of all possibilities) 最优化的思想体现在自然科学、工程技术及社会活动的各个领域,最优化的方法在这些领域也得到了广泛地应用。(P1) 1-1-2 最优化方法 (Arithmetic ) 要从所有可能的方案中找出最优的一个,用“试”(try )的办法是不可行的,需要采用一定的数学手段。二十世纪五十年代以前,用于解决最优化问题的数学方法仅限于古典的微分和变分(differential and variation)。数学规划法在五十年代末被首次用于解决最优化问题,并成为现代优化方法的理论基础。线性规划和非线性规划是数学规划的主要内容,它还包括整数规划、动态规划、二次规划等等。(Linear programming or Nonlinear programming, Integer, Dynamic, Quadratic ) 数学规划法与电子计算机的密切结合,改变了最优化方法多有理论研究价值,而少有实际应用的局面,使得解决工程中的优化问题成为可能。因此,我们现在所说的最优化方法,实际上包括了最优化理论和计算机程序二方面的内容。(Optimization theory plus computer program) 1-1-3 优化设计 下面以一个简单的问题为例来说明传统设计与优化设计这二个不同的设计过程。 例1-1 设计一个体积为5cm 3的薄板包装箱,其中一边的长度不小于4m 。要求使薄板耗 材最少,试确定包装箱的尺寸参数,即长a ,宽b 和高h 。 分析 包装箱的表面积s 与它的长a ,宽b 和高h 尺寸有关。因此,耗板最少的问题可以转化为表面积最小问题,故取表面积s 为设计目标。 传统设计方法: 首先固定包装箱一边的长度如)(4m a =。要满足包装箱体积为3 5m 的设计要求,则有以下多种设计方案: 如果包装箱的长度a 再取)(4m a >的其他值,则包装箱的宽度和高度还会有很多其他结果… 。 最后,从上面众多的可行方案中选择出包装箱表面积最小的方案来,这就是相对最好的设计方案。但由于不可能列出所有可能的设计方案,最终方案就不一定是最优的。 机械产品的传统设计通常需要经过:提出课题、调查分析、技术设计、结构设计、绘图

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

有关多种群的数学模型

自然界的多种群模型分析 摘要:在我们生活的大自然中,有着太多太多的秩序和规则。种群之间的你争我斗,弱肉强食也是非常激烈。种群,顾名思义就是指同一种生物的一个集合。不同种群之间的关系大致分为四种:捕食与被捕食关系,互利共生关系,相互竞争关系和寄生与寄主关系。我们这次的建模就是围绕着种群之间的关系来展开的,下面我将从这几个方面来进行分类讨论,由于寄生与寄主的关系不是很常见,关系也比较简单,在此便不再赘述。 捕食与被捕食关系:这种关系很简单,大家也能很容易地理解,通俗地解释,就是指一种生物以另一种生物为食,举个例子大家也许会更容易地理解。比如说狼和羊的关系,狼是捕食者,羊是被捕食者,狼以羊为食,是羊的天敌。 互利共生关系:指两种生物共同生活在一个区域有助于提高另一种生物的种群密度,假如其中一种生物的数量减少,也会影响另一种生物的数量,使其数量减少。比如草地和森林优势植物的根多与真菌共生形成菌根,多数有花植物依赖昆虫传粉,大部分动物的消化道也包含着微生物群落,最典型的就是大豆与根瘤菌。大豆给根瘤菌提供养分,根瘤菌给大豆提供氮元素。 相互竞争关系:有种内和种间两种竞争方式。这里是指两种共居一起,为争夺有限的营养、空间和其他共同需要而发生斗争的种间关系。竞争的结果,或对竞争双方都有抑制作用,大多数的情况是对一方有利,另一方被淘汰,一方替代另一方。举个例子,牛和羊生活在共同的一片草地上,因为这两种生物都以草为食,它们之间不存在其他关系,所以它们之间是竞争关系。 以上就是三种种群之间的关系,下面我们就从这三个方面对物种种群密度的变化进行分析。在以下的讨论中我们将建立微分方程的数学模型,对生物多种群之间各种关系进行 关键词:生物种群,数量,关系,互相作用,竞争 问题重述: 生物学的研究对维持地球生态平衡有着不可替代的作用,是可持续发展的重要组成部分!地球上的物种一直只在减少,现在也有很多物种濒临灭绝,因此对

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

数学建模国一论文

数学建模比赛预选赛 B题温室中的绿色生态臭氧病虫害防治2009年12月,哥本哈根国际气候大会在丹麦举行之后,温室效应再次成为国际社会的热点。如何有效地利用温室效应来造福人类,减少其对人类的负面影响成为全社会的聚焦点。 臭氧对植物生长具有保护与破坏双重影响,其中臭氧浓度与作用时间是关键因素,臭氧在温室中的利用属于摸索探究阶段。 假设农药锐劲特的价格为10万元/吨,锐劲特使用量10mg/kg-1水稻;肥料100元/亩;水稻种子的购买价格为5.60元/公斤,每亩土地需要水稻种子为2公斤;水稻自然产量为800公斤/亩,水稻生长自然周期为5个月;水稻出售价格为2.28元/公斤。 根据背景材料和数据,回答以下问题: (1)在自然条件下,建立病虫害与生长作物之间相互影响的数学模型;以中华稻蝗和稻纵卷叶螟两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析。 (2)在杀虫剂作用下,建立生长作物、病虫害和杀虫剂之间作用的数学模型;以水稻为例,给出分别以水稻的产量和水稻利润为目标的模型和农药锐劲特使用方案。 (3)受绿色食品与生态种植理念的影响,在温室中引入O 3 型杀虫剂。建立 O 3对温室植物与病虫害作用的数学模型,并建立效用评价函数。需要考虑O 3 浓度、 合适的使用时间与频率。 (4)通过分析臭氧在温室里扩散速度与扩散规律,设计O 3 在温室中的扩散方案。可以考虑利用压力风扇、管道等辅助设备。假设温室长50 m、宽11 m、高3.5 m,通过数值模拟给出臭氧的动态分布图,建立评价模型说明扩散方案的优劣。 (5)请分别给出在农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析报告,字数800-1000字。

关于电梯系统优化问题的数学模型

关于电梯系统优化问题 的数学模型 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

关于电梯系统优化问题的数学模型 摘要 在高层商务楼里,电梯承担着将人和货物运送到各个楼层的任务。在当今社会,工作生活节奏愈发加快,因而电梯系统的运行效率对人们的生活的影响不可忽视。目前的高层商务楼等大多数高层建筑中,一般都使用单井道单轿厢或者单井道双轿厢两种模式的电梯,本文就结合这两种模式,根据实际情况将问题分为两种情况考虑,重点讨论了将电梯运行效率最大化的方法,建立了相关模型,并给出了相应的优化参数。 本文将电梯系统的优化分为高峰期和非高峰期两种时期进行讨论。高峰期时通过对问题的分析,发现可以设置电梯区间以尽可能减少目标层较高的乘客占用目标层较低的乘客的电梯资源,根据这一思想,我们将其简化为排队问题来考虑,并据此建立了排队模型,通过实地统计数据以及C语言的编程,能够较好地解出模型,得到在高峰期时将一部分电梯区间的顶层设为第14层左右的优化方案。非高峰期时通过对这一时期特点的分析,以每台电梯在无乘梯需求时自动停留的楼层为着眼点,采用枚举的方法编程求解,得到在非高峰期将电梯均匀分布在楼层中的优化方案。最后,我们对模型参数进行了灵敏度的分析,发现虽然模型对数据的依赖性较强,但最优方案不随参数的波动而变化,所以这个结果还是可信的。 本文提出的方案直观易行,且几乎不需额外的经济投入,可行性很强,具有较好的参考价值。 一问题重述 在高层商务楼里,电梯承担着将人和货物运送到各个楼层的任务。目前的高层商务楼等大多数高层建筑中,主要使用单轿厢和双轿厢两种电梯运行系统。单轿厢电梯在向上运行时,只有满足了所有“上行请求”时才会开始满足“下行请求”,反之亦然;而对于双轿厢电梯,乘客在进入轿厢前就通过按钮面板选择了要停靠的楼层,系统迅速整合分析接收到的流量数据,并调度合适的轿箱来应接乘客。 现有一座商务楼,设计地上层数为28层,地下停车楼2层,每层的建筑面积为1500平方米,楼内有6个用于客梯的电梯井道。电梯按照商务楼建筑面积15至20平方米每人的标准来设计。第1层的楼层高为4.8米,其余层均为3.2米,设计电梯的平均运行速度1.6米/秒。我们的任务是: 1.建立一个合适的单轿箱客梯系统的运行方案,使尽可能地提高电梯系统的运行效率; 2.分别在运行的高峰期与非高峰期,对双轿箱的电梯系统与单轿箱的电梯系统的运行效率等进行对比分析,评价两种方案的优劣性,估计双轿厢系统运行效率的提高率。 二基本假设 1.电梯载客量为13人,且不超载。13人载客量是国内最常见的一种电梯规格,并且为了乘梯安全,电梯不应超载。 2.电梯在每层停留的时间相等。在假设1成立的前提下,电梯乘客可以迅速有序地离开电梯,电梯停留时间受离开人数的影响可以忽略不计。

数学建模优秀论文(附有解题程序)

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地, 放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假 设并建立数学模型说明这个现象。(15分) 解:对于此题,如果不用任何假设很难证明, 因此对这个问题我们假设 : (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以长方 桌的中心为坐标原点作直角坐标系如图所示,方桌 的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始 位置在与x 轴平行,再假设有一条在x 轴上的线ab, 则ab 也与A 、B ,C 、D 平行。当方桌绕中心0旋转 时,对角线 ab 与x 轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地 面的距离是不确定的。为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距 离之和,它们的值由θ唯一确定。由假设(1),()f θ,()g θ均为θ的连续函数。 又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。不妨设 (0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转), 于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有 00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=-, 显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->, 由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。 又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿 舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。 (15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

优化问题的数学模型

一. 管理科学的定义 管理科学是对与定量因素有关的管理问题通过应用科学的方法进行辅助管理决策制定的一门学科. (1) 定量因素(2) 科学的方法(3) 辅助决策制定 二.用管理科学的方法解决问题的基本步骤. (1) 提出问题,并根据需要收录有关数据信息。管理科学工作者向管理者咨询、鉴别所 要考虑的问题以确定合理的目标,然后根据要求收集一些关键数据,并对数据作相应的分析。 (2) 建立模型,引入决策变量,确定目标函数(约束条件)。建模过程是一项创造性的 工作,在处理实际问题时,一般没有一个唯一正确的模型,而是有多种不同的方案。建模是一个演进过程,从一个初始模型往往需要不断的完善渐渐演化成一个完整的数学模型。 (3) 从模型中形成一个对问题求解的算法。要在计算机上运行数学程序对模型进行求 解,一般情况下能找到对模型求解的标准软件。例如,对线性规划问题已有Excel 、Cplex 、Lingo 等标准软件求解。有时要自己编写程序。 (4) 测试模型并在必要时修正。在模型求解后,需要对模型进行检验,以保证该模型能 准确反映实际问题,需要检验模型提供的解是否合理,所有主要相关因素是否已考虑,当有些条件变化时,解如何变化等。 (5) 应用模型分析问题以及提出管理建议。对模型求解并分析后,将相应的最优方案提 交给管理者,由管理者做出决策。管理科学工作者并不作管理决策,其研究只是对涉及的问题进行分析并向管理者提出建议。管理者还要考虑管理科学以外的众多因素才能做出决策。 (6) 帮助实施管理决策。建议被管理者采纳以后,一旦做出管理决策一般要求帮助监督 决策方案的实施。 新问题, 新模型, 新算法, 新应用. 三.优化问题的数学模型 1212max(min)(,, ,) (,,)0..1,2,n j n Z f x x x g x x x s t j m =≤?? =? 由于,j f g 是非线性函数时,此问题是非线性优化问题, 求解较复杂。我们主要讨论线性优化问题,常见的形式:混合整数规划 (1) max 0 0 Z CX hY AX GY b X Y =++≤≥≥取整数 其中111,,,,m n m p m n p A G b C h ?????,不失一般性,我们假定,,,,C h A G b 都是整数矩阵。 当0p =时,(1)为纯整数规划,当0n =时,(1)为线性规划。

数学建模课程设计——优化问题

在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。本文针对现有的条件和题目的要求进行讨论。在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。 对于问题一: 我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=15 1j j j p y =∑,根据题目要求建立约束条件,并用数学软件LINGO 对其模型求解,得到最优解。 对于问题二: 同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=15 1j j j k p 上述模型得到最优解结果如下: 关键字:基站; 0-1整数规划;lingo 软件

1 问题的重述.........................3 2 问题的分析.........................4 3 模型的假设与符号的说明...................5 3.1模型的假设...................... 5 3.2符号的说明...................... 5 4 模型的建立及求解...................... 5 4.1模型的建立...................... 5 4.2 模型的求解...................... 6 5 模型结果的分析.......................7 6 优化方向..........................7 7 参考文献..........................8 8、附录........................... 9

数学建模优秀论文

温室中的绿色生态臭氧病虫害防治 摘要:“温室中的绿色生态臭氧病虫害防治”数学模型是通过臭氧来探讨如何有效地利用温室效应造福人类,减少其对人类的负面影响。由于臭氧对植物生长具有保护与破坏双重影响,利用数学知识联系实际问题,作出相应的解答和处理。问题一:根据所掌握的人口模型,将生长作物与虫害的关系类似于人口模型的指数函数,对题目给定的表1和表2通过数据拟合,在自然条件下,建立病虫害与生长作物之间相互影响的数学模型。因为在数据拟合前,假设病虫害密度与水稻产量成线性关系,然而,我们知道,当病虫害密度趋于无穷大时,水稻产量不可能为负值,所以该假设不成立。从人口模型中,受到启发,也许病虫害密度与水稻产量的关系可能为指数函数,当拟合完毕后,惊奇地发现,数据非常接近,而且比较符合实际。接下来,关于模型求解问题,顺理成章。问题二,在杀虫剂作用下,要建立生长作物、病虫害和杀虫剂之间作用的数学模型,必须在问题一的条件下作出合理假设,同时运用数学软件得出该模型,最后结合已知数据可算出每亩地的水稻利润。对于农药锐劲特使用方案,必须考虑到锐劲特的使用量和使用频率,结合表3,农药锐劲特在水稻中的残留量随时间的变化,可确定使用频率,又由于锐劲特的浓度密切关系水稻等作物的生长情况,利用农业原理找出最适合的浓度。问题三,在温室中引入O3型杀虫剂,和问题二相似,不同的是,问题三加入了O3的作用时间,当O3的作用时间大于某一值时才会起作用,而又必须小于某一值时,才不会对作物造成伤害,建O3对温室植物与病虫害作用的数学模型,也需用到数学建模相关知识。问题四,和实际联系最大,因为只有在了解O3的温室动态分布图的基础上,才能更好地利用O3。而该题的关键是,建立稳定性模型,利用微分方程稳定性理论,研究系统平衡状态的稳定性,以及系统在相关因素增加或减少后的动态变化,最后。通过数值模拟给出臭氧的动态分布图。问题五,作出农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析。 关键词:绿色生态生长作物杀虫剂臭氧

最优化问题的数学模型及其分类

最优化问题的数学模型及其分类 例1.1.1 产品组合问题 某公司现有三条生产线用来生产两种新产品,其主要数据如表1-1所示。请问如何生产可以让公司每周利润最大? 表1-1 设每周生产的产品一和产品二 的产量分别为1x 和2x ,则每周的生产利润为:2153x x z +=。由于每周的产品生产受到三条生产线的可用时间的限制,因此1x ,2x 应满足以下条件: ?????? ?≥≤+≤≤0, 18231224212121 x x x x x x 故上述问题的数学模型为

2153max x x z += . .t s ?????? ?≥≤+≤≤0, 18231224212121 x x x x x x 其中max 是最大化(maximize )的英文简称,??t s 是受约束于(subject to )的简写。 例1.1.2 把一个半径为1的实心金属球熔化后,铸成一个 实心圆柱体,问圆柱体取什么尺寸才能使它的表面积最小? 设圆柱体的底面半径为r ,高为h ,则该问题的数学模型为: ??? ??=? ?+=ππππ3 422min 22 h r t s r rh S 其中min 是最小化(minimize )的简写。 通过以上二例,可以看出最优化问题的数学模型具有如下结构: (1) 决策变量(decision variable ):即所考虑问题 可归结为优选若干个被称为参数或变量的量 n x x x ,,,21 ,它们都取实数值,它们的一组值构 成了一个方案。 (2) 约束条件(constraint condition ):即对决策

变量n x x x ,,,21 所加的限制条件,通常用不等式或等式表示为: ()(),,,2,1, 0,,,,,2,1, 0,,,2121l j x x x h m i x x x g n j n i ===≥ (3) 目标函数(objective function )和目标:如使 利润达到最大或使面积达到最小,通常刻划为极大化(maximize )或极小化(minimize )一个实值函数()n x x x f ,,21 因此,最优化问题可理解为确定一组决策变量在满足约束条件下,寻求目标函数的最优。 注意到极大化目标函数()n x x x f ,,21相当于极小化 ()n x x x f ,,21-,因此,约束最优化问题的数学模型一般可 表示为: () ()()()?? ? ??===≥??l j x x x h m i x x x g t s x x x f n j n i n ,,2,1,0,,,1.1.1,,2,1,0,,,,,min 212121 若记()T n x x x x ,,21=,则(1.1.1)又可写成:

数学建模 四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

多种群的数学模型

自然界的多种群模型分析 小组成员:杨宏志 09053055 曾云霖 09053057 赵恒宇 09053060 目录 摘要第3页 关键词第3页 问题重述第3页 符号说明第4页 基本假设第4页 问题分析第4页 正文第5页 总结与思考第12页 参考文献第13页 (注:正文中包括对模型的建立,模型的具体检验,模型的改进,改进模型的检验以及问题的扩展深化。) 自然界的多种群模型分析

摘要:在我们生活的大自然中,有着太多太多的秩序和规则。种群之间的你争我斗,弱肉强食也是非常激烈。种群,顾名思义就是指同一种生物的一个集合。不同种群之间的关系大致分为四种:捕食与被捕食关系,互利共生关系,相互竞争关系和寄生与寄主关系。我们这次的建模就是围绕着种群之间的关系来展开的,下面我将从这几个方面来进行分类讨论,由于寄生与寄主的关系不是很常见,关系也比较简单,在此便不再赘述。 捕食与被捕食关系:这种关系很简单,大家也能很容易地理解,通俗地解释,就是指一种生物以另一种生物为食,举个例子大家也许会更容易地理解。比如说狼和羊的关系,狼是捕食者,羊是被捕食者,狼以羊为食,是羊的天敌。 互利共生关系:指两种生物共同生活在一个区域有助于提高另一种生物的种群密度,假如其中一种生物的数量减少,也会影响另一种生物的数量,使其数量减少。比如草地和森林优势植物的根多与真菌共生形成菌根,多数有花植物依赖昆虫传粉,大部分动物的消化道也包含着微生物群落,最典型的就是大豆与根瘤菌。大豆给根瘤菌提供养分,根瘤菌给大豆提供氮元素。 相互竞争关系:有种内和种间两种竞争方式。这里是指两种共居一起,为争夺有限的营养、空间和其他共同需要而发生斗争的种间关系。竞争的结果,或对竞争双方都有抑制作用,大多数的情况是对一方有利,另一方被淘汰,一方替代另一方。举个例子,牛和羊生活在共同的一片草地上,因为这两种生物都以草为食,它们之间不存在其他关系,所以它们之间是竞争关系。 以上就是三种种群之间的关系,下面我们就从这三个方面对物种种群密度的变化进行分析。在以下的讨论中我们将建立微分方程的数学模型,对生物多种群之间各种关系进行 关键词:生物种群,数量,关系,互相作用,竞争

数学建模零件参数的优化设计

零件参数的优化设计 摘要 本文建立了一个非线性多变量优化模型。已知粒子分离器的参数y由零件参 数)7 2,1 ( i x i 决定,参数 i x的容差等级决定了产品的成本。总费用就包括y偏 离y0造成的损失和零件成本。问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。经过对模型以及matlab代码的综合优化,最终程序运行时间仅为3.995秒。最终计算出的各个零件的标定值为: i x={0.0750,0.3750,0.1250,0.1200,1.2919,15.9904,0.5625}, 等级为:B B C C B B B d, , , , , , 一台粒子分离器的总费用为:421.7878元 与原结果相比较,总费用由3074.8(元/个)降低到421.7878(元/个),降幅为86.28%,结果是令人满意的。 为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。

关键字:零件参数 非线性规划 期望 方差 一、问题重述 一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。零件参数包括标定值和容差两部分。进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。 进行零件参数设计,就是要确定其标定值和容差。这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。 试通过如下的具体问题给出一般的零件参数设计方法。 粒子分离器某参数(记作y )由7个零件的参数(记作x 1,x 2,...,x 7)决定,经验公式为: 7616 .1242 3 56 .02485 .01235136.0162.2142.174x x x x x x x x x x x Y y 的目标值(记作y 0)为1.50。当y 偏离y 0+0.1时,产品为次品,质量损失为1,000元;当y 偏离y 0+0.3时,产品为废品,损失为9,000元。 零件参数的标定值有一定的容许范围;容差分为A、B、C三个等级,用与标定值的相对值表示,A等为+1%,B等为+5%,C等为+10%。7个零件参数标定值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无此等级零件):

生态学(中文版)

要点 生态学的定义 生态学是研究有机体与其环境相互作用的科学。“环境”是物理环境(温度、可利用水等)和生物环境(对有机体的、来自其他有机体的任何影响)的结合体。 个休、种群、群落和生态系统 生态学所研究的有4个可辨别尺度的亚部分:(i)探讨个体对其环境的反应;(ii)研究单个物种的种群对于环境的反应,和探讨诸如多度(abundance)及其波动等的过程;(iii)群落(出现在确定面积中的种群集合)的组成和结构;(iv)生态系统(群落与环境的非生物成分的结合)内的各种过程,例如能流、食物网和营养物的循环等。 A2 生态学的10个规律 要点 这些规律是什么? 生态学的授课实践使得本书作者能够觉察到大学生学习生态学时常常陷入的某些一般性错误。本目录是为克服这些错误而设计的,既不全面,也不互相排斥,但是我们希望它将作为有用的指南。 规律1:生态学是科学 生态学是一门纯科学学科,目标是了解有机体与其广阔环境的相互关系。分清楚科学观点与生态学知识的政治和社会影响这一件事是十分重要的。 规律2:生态学只有按照进化论才可理解 有机体巨大的多样性,以及其形态学、生理学和行为的变异的丰富性,全都是亿万年进化的结果。这个进化历史对于每一个个体都留下了不能去除的影响。我们今天发现的种种模式,只有按照进化论的观点才可能有意义。 规律3:“对动物种有利”现象并不存在 对于那些看起来对个体是花费的有机体行为模式,认为其出现是由于“对物种有利”的这种想法是一个非常普遍的误解。这是绝对和完全错误的。自然选择将会有利于那些传给大多数后裔的基因,即使这些基因有可能导致物种种群大小的下降。 规律4:基因和环境都很重要 有机体自己所处的环境,对于它在开放的各种选择中决定取舍上,具有重要的作用。决定有权体构造的基因,同样具有根本的重要性。这两方面因素的基本性质及其相互作用,对于理解生态学都是很重要的。规律5:理解复杂性要求模型 生态学是一复杂的对象,几乎每一个尺度都有大量变异——亿万个种,每种有大量基因变异,在复杂和动态的环境中有变化着的数量和随时间而改变的行为。为了理解它,必需清楚的认明特异问题,然后形成可以检验的假设。以数学的思想方法构造假说常常是很有用的,可以躲开在语言模型中不能避免的含糊不清和混淆。数学模型在生态学里被广泛的应用。 规律6:“讲故事”是危险的 在打算解释生态学种种模式或相互关系的时候,人们很容易滑到虚假世界之中,每一个观察都很容易的被某特设的断言(所谓的“讲故事”)所解释了。无论如何,总想去推进假设实际上是应该避免的。 规律7:要有分层次的解释 对于任何观察,常常可以识别出一个直接的原因,但这种因果解释往往是资料不足的,我们需要进一步探索,以达到更完全的抓住情况。即使是现象已经被“解释”了,更进一步和更深入的解释也是很好的,它允许我们看见更完全的情景。 规律8:有机体具有很多限制 有机体表现出来的形态、功能和环境适应力的总多样性是令人惊叹的,每个个体(和每一个种,但较少程度)则在相对较小的约束范围中运转。约束基本上有两类:(i)物理的,(ii)进化的。由于这些约束,进化从来就没有达到“完善”过,有机体基本上是许多妥协的杂烩。

高中生物中生物数学模型的应用

高中生物中生物数学模型的应用【】数学模型的教学方法在现代科学的教育中非常受重视。数学模型,是把客观生物学现象与概念翻译成一套反映研究对象的数学关系,通过数学符号以及方程式来进行表达和运算。在现今高中的生物学教学中,引导学生们去构建数学模型,这种方式有利于培养学生通过现象去揭示本质的洞察力,从而更好地深化对于知识的理解。 【】数学生物模型高中生物学教学应用 《普通高中生物课程标准》里要求学生们能领悟数学模型建立的科学方法和其在科学研究中的应用。在高中生物教学中如果可以有效合理地去开展数学模型在生物教学中的应用,就可以在一定程度上培养学生们在解决实际的生物学问题时对建立数学模型的方法的应用。另外也有益于学生们对数学模型思想方法的理解,本文列举以下一些常见的例题来阐述高中生物学教学中对于数学模型的应用。 一、在高中生物教学中数学模型的归类 高中生物学中的数学模型主要分为两类,一类是确定性的数学模型,一类是随机性的数学模型。下面介绍这两类数学模型: 确定性的数学模型是用各种方程式、关系式、代数方程、微分方程和积分方程等来进行表示。这类数学模型是目前最为普遍的一种数学模型,即运用数学的方法来研究和描述必然

性的现象。对于复杂的生物学问题,我们可以借助确定性的数学模型来转换成相关的数学问题。生命物质的运动过程可以运用确定性的数学模型来进行定量的描述。我们可以对数学模型进行逻辑推理以及求解运算,从而获得从客观事物上总结出有关的结论,以此实现研究生命现象的目的。例如《分子与细胞中》中,细胞的无氧呼吸方程式,有氧呼吸方程式和光合作用方程式。 生物现象具有随机性和偶然性。随机性数学模型,即用过程论,概率论和数理统计得一些方法研究和描述一些随机的现象。不过,同一事件或随机事件重复多次的出现可以表明,其中的变化是有规律可循的。所以,目前在研究生物学时我们常用的方法就是运用过程论,概率论以及数理统计的方法来建立随机性的数学模型。各种各样的统计分析方法现在已经成为研究生物学的工作和生产实践的常用手段,而生物统计学是生物数学的模型发展较早的一个分支。 例如在《遗传与进化》中,在黄色圆粒豌豆和绿色皱粒豌豆的杂交实验中,果蝇的杂交实验图解。在《稳态与环境》中,HIV浓度和T细胞数量关系,某岛屿上环颈雉的种群数量增长,大草履虫的种群增长曲线和东亚飞蝗的种群数量波动等。 二、生物数学模型的建立步骤 我们建立生物数学模型的常用步骤是:建立数学模型前的准

相关主题
文本预览
相关文档 最新文档