当前位置:文档之家› 双线性插值matlab程序

双线性插值matlab程序

双线性插值matlab程序
双线性插值matlab程序

灰度级插值之双线性原理与实现

(陈云川ybc2084@https://www.doczj.com/doc/fe7983796.html, UESTC,CD)

1 原理简述

在对图像进行空间变换的过程中,典型的情况是在对图像进行放大处理的时候,图像会出现失真的现象。这是由于在变换之后的图像中,存在着一些变换之前的图像中没有的像素位置。为了说明这个问题,不妨假设有一副大小为64x64的灰度图像A,现在将图像放大到256x256,不妨令其为图像B,如图1所示。显然,根据简单的几何换算关系,可以知道B图像中(x,y)处的像素值应该对应着A图像中的(x/4,y/4)处的象素值,即

B(x,y) = A(x/4,y/4) (式1)

对于B中的(4,4),(4,8),(4,16)…(256,256)这些位置,通过式1就可以计算出其在A 中的位置,从而可以得到灰度值。但是,对于B中的(1,1),(1,2),(1,3)…等等这些坐标点而言,如果按照式1计算的话,那么它们在A中对应的坐标不再是整数。比如,对于B中的坐标点(1,1),其在A中的对应坐标就变成了(0.25,0.25)。对于数字图像而言,小数坐标是没有意义的。因此,必须考虑采用某种方法来得到B中像素点在A中对应位置上的灰度级。

处理这一问题的方法被称为图像灰度级插值。常用的插值方式有三种:最近邻域插值、双线性插值、双三次插值。理论上来讲,最近邻域插值的效果最差,双三次插值的效果最好,双线性插值的效果介于两者之间。不过对于要求不是非常严格的图像插值而言,使用双线性插值通常就足够了。

本文中将采用matlab实现一个双线性插值的程序。

双线性插值的原理如图2所示。图像之间坐标映射有两种方式:如果是从原图像的坐标映射到目标图像,称为前向映射,反之则称为后向映射。显然,双线性插值采用的是后向映射方式。

下面对图2的具体含义进行说明。首先,根据几何关系,从B图像中的坐标(x,y)得到A图像中的坐标(x/4,y/4),但是,映射得到的这个坐标(x/4,y/4)并没有刚好位于A 图像中的整数坐标上,而是映射到了四个像素坐标(a,b)、(a+1,b)、(a,b+1)、(a+1,b+1)所围成的矩形之间,其中,a、b是A图像的整数坐标。现在的问题就是如何根据A(a,b)、A(a+1,b)、A(a,b+1)、A(a+1,b+1)这四个点上的灰度级求出A(x/4,y/4)处的灰度级。双线性插值技术采用的方法是:假设A图像的灰度级变化在纵向方向上是线性变化的,这样根据直线方程或者几何比例关系就能够求得(a,y/4)和(a+1,y/4)坐标处的灰度级

A(a,y/4)和A(a+1,y/4)。然后,再假设在((a,y/4),A(a,y/4))和(a+1,y/4),A(a+1,y/4))这两点所确定的直线上,灰度级仍然是线性变化的。求出直线方程,于是就可以求得(x/4,y/4)处的灰度级A(x/4,y/4)。这就是双线性插值的基本思路。其中用到的两个基本假设是:首先灰度级在纵向方向上是线性变化的,然后假定灰度级在横向方向上也是线性变化的。

图 1 图像缩放示意图

图 2 双线性插值示意图

2 结果

测试结果如图3所示:

3 小结

通过该实验,表明双线性插值得到的图像效果是比较好的。能够避免采用最近领域插值方式时可能存在的图像模糊、块状失真等问题。

尽管程序实现了双线性插值的基本功能,但是程序并不完善。首先,此程序没有考虑彩色图像中多个分量的处理,通用性欠佳;其次,在放大倍数比较高的时候,图像失真将会比较严重,此时应该考虑使用更高阶的插值算法。

4 附:源代码

% BILINEAR-INTERPLOT SOUCE-IMAGE TO GET A DESTINATE-IMAGE

% MAXIMUM SCALOR == 5.0, MINIMUM SCALOR == 0.2

% read source image into memory, and get the primitive rows and cols

I=imread('f:\picture\bird.jpg');

[nrows,ncols]=size(I);

% acquire scale-factor, the range is 0.2-5.0

K = str2double(inputdlg('please input scale factor (must between 0.2 - 5.0)', 'INPUT scale factor', 1, {'0.5'}));

% Validating

if (K < 0.2) | (K > 5.0)

errordlg('scale factor beyond permitted range(0.2 - 5.0)', 'ERROR');

error('please input scale factor (must between 0.2 - 5.0)');

end

% display source image

imshow(I);

% output image width and height are both scaled by factor K

width = K * nrows;

height = K * ncols;

J = uint8(zeros(width,height));

% width scale and height scale

widthScale = nrows/width;

heightScale = ncols/height;

% bilinear interplot

for x = 5:width - 5

for y = 5:height - 5

xx = x * widthScale;

yy = y * heightScale;

if (xx/double(uint16(xx)) == 1.0) & (xx/double(uint16(xx)) == 1.0)

J(x,y) = I(int16(xx),int16(yy));

else % a or b is not integer

a = double(uint16(xx)); % (a,b) is the base-dot

b = double(uint16(yy));

x11 = double(I(a,b)); % x11 <- I(a,b)

x12 = double(I(a,b+1)); % x12 <- I(a,b+1)

x21 = double(I(a+1,b)); % x21 <- I(a+1,b)

x22 = double(I(a+1,b+1)); % x22 <- I(a+1,b+1)

J(x,y) = uint8( (b+1-yy) * ((xx-a)*x21 + (a+1-xx)*x11) + (yy-b) * ((xx-a)*x22 +(a+1-xx) * x12) ); % calculate J(x,y)

end

end

end

% show the interplotted image

imwrite(J, 'bird2.jpg', 'jpg');

figure;

imshow(J);

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

matlab插值法实例

Several Typical Interpolation in Matlab Lagrange Interpolation Supposing: If x=175, while y=? Solution: Lagrange Interpolation in Matlab: function y=lagrange(x0,y0,x); n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end input: x0=[144 169 225] y0=[12 13 15] y=lagrange(x0,y0,175) obtain the answer: x0 = 144 169 225 y0 = 12 13 15 y = 13.2302

Spline Interpolation Solution : Input x=[ 1 4 9 6];y=[ 1 4 9 6];x=[ 1 4 9 6];pp=spline(x,y) pp = form: 'pp' breaks: [1 4 6 9] coefs: [3x4 double] pieces: 3 order: 4 dim: 1 output : pp.coefs ans = -0.0500 0.5333 -0.8167 1.0000 -0.0500 0.0833 1.0333 2.0000 -0.0500 -0.2167 0.7667 4.0000 It shows the coefficients of cubic spline polynomial , so: S (x )=, 169,3)9(1484.0)9(0063.0)9(0008.0,94,2)4(2714.0)4(0183.0)4(0008 .0, 41,1)1(4024.0)1(0254.0)1(0008.0232 3 23≥≤+-+---≥≤+-+---≥≤+-+---x x x x x x x x x x x x Newton’s Interpolation Resolve 65 Solution: Newton’s Interpolation in matlab : function yi=newint(x,y,xi); n=length(x); ny=length(y); if n~=ny error end Y=zeros(n);Y(:,1)=y';

lagrange插值分段线性插值matlab代码

Lagrange插值: x=0:3; y=[-5,-6,-1,16]; n=length(x); syms q; for k=1:n fenmu=1; p=1; for j=1:n if(j~=k) fenmu=fenmu*(x(k)-x(j)) p=conv(p,poly(x(j))) end end c(k,:)=p*y(k)/fenmu end a=zeros(1,n); for i=1:n for j=1:n a(i)=a(i)+c(j,i) end end 输出结果: fenmu = -1 p = 1 -1 fenmu = 2 p = 1 -3 2 fenmu = -6 p = 1 -6 11 -6 c = 0.8333 -5.0000 9.1667 -5.0000 fenmu = 1 p = 1 0 fenmu =

-1 p = 1 - 2 0 fenmu = 2 p = 1 -5 6 0 c = 0.8333 -5.0000 9.1667 -5.0000 -3.0000 15.0000 -18.0000 0 fenmu = 2 p = 1 0 fenmu = 2 p = 1 -1 0 fenmu = -2 p = 1 -4 3 0 c = 0.8333 -5.0000 9.1667 -5.0000 -3.0000 15.0000 -18.0000 0 0.5000 -2.0000 1.5000 0 fenmu = 3 p = 1 0 fenmu = 6 p = 1 -1 0 fenmu = 6 p = 1 -3 2 0 c = 0.8333 -5.0000 9.1667 -5.0000 -3.0000 15.0000 -18.0000 0 0.5000 -2.0000 1.5000 0 2.6667 -8.0000 5.3333 0 a =

matlab实现数值分析报告插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要求是计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

Matlab中插值函数汇总和使用说明

MATLAB中的插值函数 命令1:interp1 功能:一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点 xi:插值点 Yi:插值点 格式 (1) yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。 (2) yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3) yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,'extrap') 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。

插值算法与matlab代码

Matlab中插值函数汇总和使用说明 MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MA TLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值 注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13, 推测中午12点(即13点)时的温度. x=0:2:24; y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; a=13; y1=interp1(x,y,a,'spline') 结果为:27.8725 若要得到一天24小时的温度曲线,则: xi=0:1/3600:24; yi=interp1(x,y,xi, 'spline'); plot(x,y,'o' ,xi,yi) 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点

xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。 (2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,'extrap') 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1. 2.>>x = 0:10; y = x.*sin(x); 3.>>xx = 0:.25:10; yy = interp1(x,y,xx); 4.>>plot(x,y,'kd',xx,yy) 复制代码 例2 1. 2.>> year = 1900:10:2010; 3.>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 4.249.633 256.344 267.893 ]; 5.>>p1995 = interp1(year,product,1995) 6.>>x = 1900:1:2010; 7.>>y = interp1(year,product,x,'pchip'); 8.>>plot(year,product,'o',x,y) 复制代码 插值结果为: 1.

拉格朗日插值matlab程序

拉格朗日插值的调用函数 function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); L=0.0; for j=1:n T=1.0; for k=1:n if k~=j T=T*(z-x0(k))/(x0(j)-x0(k)); end end L=T*y0(j)+L; end y(i)=L; end 四个图在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.4:1]; y0=1./(1+25*x0.^2); y1=lagrange(x0,y0,x); x0=[-1:0.2:1]; y0=1./(1+25*x0.^2); y2=lagrange(x0,y0,x); x0=[-1:0.1:1]; y0=1./(1+25*x0.^2); y3= lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y1,'-b',x,y2,'-r',x,y3,'-r')

l5和fx在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.4:1]; y0=1./(1+25*x0.^2); y1=lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y1,'-b') l10和fx在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.2:1]; y0=1./(1+25*x0.^2); y2= lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y2,'-b') l20和fx在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.1:1]; y0=1./(1+25*x0.^2); y3= lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y3,'-b')

matlab插值法,迭代法程序

数值分析作业 姓名王建忠 学号132080202006 学院能源与动力工程 专业机械电子工程 2013年12月16日

https://www.doczj.com/doc/fe7983796.html,grange插值多项式程序 function f=nalagr(x,y,xx) %x为节点向量 %y为节点函数值 %xx是插值点 syms s if(length(x)==length(y)) n=length(x); else disp('x和y的维数不相等!'); return; end f=0.0; for(i=1:n) l=y(i); for(j=1:i-1) l=l*(s-x(j))/(x(i)-x(j)); end; for(j=i+1:n) l=l*(s-x(j))/(x(i)-x(j));%计算拉格朗日基函数end; f=f+l;%计算拉格朗日插值函数 simplify(f); if(i==n) if(nargin==3) f=subs(f,'s');%计算插值点的函数值else f=collect(f);%将插值多项式展开 f=vpa(f,6);%将插值多项式的系数化成6位精度的小数 end end end >>x=[-2,-1,0,1];%已知节点向量y=[3,1,1,6];%节点函数值向量 f=nalagr(x,y) f= 0.5*s^3+ 2.5*s^2+ 2.0*s+ 1.0 >>f=nalagr(x,y,0) f=1 >>

2.牛顿插值多项式程序 function[p2,z]=newTon(x,y,t) %输入参数中x,y为元素个数相等的向量,t为待估计的点,可以为数字或向量。%输出参数中p2为所求得的牛顿插值多项式,z为利用多项式所得的t的函数值。 n=length(x); chaS(1)=y(1); for i=2:n x1=x;y1=y; x1(i+1:n)=[]; y1(i+1:n)=[]; n1=length(x1); s1=0; for j=1:n1 t1=1; for k=1:n1 if k==j continue; else t1=t1*(x1(j)-x1(k)); end end s1=s1+y1(j)/t1; end chaS(i)=s1; end b(1,:)=[zeros(1,n-1)chaS(1)]; cl=cell(1,n-1); for i=2:n u1=1; for j=1:i-1 u1=conv(u1,[1-x(j)]); cl{i-1}=u1; end cl{i-1}=chaS(i)*cl{i-1}; b(i,:)=[zeros(1,n-i),cl{i-1}]; end p2=b(1,:); for j=2:n p2=p2+b(j,:); end if length(t)==1 rm=0;

matlab计算拉格朗日牛顿及分段线性插值的程序

《工程常用算法》综合实践作业二 完成日期: 2013年 4月 14 日 班级 学号 姓名 主要工作说明 自评成绩 0718 2010071826 崔洪亮 算式与程序的编写 18 0718 2010071815 侯闰上 流程图的编辑,程序的审查 0718 2010071809 赵化川 报告的整理汇总 一.作业题目:三次样条插值与分段插值 已知飞机下轮廓线数据如下: x 3 5 7 9 11 12 13 14 15 y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 飞机下轮廓线形状大致如下图所示: 要求分别用拉格朗日插值法、Newton 插值法、分段线性插值法和三次样条插值法计算x 每改变0.5时y 的值,即x 取 0.5, 1, 1.5, … , 14.5 时对应的y 值。比较采用不同方法的计算工作量、计算结果和优缺点。 二.程序流程图及图形 1.拉格朗日插值法 开始 x,y,x0 Length (x)==l Ength (y)? n=length (x) i=1:n,l=1。 j=1:i-1&j=i+1:n l=l.*(x0-x(j)/x(i)-x(j) f=f+l*y(i) 结束 否 是 机翼 下轮廓线

2.牛顿插值法 开始 x,y,xi Length(x)==l ength(y)? n=length(x)Y=zeros (n),Y (:1)=y,f=0 a=1:n-1,b=1:n-a,Y(b,a+1)=(Y (b+1,a)-Y(b,a))/(x (b+a)-x(b)) i=1:n,z=1 结束 j=1:i-1,z=z.*(xi-x(j)) f=f+Y(1,i)*z 否 是 3.分段线性插值法 开始 x ,y ,x0 length (x )==length(y)? k=1:n-1 x(k)<=x0&x0《=x(k+1) temp=x(k)-x(k+1) f=(x0-x(k+1))/temp*y(k)+(x0-x(k))/(-temp)*y(k+1) 结束 否否 是 是 三.matlab 程序及简要的注释(m 文件) 1.拉格朗日插值法 2.牛顿插值法 function f=newdun(x,y,xi) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量 function f=lang(x,y,x0) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量

MATLAB三次样条插值之三转角法

非常类似前面的三弯矩法,这里的sanzhj函数和intersanzhj作用相当于前面的sanwanj和intersanwj,追赶法程序通用,代码如下。 %%%%%%%%%%%%%%%%%%% function [newu,w,newv,d]=sanzhj(x,y,x0,y0,y1a,y1b) % 三转角样条插值 % 将插值点分两次输入,x0 y0 单独输入 % 边值条件a的一阶导数 y1a 和b的一阶导数 y1b n=length(x);m=length(y); if m~=n error('x or y 输入有误,再来'); end v=ones(n-1,1); u=ones(n-1,1); d=zeros(n-1,1); w=2*ones(n-1,1); h0=x(1)-x0; h=zeros(n-1,1); for k=1:n-1 h(k)=x(k+1)-x(k); end v(1)=h0/(h0+h(1)); u(1)=1-v(1); d(1)=3*(v(1)*(y(2)-y(1))/h(1)+u(1)*((y(1)-y0))/h0); % for k=2:n-1 v(k)=h(k-1)/(h(k-1)+h(k)); u(k)=1-v(k); d(k)=3*(v(k)*(y(k+1)-y(k))/h(k)+u(k)*(y(k)-y(k-1))/h(k-1)); end d(1)=d(1)-u(1)*y1a; d(n-1)=d(n-1)-v(n-1)*y1b; newv=v(1:n-2,:); newu=u(2:n-1,:); %%%%%%%%%%%% function intersanzhj(x,y,x0,y0,y1a,y1b) % 三转角样条插值

matlab牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα (1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n )确定。 根据均差的定义,把x 看成[a,b]上的一点,可得 f(x)= f (0x )+f[10x x ,](0x -x ) f[x, 0x ]= f[10x x ,]+f[x,10x x ,] (1x -x ) …… f[x, 0x ,…x 1-n ]= f[x, 0x ,…x n ]+ f[x, 0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n )+ f[x, 0x ,…x n ,x ]) (x 1n +ω= N n (x )+) (x n R 其中

N n (x )= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n ) (2) )(x n R = f(x)- N n (x )= f[x, 0x , (x) n ,x ]) (x 1n +ω (3) ) (x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。一般有 f k =α[k 10x x x ??,] (k=0,1,2,……,n ) (4) 把(4)代入(1)得到满足插值条件N )() (i i n x f x =(i=0,1,2,……n )的n 次Newton 插值多项式 N n (x )=f (0x )+f[10x x ,](1x -x )+f[210x x x ,,](1x -x )(2x -x )+……+f[n 10x x x ??,](1x -x )(2x -x )…(1-n x -x ). 其中插值余项为: ) ()! () ()()()(x 1n f x N -x f x R 1n 1 n n +++==ωξ ξ介于k 10x x x ??,之间。 三、程序设计 function [y,A,C,L]=newdscg(X,Y,x,M) % y 为对应x 的值,A 为差商表,C 为多项式系数,L 为多项式 % X 为给定节点,Y 为节点值,x 为待求节点 n=length(X); m=length(x); % n 为X 的长度 for t=1:m

用MATLAB实现拉格朗日插值和分段线性插值

用M A T L A B实现拉格朗 日插值和分段线性插值 The Standardization Office was revised on the afternoon of December 13, 2020

用MATLAB实现拉格朗日插值和分段线性插值 1、实验内容: 用MATLAB实现拉格朗日插值和分段线性插值。 2、实验目的: 1)学会使用MATLAB软件; 2)会使用MATLAB软件进行拉格朗日插值算法和分段线性 差值算法; 3、实验原理: 利用拉格朗日插值方法进行多项式插值,并将图形显式出来。 4、实验步骤及运行结果 (1)实现lagrange插值 1)定义函数: f = 1/(x^2+1) 将其保存在文件中,具体程序如 下: function y = f1(x) y = 1./(x.^2+1); 2)定义拉格朗日插值函数:将其保存在文件中,具体实现程序 编程如下: function y = lagrange(x0,y0,x) m = length(x); /区间长度/

n = length(x0); for i = 1:n l(i) = 1; end for i = 1:m for j = 1:n for k = 1:n if j == k continue; end l(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); end end end y = 0; for i = 1:n y = y0(i) * l(i) + y; end 3)建立测试程序,保存在文件中,实现画图: x=-5::5; y=(1+x.^2).^-1; p=polyfit(x,y,n); py=vpa(poly2sym(p),10) plot_x=-5::5; f1=polyval(p,plot_x); figure pl ot(x,y,‘r',plot_x,f1) 输入n=6,出现下面的图形:

牛顿插值MATLAB算法

MATLAB程序设计期中作业 ——编程实现牛顿插值 成员:刘川(P091712797)签名_____ 汤意(P091712817)签名_____ 王功贺(P091712799)签名_____ 班级:2009信息与计算科学 学院:数学与计算机科学学院 日期:2012年05月02日

牛顿插值的算法描述及程序实现 一:问题说明 在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 二:算法分析 newton 插值多项式的表达式如下: 010011()()()()()n n n N x c c x x c x x x x x x -=+-+???+--???- 其中每一项的系数c i 的表达式如下: 12011010 [,,,][,,,] [,,,]i i i i i f x x x f x x x c f x x x x x -???-???=???= - 即为f (x)在点01,,,i x x x ???处的i 阶差商,([]()i i f x f x =,1,2,,i n = ),由差商01[,,,]i f x x x ???的性质可知: () 010 1 [,,,]()i i i j j k j k k j f x x x f x x x ==≠???=-∑∏ 牛顿插值的程序实现方法: 第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、 、。 第二步:计算牛顿插值多项式中01[,,,]i f x x x ???011()()()i x x x x x x ---???-,1,2,,i n = ,得到n 个多项式。

函数的插值方法及matlab程序

6.1 插值问题及其误差 6.1.2 与插值有关的MATLAB 函数 (一) POLY2SYM函数 调用格式一:poly2sym (C) 调用格式二:f1=poly2sym(C,'V') 或f2=poly2sym(C, sym ('V') ), (二) POLYVAL函数 调用格式:Y = polyval(P,X) (三) POLY函数 调用格式:Y = poly (V) (四) CONV函数 调用格式:C =conv (A, B) 例 6.1.2求三个一次多项式、和的积.它们的零点分别依次为0.4,0.8,1.2. 解我们可以用两种MATLAB程序求之. 方法1如输入MATLAB程序 >> X1=[0.4,0.8,1.2]; l1=poly(X1), L1=poly2sym (l1) 运行后输出结果为 l1 = 1.0000 - 2.4000 1.7600 -0.3840 L1 = x^3-12/5*x^2+44/25*x-48/125 方法2如输入MATLAB程序 >> P1=poly(0.4);P2=poly(0.8);P3=poly(1.2); C =conv (conv (P1, P2), P3) , L1=poly2sym (C) 运行后输出的结果与方法1相同. (五) DECONV 函数 调用格式:[Q,R] =deconv (B,A) (六) roots(poly(1:n))命令 调用格式:roots(poly(1:n)) (七) det(a*eye(size (A)) - A)命令 调用格式:b=det(a*ey e(size (A)) - A) 6.2 拉格朗日(Lagrange)插值及其MATLAB程序 6.2.1 线性插值及其MATLAB程序 例 6.2.1 已知函数在上具有二阶连续导数,,且满足条件 .求线性插值多项式和函数值,并估计其误差. 解输入程序 >> X=[1,3];Y=[1,2]; l01= poly(X(2))/( X(1)- X(2)), l11= poly(X(1))/( X(2)- X(1)), l0=poly2sym (l01),l1=poly2sym (l11), P = l01* Y(1)+ l11* Y(2), L=poly2sym (P),x=1.5; Y = polyval(P,x) 运行后输出基函数l0和l1及其插值多项式的系数向量P(略)、插值多项式L和插值Y为l0 = l1 = L = Y = -1/2*x+3/2 1/2*x-1/2 1/2*x+1/2 1.2500 输入程序 >> M=5;R1=M*abs((x-X(1))* (x-X(2)))/2

Matlab求解插值问题

Matlab求解插值问题 在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。 实例:海底探测问题 某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。 1、一元插值 一元插值是对一元数据点(x i,y i)进行插值。 线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。 调用格式:yi=interp1(x,y,xi,’linear’) %线性插值 zi=interp1(x,y,xi,’spline’) %三次样条插值 wi=interp1(x,y,xi,’cubic’) %三次多项式插值说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。 例:已知数据: 求当x i=0.25时的y i的值。 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1 .6 .4 .8 1.5 2]; yi0=interp1(x,y,0.025,'linear') xi=0:.02:1; yi=interp1(x,y,xi,'linear'); zi=interp1(x,y,xi,'spline'); wi=interp1(x,y,xi,'cubic'); plot(x,y,'o',xi,yi,'r+',xi,zi,'g*',xi,wi,'k.-') legend('原始点','线性点','三次样条','三次多项式') 结果:yi0 = 0.3500

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

牛顿插值法的MATLAB综合程序

6.3.5 牛顿插值法的MATLAB 综合程序 求牛顿插值多项式、差商、插值及其误差估计的MATLAB 主程序 function [y,R,A,C,L]=newdscg(X,Y,x,M) n=length(X); m=length(x); for t=1:m z=x(t); A=zeros(n,n);A(:,1)=Y'; s=0.0; p=1.0; q1=1.0; c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end q1=abs(q1*(z-X(j-1)));c1=c1*j; end C=A(n,n);q1=abs(q1*(z-X(n))); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); end R=M*q1/c1;L(k,:)=poly2sym(C); 例6.3.6 给出节点数据00.27)00.4(=-f ,00.1)00.0(=f ,00.2)00.1(=f ,00.17)00.2(=f ,作三阶牛顿插值多项式,计算)345.2(-f ,并估计其误差. 解 首先将名为newdscg.m 的程序保存为M 文件,然后在MATLAB 工作窗口输入程序 >> syms M,X=[-4,0,1,2]; Y =[27,1,2,17]; x=-2.345; [y,R,A,C,P]=newdscg(X,Y,x,M) 运行后输出插值y )345.2(-≈f 及其误差限公式R ,三阶牛顿插值多项式P 及其系数向量C ,差商的矩阵A 如下 y = 22.3211 R = 65133/562949953421312*M (即R =2.3503*M ) A= 27.0000 0 0 0 1.0000 -6.5000 0 0 2.0000 1.0000 1.5000 0 17.0000 15.0000 7.0000 0.9167 C = 0.9167 4.2500 -4.1667 1.0000 P = 11/12*x^3+17/4*x^2-25/6*x+1

三次样条插值的MATLAB实现

MATLAB 程序设计期中考查 在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

实验四用MATLAB实现拉格朗日插值、分段线性插值

实验四用MATLAB实现拉格朗日插值、分段线性插值一、实验目的: 1)学会使用MATLAB软件; 2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法; 二、实验内容: 1用MATLAB实现y = 1./(x.^2+1);(-1<=x<=1)的拉格朗日插值、分段线性 2.选择以下函数,在n个节点上分别用分段线性和三次样条插值的方法,计算m个插值点的函数值,通过数值和图形的输出,将插值结果与精确值进行比较,适当增加n,再作比较,由此作初步分析: (1).y=sinx;( 0≤x≤2π) (2).y=(1-x^2)(-1≤x≤1) 三、实验方法与步骤: 问题一用拉格朗日插值法 1)定义函数:y = 1./(x.^2+1);将其保存在f.m 文件中,程序如下: function y = f1(x) y = 1./(x.^2+1); 2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,x) m = length(x); /区间长度/ n = length(x0); for i = 1:n l(i) = 1; end for i = 1:m for j = 1:n for k = 1:n if j == k continue; end

l(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); end end end y = 0; for i = 1:n y = y0(i) * l(i) + y; end 3)建立测试程序,保存在text.m文件中,实现画图:x=-1:0.001:1; y = 1./(x.^2+1); p=polyfit(x,y,n); py=vpa(poly2sym(p),10) plot_x=-5:0.001:5; f1=polyval(p,plot_x); figure plot(x,y,‘r',plot_x,f1)

相关主题
文本预览
相关文档 最新文档