当前位置:文档之家› 阻容吸收器和过电压保护

阻容吸收器和过电压保护

阻容吸收器和过电压保护
阻容吸收器和过电压保护

阻容吸收器

过电压保护装置选型指南

前言

真空断路器、真空负荷开关、真空接触器、真空分断器和真空重合器(以下简称真空开关设备)因具有体积小、重量轻、高性能、高可靠性、维护检查方便、适合频繁操作等优点,因此迅速地占领了市场,在各个领域都得到了广泛的应用。

但是真空开关设备由于其灭弧能力特别强,因此在开断电动机、变压器、电炉变压器、电抗器和电容器等负载时容易引起截流、多次重燃和三相同步开断操作过电压。

随着稳定安全供电重要性的增强,对提高系统可靠性要求愈加严格。而操作过电压危害极大,在很大程度上影响着系统的稳定性和可靠性,因此了解操作过电压的产生、性质和特点,对正确选用过电压保护装置是十分重要的。

本文对操作过电压的产生、性质及特点以及如何正确选用过电压保护装置进行粗浅的分析,供设计和用户选型时参考,同时也热忱欢迎提出宝贵意见。

一、操作过电压的产生、性质和特点:

操作过电压是指真空开关设备在分、合闸时产生的高幅值、高频率的瞬间振荡电压。这个电压对运行着的各种电器设备危害极大,因此必须合理选用适当的过电压保护装置以降低乃至消除这个过电压。众所周知,真空灭弧室中的电弧是由从触头蒸发出的中性金属蒸汽中

的原子、离子和电子组成,它们由触头提供后,迅速地扩散到灭弧室中,冷却后附着在电弧屏蔽罩和触头的表面上。在电流自然零点附近及电流过零后,这些粒子的快速运动使得真空开关设备具有极高的绝缘恢复能力,但是随之也产生了极陡的截流现象和极高的高频灭弧能力。这是产生过电压的极其重要因素。此外,因这些粒子的产生源为触头,所以上述的各种特性还会很大程度上受触头材料特性的影响。

1、1截流过电压

真空灭弧室中的电弧的构成如前所述,在开断小电流(如空载变压器)时,在电流过零前后,这些粒子的供给量不足以补充扩散量,这时电弧变得极难维持,使电流变得极不稳定,在某一电流值(不同触头材料特性决定的电流值)以下时,在电流自然过零点之前电流就被开断,这就是截流现象。

在忽略电动机、变压器等电器设备的损耗时,开关设备K中流过电感L的电流I在I0处被截断,因电感L中的电流不能突变,所以积蓄在L中的的电磁能向电容器C充电,在C的端子上产生了所谓的截流过电压。负荷侧的等效回路如下图:

L-负荷的等效电感 c-负荷侧的等效电容

e-截流时电源的电压

截流时L 中的磁能W L =2021

LI 和C 中的电能W C =221CU 互相转换,因此W L =W C ,即2021LI =221CU ,U=C L /·I 0,这就是截流过电压。为方便起见,这里把C L /称为截流过电压特性阻抗。

在不考虑L-C 之间能量转换时的损耗时,暂态恢复电压的最大 值U max =220)2()(E I Z +?式中E 为电源电压的有效值;当考虑L-C 之间能量转换时的损耗时,则为U=220)2()(E I Z K +??式中K 为损耗系数,K<1,不同的电器设备其K 值亦不相同。

从以上分析可以得知,过电压是由回路的参数L 和C 及截流值I 0 决定的。

截流过电压有以下特点:

1)、截流过电压与截流值I 0有关,I 0愈大,过电压愈高。I 0与触

头材料有关,目前国内真空灭弧室均采用铜-铬触头,其I 0值一般为

3-5A。

2)、系统中多为感性负载,因此L 较大,而C 较小,故C L /值

较大,因此截流过电压的幅值很高。同样其振荡频率f=π2LC 也很高,可达数KH Z 到数十KH Z 。

3)、截流过电压大多数情况下,只发生在开断小电流的回路中,因此在开断空载变压器时最为危险。

4)、在开断电抗器、电容器及长电缆时,很难发生高的截流过电压。但在开断这些负载却极易产生高幅值、高频率的重燃过电压,这一点应引起人们的极大注意。

总之,截流过电压是一个高幅值、高频率、极陡的电压,同时也

是产生多次重燃和三相同步开断过电压的基础。要想降低这个过电压,从f= π2LC 和U=C L /·I 0式可知,可以加大回路中的电容,

例如接入阻容过电压吸收器。

2、2多次重燃过电压

在真空开关设备开断的过程中,当动触头运动到某一距离时,动、静触头极间的绝缘恢复强度低于暂态恢复电压时,就会发生重燃,极间流有对应于开关设备附近回路常数的高频燃弧电流。开断这个电流时产生的电压就是重燃过电压。此后如果极间仍不能耐受暂态恢复电压时,燃弧和开断就会反复进行,就会发生电压逐步级升,就会产生多次重燃过电压。多次重燃过程中同时也伴随着回路中L 和C 中的能量互相转换,使暂态恢复电压振荡频率极高(达数十KH Z 以上),同时

也使暂态过电压急剧升高。多次重燃并不是无休止的继续,当极间的绝缘恢复强度超过暂态恢复电压时终止,或当燃弧电流不通过零点时,就一直持续到下一个电流零点熄弧。

多次重燃过电压的特点是:

1)多次重燃过电压是一个频率更高、陡度更大和幅值更高、危险性更大的过电压。

2)多次重燃过电压多发生在开断不易持续燃弧的小电流回路里, 如:小容量鼠笼型电动机的启动电流开断;电炉及电动机自耦变压器降压启动的中性点开关的开断;在变压器的一次侧开断二次侧的短路电流时;开断电抗器回路;特别是开断(切)电容器组时发生多次重燃时,都会发生异常高的过电压。当开断(切)电容器组时,重燃发

生一次,电容器端子上就会产生3倍的过电压,一但持续发生,就会成5倍、7倍的增加。这就可能使电容器的绝缘击穿,同时也会给电容器回路中的变压器和互感器等设备带来危险,故电容器回路应力求在无重燃的条件下开断。

2、3三相同步开断过电压

在前面所叙述的截流过电压和多次重燃过电压现象就有三相同 步开断过电压现象。开关在开断时不可能三相完全同时开断,(我国12kv断路器规定不同期性≤2ms ),总有一相首先开断(称之谓首开相),此时未被开断余下的两相的相电流就变成为三相负荷电流√3/2值的单相电流,在电角度90o后迎来电流自然过零点,此时一旦发生三相同步开断,后开断的俩相电流√3/2值电流被截断了,并产生高的截流过电压。

如果此时的负荷为容性负荷(如空载长线、长电缆和电容器组 等),开断这个负荷极易产生重燃过电压。

在开断电容负荷时,因电容负荷的残存电压施加在开关的极间,当极间不能耐受这残余电压时,就会发生重燃而产生重燃过电压。

开关在开断时,如a相首先开断,比它晚90o,b c相被开断。 此时a相的开关极间出现的过电压为3.5pu,该电压通过中性点,在b、c相分别产生4.13 pu和5.87 pu的理论最大值过电压。这种在容性负荷回路中发生重燃时过电压非常的高。因此在这种情况下应选用重燃概率低的开关产品,如C2级断路器。

三相同步开断过电压的特点是:

1)三相同步开断过电压也是由截流过电压和多次重燃过电压造成的。

2)三相同步开断过电压如按a相—b相—c相的开断顺序时,其 过电压是c相﹥b相﹥a相,也就是说最大过电压发生在后开断的二相,而且最后开断的相过电压最大。

3)三相同步开断过电压可以发生在开断任何负荷时,但以开断 容性负荷为最大。

4、感应过电压

当真空开关设备操作时,其产生的操作过电压有时会引起低压侧二次回路的感应故障,特别是近年来,装有半导体等电子元件的控制设备更多地使用在电力设备中,感应过电压会造成误动作及元件的损坏。

感应过电压进入二次回路的主要途径有:由变压器等静电、感应电压共同造成;高压电力电缆在低压、控制元件用电缆中的感应电压;由GIS高压开关的高压主回路和低压充气罐壁的静电感应电压引发

的感应电压造成的等等。

无论任何场合,感应过电压都是由主回路的开关设备在操作时产生的高频操作过电压造成的。故应采取适当的措施,选择合适的过电压保护装置。

5、真空开关设备的合闸过电压

合闸过电压,是指开关设备在合闸时产生的异常电压,主要是由开关合闸不同步,以及在合闸过程中发生予击穿期间产生的异常现象

等造成的。一般情况下,合闸过电压因为其峰值小于正常运行的电器设备对地电压2.5倍,就不需要特别的过电压保护。

但值得注意的是,在容性负荷的情况下,发生予击穿电流切断时的高频合闸电流,会重复发生开断—重燃—再重燃,这与多次重燃过电压的现象相同。

综上所述,真空开关设备在操作时产生的操作过电压对运行着的电器设备危害极大,可以造成电动机、变压器、电炉变压器、电抗器和电容器的绝缘击穿、回路设备故障、开关柜相间和真空灭弧室外部沿面闪络等事故。因此必须选用适当的过电压保护装置来降低这个过电压,以达到系统可靠安全的运行。

二、操作过电压保护装置使用指南

2、1不同负荷设备过电压保护分析

表中所示为不同的负荷设备和过电压保护装置的典型配合

√:通常使用

△:有效果,但通常不用

×:无效果

以下分别介绍各种保护装置的特点和不同负荷设备的过电压保护: A)、阻容过电压吸收器:

将电容器(应该用保护型电容器)和电阻串联连接后,再接到负荷侧与地之间,它可有效地抑制操作过电压的瞬间振荡和高频电流,无论对哪种负荷设备都非常有效。不同使用回路都有一个最佳参数,电动机和变压器等最佳参数为:电容值为0.1μF,电阻值为100Ω。电容器的最佳值因使用回路不同而有很大差别,必须根据具体的系统和回路选择合适的参数。

操作过电压是一个缓波前过电压,其波头时间为20~5000μs,而阻容过电压吸收器起作用的时间(响应时间)仅为0.1μF×100Ω=10μs,也就是说过电压第一个峰值刚上升时(此时幅值较低)它就开始发挥其应有的作用。其结果是使过电压的波形变缓,陡度和幅值降低,再加上电阻的阻尼作用,使振荡迅速衰减。

截流过电压是发生多次重燃过电压和三相同步开断过电压的基础,如果能有效地限制和降低截流过电压,将使重燃和三相同步开断过电压明显减少,甚至不发生。

在前面截流过电压中已经叙及阻容过电压吸收器的作用,这里不在重复。另外,阻容过电压吸收器回路在发生过电压时,由于X C

急剧变小,而负荷中的X L急剧变大,使得阻容过电压吸收器变成一个非常好的吸收过电压回路。

做为抛砖引玉,顺便研讨一下阻容过电压吸收器能否保护大气

(雷电)过电压问题。

迄今为止,保护大气过电压,通常都使用避雷器,那么阻容过电压吸收器是否能保护大气过电压?GB3983-83标准指出“具有中性点接地的并联电容器的相电容通常能够充分地降低雷电或操作冲击

电压。即使该冲击波起源于相当靠近电容器处 ”。这就说明阻容过电压吸收器也同样能保护大气过电压。

众所周知,大气过电压和操作过电压本质上没有什么差别。在GB311.1-1997的标准中,把前者称为“快波前过电压”,而把后者称为“缓波前过电压”。两者差别仅在“快”和“缓”上,而没有本质上的不同,因此阻容过电压吸收器完全能保护大气过电压。

阻容过电压吸收器是接在开关的负荷侧与地之间,正常情况下(三相完全对称),中性点电位为零,对地没有电容电流,当中性点发生漂移时,特别是发生单相接地短路时,对地会有一定的电容电流。

对于中性点不接地系统,我国规定可以带故障运行2小时,对发电厂厂用电系统的规定是“单相接地电流在10A及以上时,厂用电动机回路的单相接地保护当瞬时动作于跳闸”。不装阻容过电压吸收器时,厂用电接地电容电流一般不太大,但加装了阻容过电压吸收器后会增加一些接地电容电流。

单相接地短路后,中性点的电位由零上升到相电位,健全相上的电压由相电压上升到线电压,忽略电阻时,此时的单相接地短路电流I C=√3UNωc。

对于中性点直接接地或经电阻接地的系统,单相接地短路会被

立即切除,此时的单相接地短路电容电流对系统无影响,可不必考虑。B)避雷器:

利用氧化锌阀片的非线性电阻特性,通过放电动作后的残压来限制过电压的幅值,它只能起到限幅的作用,不能降低过电压的频率和陡度。因此从性能和作用上看,远不如阻容过电压吸收器。此外,尚有如下不足和缺陷:残压高、(残)压比差、荷电率低、通流能力差、易损坏。对上述不足,分别叙述如下:

1)无间隙氧化锌避雷器

由于避雷器动作时承受过重的负载及保护特性(残压)偏高,难以同电动机绝缘相配合,因此,这种避雷器不能做为电动机的过电压保护装置。实践中电动机时有损坏的直接原因也在于此。国标GB11032-2000中规定:电动机额定电压为6.3kv的避雷器参数是:额定电压U R=8kv,持续运行电压U C=6.3kv,在100A操作冲击电流下的残压为15 kv,当考虑的避雷器的(残)压比U100A/U1mA=1.4时,其残压为15×1.4=21 kv,而6.3kv的电动机耐受电压只有√2(2U+1)×0.75×1.15=16.5kv,低于避雷器的残压。显然这种避雷器不能保护电动机。

另外,在中性点不接地或经消弧线圈接地的系统中,发生单相接 地短路时,健全相上的电压升至线电压,并允许运行2小时,这将使这种避雷器承受过重的负载严重过热而烧毁。这就是这种避雷器因通流能力过低而损坏的直接原因。

2)带串联间隙的氧化锌避雷器

这种避雷器是因为其阀片制造水平低,在持续运行状态下阀片的可靠性受到影响时,迫不得已才加串联间隙来防止高压直接施加在阀片上,而对加串联间隙带来的各种弊端和缺陷也就只好任其存在。按理当阀片制造水平提高,耐老化性、热稳定性提高后,能在持续运行电压下可靠工作时,间隙就应取掉。但实际情况确大大相反,市场上到处可见这种产品,实令人不可思议。而且被一些生产厂家倾其所能,大肆吹捧,其宣传力度之大,范围之广,实令人叹为观止,大有非我莫属之势,也确实迷惑了一批人,但究其实质,实有顾此失彼,画蛇添足之嫌。

首先观察一下这个串联间隙,有了间隙,就有间隙放电电压问题,同时也就有了如何确定这个间隙放电压的问题。稍有高压知识的人都知道,间隙无论做成何种形状,其放电电压的分散性都很大,在同一地点和同一大气条件下,每一次的放电电压都不尽相同,再加上我国地域辽阔,气象条件差别很大,生产厂家所确定的放电电压,到用户使用的地方就会变得差别很大。生产厂家给出的工频放电电压数据已失去了其应有的意义。此外,间隙不论是何种材料做成的,当间隙放电时,是靠电弧把两个电极连接在一起的,电弧的温度非常高,而且熄弧又特别困难,往往使电极有部分或局部熔化,甚至烧毁电极,此外,间隙会使避雷器的伏秒特性变差,冲击系数大。除了间隙本身存在的问题外,这种避雷器仍然存在残压高(不能保护电动机)、通流能力低、易损坏等缺陷。庆幸的是,现在大多数人已经认识到了这种避雷器存在的各种弊端。因此,2003年新疆新能电力公司下文,要

求在全局范围内不许使用“三叉戟”式避雷器。

3)带并联间隙的氧化锌避雷器

带并联间隙的目的是为了降低避雷器的残压,以使其残压和电动机的绝缘相配合,从表面上看这个目的是达到了,但实质上,由于间隙的问题依然存在,而且由于间隙放电后短接部分阀片,使原有的阀片减少,结果使其通流能力进一步降低,损坏率增加,可靠性降低。值得一提的是,目前有些避雷器的生产厂家,为了降低避雷器的残压,用减少阀片数量的办法来达到目的,其结果是增加了故障率,降低了可靠性。如采用加大阀片体积的办法,将大大增加避雷器的体积和成本。

此外,无论何种避雷器用在保护电容器(组)的场合,因电容 器是一个贮能元件,往往有残存的电荷存在,而且避雷器由于荷电率和通流能力低等缺陷,因此,在这种场合下,必须注意避雷器的放电耐受能力。

在避雷器和阻容过电压吸收器同时并联使用的的场合下,现场 试验表明:避雷器根本不动作,也就是说,它根本没起作用。而且在避雷器单独使用的时候,过电压的幅值较高。接入阻容过电压吸收器后,过电压的幅值降得很低。因此,在已装有避雷器的情况下,应加装阻容过电压吸收器。关于这一点,请参阅《广东电力》2003年第四期刊登的“真空断路器投切并联电抗器试验研究”一文。

综上所述,用避雷器保护操作过电压,无论保护何种负荷设备,其性能和效果都不如阻容过电压吸收器好。

2.2阻容过电压吸收器的过去和现在

阻容过电压吸收器在保护操作过电压时其性能和效果优于避雷器已是不争的事实,而且越来越被人们所承认和认可。

但是,过去各厂家生产的该产品故障率很高,致使许多设计部门和成套厂都不愿意和不敢使用,这究竟是什么原因呢?

其一,过去阻容过电压吸收器所用的电容器均不是“保护电容器”。有的用多个甚至上百个低压电容器串联后当作高压电容器用,有的把氧化锌电阻阀片和电容器并联,有的带串联间隙,真是五花八门,不一而足,但无论用什么办法,其电容器极间的工频耐受电压只有额定电压的2.15倍,而且耐压时间只有10S。这远远达不到国标GB311.1-1997的要求。例如10KV的电容器,其极间工频耐受电压只有21.5KV/10S,和GB311.1-1997标准要求的42KV/1min相差太远。而且阻容过电压吸收器是装在高压开关柜内,其绝缘水平和开关柜内所有电气元件的绝缘水平不相配合,因此这些产品在使用说明书中写到:“因为试验标准不同,作耐压试验时,阻容吸收器要单独进行。绝不能和开关柜以及其它设备一起试验。”违背了“GB311.1-1997高压输变电设备的绝缘配合”的原则。同时也和其被保护的设备(变压器和电抗器的绝缘水平35KV/1min,这里仅以10kv产品为例,其他电压等级的产品同样如此)不相配合,也就是说,这类阻容吸收器根本不能保护别的设备,(前述的带串联间隙和阀片、并联阀片等办法,只是为了保护自己)因为它自己的耐受电压最低,因此,在有操作过电压时,肯定首先损坏的是阻容吸收器。

应该指出,过去国内没有适合做阻容过电压吸收器的电容器,电容器标准GB/T2900.16-1996给出这种电容器的名称是“保护电容器”其定义为“接于电力线路与地之间用以吸收冲击过电压的电容器”。但仅仅只给出了名称和定义而没有制定出相应的标准,因此,也没有厂家去生产这种电容器。

目前阻容过电压吸收器尚无国家标准和明确的归口单位,可以说是处于无政府状态,其结果是生产厂家各行其是,有很多厂家生产的产品都没有做过型式试验,甚至连出厂试验都不做就推向了市场,使整个市场鱼龙混杂,难以分辨,劣质产品充斥市场,这是造成阻容过电压吸收器故障率高的主要原因之一。

当前我们国家经济正处于持续高速发展中,各种各样的用电设备不断投入运行,特别是整流设备的使用日渐增多,使得电网产生非常多的高次谐波,这些高次谐波不仅影响在电网中运行的各种设备,也严重影响了阻容过电压吸收器。众所周知,随着谐波频率的增高,阻容过电压吸收器回路的容抗X C=1/ωc成倍下降,使阻容过电压吸收器回路的电流大大增加,这种附加损耗使得电容器和电阻器过热,如果此时电容器的tanδ超过标准或电阻器设计不当(电阻丝截面偏小时),就可能烧毁电容器和电阻器。另外,由于高次谐波的作用,如果某一阶次的高次谐波恰好和阻容过电压吸收器回路发生谐振时,很大可能是烧毁阻容过电压吸收器(此时可以改变回路中L和C参数,破坏这个谐振),这是阻容过电压吸收器故障率高的原因之二。

我公司研制和生产了一种新型的阻容过电压吸收器ZR20系列的

产品。该产品采用的是符合“保护电容器”标准和要求的干式高压电容器,其绝缘水平完全达到了GB311.1-1997标准要求,适合海拔3000米以下的任何场合使用.该产品电性能稳定可靠,并配置热容量大、散热性能良好的无感电阻器,其优良的性能和极高的可靠性在同类产品中可谓出类拔萃,是用户使用的首选和放心的产品。我公司的宗旨是质量第一、用户至上、服务周到,欢迎广大用户使用我公司的产品。

RC吸收电路

缓冲电路(独立运行光伏发电系统功率控制研究-----内蒙古工业大学硕士论文) 开关管开通和关断理论上都是瞬间完成的,但实际情况开关管关断时刻下降的电流和上升的电压有重叠时间,所以会有较大的关断损耗。为了使IGBT 关断过程电压能够得到有效的抑制并减小关断损耗,通常都需要给IGBT 主电路设置关断缓冲电路。通常情况下,在设计关于IGBT 的缓冲电路时要综合考虑从IGBT 应用的主电路结构、器件容量以及要满足主电路各种技术指标所要求的IGBT 开通特性、关断特性等因素。 选用RCD 缓冲电路,结构如图4-5所示。 对缓冲电路的要求:尽量减小主电路的电感;电容应采用低感吸收电容;二极管应选用快开通和快速恢复二极管,以免产生开通过电压和反向恢复引起较大的振荡过电压。 (1)缓冲电容的计算 ()500.850.5184 ce s r f ce I C t t uF V =+=?=

(2)缓冲电阻的计算 0.55029.4330.283on s s t us R C uF ?===Ω? (3)缓冲二极管的选择 选用快速恢复二极管ERA34-10,参数为0.1A/1000V/0.15us 。 继电器RC 加吸收单元起到什么作用? 接触器和继电器在断电时,线圈释放瞬间会产生一个浪涌脉冲,这个浪涌电压对某些敏感电子装置会有干扰,造成电子装置误动作或故障,因此在接触器和继电器线圈并联一个阻容吸收器来吸收这个脉冲。 一般安装吸收单元的接触器或继电器都是因为在他的同一电路中存在敏感电子电路,这些电路对浪涌脉冲比较敏感,所以这类电路中的接触器或继电器才加装吸收单元,吸收继电器线圈释放产生的脉冲和浪涌,避免电子电路的故障或误动作. RC 吸收回路的作用,一是为了对感性器件在电流瞬变时的自感电动势进行钳位,二是抑制电路中因dV/dt 对器件所引起的冲击,在感性负载中,开关器件关断的瞬间,如果此时感性负载的磁通不为零,根据愣次定律便会产生一个自感电动势,对外界辞放磁场储能,为简单起见,一般都采用RC 吸收回路,将这部份能量以热能的方式消耗掉。 设计RC 吸收回路参数,需要先确定磁场储能的大小,这分几种情况: 1、电机、继电器等,它的励磁电感与主回路串联,磁场储能需要全部由RC 回路处理,开关器件关断的瞬间,RC 回路的初始电流等于关断前的工作电流;

变压器的过电压保护

变压器是电网变换电压和传送电能的电气设备,是电网向用户供电的载体,变压器的安全可靠运行情系万家灯火。然而在电网运行中由于诸多原因会产生过电压,而变压器的绝缘水平相对比较薄弱,在变压器损坏的原因中,过电压造成损坏的概率最大。在电网运行中因某种原因产生过电压,必将导致变压器的损坏,其绝缘水平主要由雷电击耐受电压和工频耐受电压来决定。 过电压系指对绝缘有危险的突然电压升高,这种非正常的电压升高,其幅值可达设备额定电压的几倍以上,严重威胁变压器绝缘的安全,若过电压持续时间较长,必将造成变压器的损坏。为确保电网运行中变压器的安全,除选用优质的变压器外,还要对变压器设置合理有效的过电压保护措施。 一、电网过电压产生的机理 电力系统的过电压一般可分为暂时过电压(工频过电压、谐振过电压、弧光接地过电压)、操作过电压、雷电过电压等。暂时过电压主要由单相接地故障、谐振等引起的。谐振过电压是电网中电气设备发生故障,或频繁操作设备引起电网中电感和电容匹配而构成谐振回路,在一定条件激发下产生电能、磁能转换而引起的过电压,如是变压器的励磁电感和对地电容产生的铁磁谐振,其引起的过电压会更高。弧光接地过电压系因系统发生单相接地故障,在接地点因弧光放电而引起的过电压。 操作过电压系因电网状态的突变而引起电磁场能量的急剧变化,或投切大容量设备,或是对设备的操作失误等而引起能量快速释放时产生的过电压。主要表现在空载线路、变压器的开断和重合闸等。 雷电过电压是大气中带有大量正电荷雷云与带负电荷雷云相遇时,发生雷云放电而引起的过电压。雷电过电压可分为直击雷过电压和感应过电压。直接雷过电压是雷云直接对设备、构件等导体的放电产生的,而感应过电压则是电磁场的急剧变化而产生的。 二、电网过电压对变压器的危害 电网中产生的几种过电压,真正对变压器绝缘和保护装置产生影响的,主要取决于过电压的波形。幅值和持续时间。考核设备绝缘水平的电压波形有三种:短波前的雷电波、长波前的操作波和低频电压波。设备绝缘对雷电、操作或工频电压的耐受能力应由相应的波形电压来检验。 在过电压对变压器造成损坏的事故中,雷电过电压导致绝缘击穿损坏的机率最多。当电网遭受雷击时,在线路导线上会产生一种振幅很大,作用时间很短的非周期性脉冲电压波,它以光速沿线传输,先在线路避雷器放电,余波经变压器入地,当余波经变压器保护的避雷器时,将产生电压降(残压)而作用在变压器上。假如变压器与避雷器之间存在一定电气距离,残压在进入前会在这段距离的导线振荡而导致电压的升高,造成加在变压器上电压高于残压,从而对变压器绝缘安全造成威胁。所以在安装变压器的保护避雷器时,应尽量实现避雷器和变压器保持零距离。

(完整word版)组合式过电压保护器的选择

1引言 组合式过电压保护器是一种新型过电压保护装置,主要应用于35KV及以下电力系统中,用以限制雷电过电压、真空断路器操作过电压以及电力系统中可能出现的各种暂态过电压,可有效地保护电动机、变压器、开关、电容器、电缆、母线等电力设备的绝缘不受损害,对相间和相对地的过电压均能起到可靠的限制作用。真空断路器装置目前的广泛应用,使人们对由于操作过电压引起的危害越来越重视,而组合式过电压保护器的种类较多,使我们在应用选择上有很大的空间,但同时又会使我们选择更为慎重。本文旨在探讨真空断路器装置中组合式过电压保护器(组合式氧化锌避雷器)的选用问题。 2组合式过电压保护器应用的由来 我国避雷器产品的发展历经普通阀型避雷器、磁吹避雷器和金属氧化物避雷器(MOA)几个阶段,近年来避雷器整体制造水平和质量都有了很大提高。随着真空断路器的广泛应用,为限制其操作过电压和避免受电设备绝缘损害,在限制过电压方面采取了许多措施。通常真空断路器装置操作过电压的保护装置有以下几类: (1)阻容吸收装置; (2)无间隙氧化锌避雷器; (3)带串联间隙氧化锌避雷器。 阻容吸收装置最大优点是能缓和入侵到被保护设备的过电压波的陡度,改善设备绕组上的电压梯度,但有体积大,无明显过电压限制值,吸收过电压能量容量小,会产生高次谐波污染等问题。无间隙氧化锌避雷器是一种较先进的过电压保护设备,与传统的碳化硅避雷器相比,在保护特性、通断能力和抗污秽等方面均有优异的特性,其ZnO电阻片的非线性极其优异,使其在正常工作下接近绝缘状态。但它保护残压较高,无法满足在操作过电压下频繁动作的要求,存在工频老化和承受荷电率和热平衡条件的限制,这对于保护电动机类绝缘耐压水平的设备来说还存在不足的。带串联间隙氧化锌避雷器由于增加了串联间隙,MOA 可以用数量较少的ZnO电阻片,这时残压可以做的很低,如果火花间隙的放电电压也很低,则可使避雷器既有很低的保护水平又不致因为泄漏电流阻性分量大以及由此带来的劣化现象和功率损耗问题。有串联间隙的MOA与无间隙MOA相比,具有较高的耐受系统暂过电压能力,可在系统发生接地故障时保证自身安全,而且具有较低的雷电冲击放电电压和残压水平,可以为绝缘水平比较弱的设备提供良好的保护,特别适用于中性点非有效接地系统使用。 近几年来我国已研制开发了多种三相组合式有串联间隙或无间隙氧化锌避雷器,它们在相间和相地之间都连接有一定比例的ZnO电阻片或带火花间隙,是一种复合型避雷器,该过电压保护装置对相间过电压有比较好的保护作用。组合式过电压保护器因采用复合绝缘结构,所以在安装上受开关柜尺寸的影响较小,因此越来越被人们所认可。 3组合式过电压保护器间隙结构和特点

简述过电压保护器试验方法

简述过电压保护器试验方法 摘要:在每年的电气预防性试验中,检修试验人员都误认为过电压保护器是一个整体,无法进行正常的高压电气试验,只能放弃过电压保护器电气试验,从而给电力系统安全运行带来了潜在的隐患。 关键词:过电压保护器电气试验 引言:目前,过电压保护器在我们新密局李堂变、园区变、李湾变等变电站10kV或35kV高压开关柜内部安装,为开关柜、母线提供过电压保护作用,如不能定期进行电气预防性试验,一定影响到开关柜等电气设备正常运行。 一、过电压保护器试验方法 过电压保护器在投入使用前以及使用后每年都应进行预防性试验,试验时保护器的四个端子应从其它电器设备上拆下,不允许和其它设备连接时进行试验,试验的具体内容如下: 1)外观检查:检查外绝缘有无损伤。 2)对于无间隙组合式过电压保护器,应进行以下试验:直流 1mA 参考电压:在保护器两两端子之间施加直流电压,当流过保护器的电流稳定于 1mA 后,读取此时保护器两端子之间的电压数值,该值不得小于技术参数表中的规定值。 泄漏电流:在保护器两两端子间施加 0.75 倍的直流 1mA 参考电压,此时流过保护器的泄漏电流不得大于50μA。 无间隙组合式过电压保护器不允许做工频放电电压试验。 3) 对于串联间隙组合式过电压保护器,应进行工频放电电压试验,

试验接线如图所示。试验时在保护器 A、B、C、D 两两端子之间分别施加工频电压,调节自耦变压器 ZT,缓慢加压,观察安培表 A 的电流变化。当安培表 A 的电流突然增大时,表示间隙电极放电,记录此时电压表 V 的电压值,此值即为工频放电电压在变压器原边的数值,此值乘以升压变压器 ST 的变比,即为该两相的工频放电电压值。由于放电电极允许有一定的分散度,以及测试方法的差异,现场测试值不应超出出厂试验值的 20%。如果超出该范围,应停止运行,及时通知厂家处理。 二、过电压保护器注意事项 1)应根据电压等级和被保护对象正确地选择保护器的型号和技术参数。 2)应提供所需连接电缆的长度L。 3)开关柜进行耐压试验时,应将保护器四个端子从母线上拆下,否则,可能损坏保护器。

浅析变压器的过电压现象及其保护措施

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 浅析变压器的过电压现象及其保护措施 论文导读:变压器运行时,如果电压超过它的最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。匝间电容相对于对地电容愈大时,则电压的起始分布愈均匀,电压梯度越小,因此增加匝间电容是有效的过电压保护措施。 关键词:变压器,过电压,保护措施 变压器运行时,如果电压超过它的最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。过电压分为内部过电压和大气过电压两种。输电线路直接遭雷击或雷云放电时,电磁场的剧烈变化所引起的过电压称为大气过电压(外部过电压);当变压器或线路上的开关合闸或拉闸时,因系统中电磁能量振荡和积聚而产生的过电压称为内部过电压。变压器的这两种过电压都是作用时间短促的瞬变过程。科技论文。内部过电压一般为额定电压的3.0-4.5倍,而大气过电压数值很高,可达额定电压的8-12倍,并且绕组中电压分布极不均匀,端头部分线匝受到的电压很高。因此,必须采取必要的措施,防止过电压的发生和进行有效的保护。 过电压在变压器中破坏绝缘有两种情况,一是将绕组与铁心(或油箱)之间的绝缘高压绕组与低压绕组之间的绝缘(这些绝缘称为主绝缘)击穿;另一种是在同一绕组内将匝与匝之间或一段绕组与另一段绕之间的绝缘(这些绝缘称为纵绝缘)击穿。由于过电压时间极短,电压从零上升到最大值再下降到零均在极短的时间内完成,因而具有高频振荡的特性,其频率可达100kHZ以上。在正常运行时,电网的频率是50HZ,变压器的容抗很大,而感扩ωL很小,因此可以忽略电容的影响,认为电流完全从绕组内部

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算 1 2 3 4 5 侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足 0.1

I n 为变压器的二次额定电流, K rel 为可靠系数,K rel =1.3—1.5; f i(n)为电流互感器在额定电流下的比值误差。f i(n)=±0.03(10P ),f i(n)=±0.01(5P ) ΔU 为变压器分接头调节引起的误差(相对额定电压); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3) I res.0(4) a I Δm 2=0.05; b 、 式中的符号与三圈变压器一样。 最大制动系数为: K res.max =res unb.max rel I I K Ires 为差动的制动电流,它与差动保护原理、制动回路的接线方式有关,对对于两圈变压器I res = I s.max 。 比率制动系数:

K= res.max res.0res.max op.0res.max /I I -1/I I -K 一般取K=0.5。 (5)、灵敏度的计算 在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流I s.min ,同时计算相应的制动电流I res ;在动作特性曲线上查出相应的动作电流I op ;则灵敏系数K sen 为: K sen = op I I 要求K sen ≥(6)(7 式中:I K I e (81、低电压的整定和灵敏度系数校验 躲过电动机自起动时的电压整定: 当低电压继电器由变压器低压侧电压互感器供电时, U op=(0.5~0.6)U n 当低电压继电器由变压器高压侧电压互感器供电时, U op=0.7U n 灵敏系数校验

三相组合式过电压保护器的特点及使用

描述:三相组合式过电压保护器(TBP)是一种新型的过电压保护器,由于氧化锌非线性电阻和放电间隙串联组成。 摘要:三相组合式过电压保护器(TBP)是一种新型的过电压保护器,由于氧化锌非线性电阻和放电间隙串联组成。 1、引言: 我国避雷器产品的发展经历了变通阀式SIC避雷器、磁吹SIC避雷器、无间隙氧化锌避雷器(MOA)三代。由于MOA具有结构简单、体积小、通流量大、保护性能及稳定性能好等优点,从而逐步取代了传统SIC避雷器,大量应用于发电、供电和用电企业的电力电网中。由于MOA没有间隙,不能隔离运行电压,实际上相当于一个非线性电阳元件(发热元件),长年累月地接在电网上承受着各种电压应力,产生严重的老化现象。MOA由阻片老化后,由于伏安特性曲线的变化,MOA的热稳定点将发生偏移,使得电阻片的热稳定工作点的温度上升,U 1mA 降低,这就意味着荷电率(持续运行相电压峰值和U 1mA 的比值)增高。一旦U 1mA 接近持续运行电压峰值,而且电网电压波动时间较长,超过了MOA工频电压耐受时间特性限定的参数,就会导致MOA热崩溃。三相组合式过电压保护器(TBP)是一种新型的过电压保护器,由于氧化锌非线性电阻和放电间隙串联组成。它保留了MOA的优良性能,在电网正常运行时又通过间隙把MOA从电网上隔离开来,避免长期接在电网上承受着各种电压应力,产生老化现象。目前,电力行业和用电企业在35KV、10KV、6KV系统中大量选用三相结合式过电压保护器(TBP)用来保护变压器,电气开关特性元件,母线等电气设备,对限制大气过电压各种真空开关的操作过电压以及相对相间和相对地间的过电压起到可靠限制保护作用。 2、三相组合式过电压保护器的结构特点 三相组合式过电压保护器的电气原理图如图1。图中FR为氧化锌非线性电阻,CG为放电间隙,采用了对称结构,其中任意三相可分别接A、B、C三相,另一接地。三相结合式过电压保护器与传统SIC避雷器、无间隙氧化锌避雷器(MOA)相比,具有以下特点: ⑴、采用氧化锌非线性电阻和放电间隙相结合的结构,使两者互为保护。放电间隙使氧化锌电阻的荷电率为零,氧化锌的非线性特性又使放电间隙动作后立即熄弧。无续流、无截波,放电间隙不再承担灭弧任务,提高了产品的使用寿命。 ⑵、电压冲击性小,在各种电压波形下放电值均相等,不受各种操作过电压波形的影响,过电压保护值准确保护性能优良。

变压器的过电压现象及其保护措施

变压器的过电压现象及其保护措施 1 问题提出 变压器运行时,如果电压超过其最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。过电压分为操作过电压和大气过电压两种。输电线路直接遭雷击或雷云放电时,电磁场的剧烈变化所引起的过电压称为大气过电压;当变压器或线路上的开关合闸或拉闸操作时,因系统中电磁能量振荡和积聚而产生的过电压称为操作过电压。变压器的这两种过电压都是作用时间短促的瞬变过程。 操作过电压一般为额定电压的3.0~4.5倍,而大气过电压数值很高,可达额定电压的8~12倍,并且绕组中电压分布极不均匀,进线端头部分线匝承受的电压很高。因此,必须采取必要的措施,防止过电压的发生和进行有效的保护。 过电压在变压器中破坏绝缘有两种情况,一是将绕组与铁心(或油箱)之间的绝缘、高压绕组与低压绕组之间的绝缘(这些绝缘称为主绝缘)击穿;另一种是在同一绕组内将匝与匝之间或一段绕组与另一段绕组之间的绝缘击穿。 由于过电压时间极短,电压从零上升到最大值再下降到零均在极短的时间内完成,因而具有高频振荡的特性,其频率可达100kHz以上。在正常运行时,电网的频率是50Hz,变压器的容抗很大,而感抗ωL很小,因此可以忽略电容的影响,电流完全从绕组内部流过。 2 原因分析

以下简单说明两种不同类型过电压产生的原因: (1)操作过电压 在一般的电网中,使用的绝大多数是降压变压器,下面以降压变压器空载拉闸操作为例说明操作过电压产生的原因。 根据变压器参数的折算法可知,把二次侧(低压侧)电容折算到一次侧(高压侧)时,电容折算值很小,因此二次侧电容的影响可以略去不计。这就是说,空载时可以忽略二次侧的影响。就一次绕组来说,由于每单位长度上的对地电容CFe''是并联的,故对地总电容值为: CFe=ΣCFe'' 由于一次侧单位长度上的匝间电容Ct''是串联的,故其匝间总电容值为: Ct=1/(Σ1/Ct'') 在电力变压器中,通常CFe>>Ct,所以定性分析时,匝间电容的影响也可略去不计。 空载变压器从电网上拉闸时,如果空载电流的瞬时值不等于零而是某一数值Ia,这时相应的外施电压瞬时值为Ua。于是在拉闸操作瞬间,一次侧电感L1中储藏的磁场能量为1/2(L1Ia2),电容CFe上储藏的电场能量为1/2(CFeUa2)。由于这时变压器的电路是由电感L1和电容CFe并联的电路,故在拉闸操作瞬间,回路内将发生电磁振荡过程。在振荡过程中,当某一瞬间电流等于零时,此时磁场能量全部转化为电场能量,由电容吸收,电容上的电压便升高到最大值Ucmax。 当拉闸操作电流和电容上的电压一定时,绕组的电感愈大,对地

零序电流保护的整定计算-精选.

零序电流保护的整定计算 一、变压器的零序电抗 1、Y/△联接变压器 当变压器Y侧有零序电压时,由于三相端子是等电位,同时中性点又不接地,因此变压器绕组中没有零序电流,相当于零序网络在变压器Y侧断开(如图1所示)。 图1:Y/△联接变压器Y侧接地短路时的零序网络 2、Y0/△联接变压器 当Y0侧有零序电压时,虽然改侧三相端子是等电位,但中性点是接地的,因此零序电流可以经过中性点接地回路和变压器绕组。

每相零序电压包括两部分:一部分是变压器Y0侧绕组漏抗上的零序电压降I0XⅠ,另一部分是变压器Y0侧的零序感应电势I lc0X lc0(I lc0为零序励磁电流,X lc0为零序励磁电抗)。由于变压器铁芯中有零序磁通,因此△侧绕组产生零序感应电势,在△侧绕组内有零序电流。由于各相零序电流大小相等,相位相同,在△侧三相绕组内自成回路,因此△侧引出线上没有零序电流,相当于变压器的零序电路与△侧外电路之间是断开的。所以△侧零序感应电势等于△侧绕组漏抗上的零序电压降I0’XⅡ。 Y0/△联接变压器的零序等值电路如图2所示。由于零序励磁电抗较绕组漏抗大很多倍,因此零序等值电路又可简化,如图3所示。在没有实测变压器零序电抗的情况下,这时变压器的零序电抗等于0.8~1.0倍正序电抗。即:X0=(0.8~1.0)(XⅠ+XⅡ)= (0.8~1.0)X1。 本网主变零序电抗一般取0.8 X1。

图2:Y0/△联接变压器Y0侧接地短路时的零序网络 图3:Y0/△联接变压器Y0侧接地短路时的零序网络简化 二、零序电流保护中的不平衡电流 实际上电流互感器,由于有励磁电流,总是有误差的。当发生三相短路时,不平衡电流可按下式近似地计算: I bp.js=K fzq×f wc×ID(3)max 式中K fzq——考虑短路过程非周期分量影响的系数,当保护动作时间在0.1S以下时取为2;当保护动作时间在0.3S~0.1S时取为1.5;动作时间再长即大于0.3S时取为1; f wc——电流互感器的10%误差系数,取为0.1; I D(3)max——外部三相短路时的最大短路电流。 最新文件仅供参考已改成word文本。方便更改

三相组合式过电压保护器

三相组合式过电压保护器(TBP或JPB) 一、概述 过电压保护器是一种取代传统避雷器的新型过电压保护器,它能可靠地保护电气设备的相-地和相-相之间绝缘免受过电压的损坏,对相-地、相-相同时提供过电压保护。这是普通氧化锌避雷器所不可相比的。 过电压保护器有以下特点:体积小,重量轻,密封性能好,防潮防爆,耐碰撞,安装灵活,运输无破损。 二、使用条件 a) 适用于户内、外; b) 环境温度-40℃~+40℃; c) 海拔高度不超过3000m; d) 电源频率不小于48Hz,不大于62 Hz; e) 长期施加在避雷器端子间的工频电压不超过避雷器的持续运行电压; f) 地震烈度8度及以下地区; g) 最大风速不超过35m/s; h) 重污秽及以下地区。 三、用途及适用范围 过电压保护器广泛适用于35kV以下中性点非有效接地系统中的高压设备,以及冶金、化工、煤炭、轻工等使用大容量高压电动机的场合,是取代常规避雷器的换代产品。 按保护对象和用途主要分以下几大类: 1.电站型:主要用于保护发电厂,变电站中交流电气设备免受大气过电压和操作过电压和相间及相对地操作过电压的损坏。2.并联补偿电容器型:主要用于抑制真空开关或少油开关操作电容器组引起的相间和相对地操作过电压,达到保护电容器组免受损坏。 3.电机型:主要用于保护旋转电机,限制切合真空开关引起的相间和相对地操作过电压,达到保护变压器和防止真空开关相间和相对地闪络的目的。 4.配电型:主要用于保护相应电压等级的开关柜、变压器、箱式变压器电缆出线头等配电设备免受大气过电压和操作过电压以及相间和相对地操作过电压的损坏。 四、主要规格及技术参数

YTB三相组合式过电压保护器使用说明

YTB 三相组合式过电压保护器使用说明 一、产品用途 三相组合式过电压保护器主要用于发电、供电和用电企业的电力电网中。用来保护变压器、开关、母线、电动机等电气设备,可限制大气过电压及各种开关引起的操作过电压,对相间和相对地的过电压均能起到可靠的限制作用。 二、结构/特点 三相组合式过电压保护器的电气原理如图(1)所示,图中FR 为氧化锌非线形电阻,CG 为放电间隙,由于采用对称结构,其中任意三个可分别接入A 、B 、C 三相,另一个接地线。 三相组合式过电压保护器具有下面的一些特点: 1. 用氧化锌非线性电阻和放电间隙的结构,使两者互为保护。放电间隙使氧化锌电阻的荷电率为零,氧化锌电阻的非线性特性又使放电间隙动作后无续流,放电间隙不再承担灭弧任务,提高了产品的使用寿命。 2. 采用四星形接法,对相间和相对地的过电压均能起到可靠的限制作用。可将相间过电压大大降低,保护的可靠性大为提高。 3.在各种电压波形下放电值均相等,不受各种操作过电压波形的影响,过电压保护值准确,保护性能优良。 4.使用环境温度为-400C ~+600C ,海拔高度小于2000m 。 三、型号说明 YTB -□/□ 组合式 电压等级 英特电力 1A-电动机 ;B-发电机、变压器、母线线路、开关 ; C- 并联补偿电容器; O-电机中性点; 2.持续运行电压:允许持久地施加在YTB 相间及相对地的工频电压有效值; 3.外套类型:F 硅橡胶外套; 4.使用环境:W 为户外型,无‘W ’只适用于户内; 5.附加功能:“J ”或“IM ” 为过电压动作记数器,(只适用于户内型YTB ); 6.采用高压电缆外引结构,因此,对外引电缆长度“L ”及线鼻子孔经“φ”要求,由用户在订货时注明。 四、技术参数 表 一 五、外型尺寸 10KV 及以下电压等级 35KV 电压等级 型 号 保 护 对 象 保护器持续运行电压(kV )有效值 保 护 对 象 额 定 电 压 (kV )有效值 工 频 放 电 电 压 (kV ) 有效值 高度 mm 有效值 允许范围 YTB-6/2 电动机 7.6 6.3 12.48 11.25~15.0 221 YTB-10/2 12.7 10.5 20.6 18.5~24.7 227 YTB-6/2 开关、母线、线路、变压器 7.6 6 14 12.6~17.5 227 YTB-10/2 12.7 10 23.2 20.88~30.0 240 YTB-35 42 35 72 64.8~89.4 580 YTB-6/2 电容器 7.6 6 14.6 13.14~17.52 19 7 YTB-10/2 12.7 10 24.2 21.0~31.0 240 φ6 φ

主变压器中性点过电压保护配置原则

由于电力系统运行的需要,110~220 k V有效接地系统的变压器中性点大部分采用不接地运行方式,变压器一般采用分级绝缘结构,绝缘水平相对较低,所以不接地运行的变压器中性点需要考虑对雷电过电压、操作过电压和暂时过电压的保护。 根据DL/T620—1997《交流电气装置的过电压保护和绝缘配合》的有关规定,提出以下保护配置意见: a)对110 kV和220 k V有效接地系统中可能偶然形成的局部不接地系统(如接地变压器误跳开关等原因引起)、低压侧有电源的变压器不接地中性点应装设间隙保护。 b)经验算,如断路器因操作机构故障出现非全相和严重不同期产生的铁磁谐振过电压可能危及中性点为标准分级绝缘、运行时中性点不接地的110 kV和220 k V变压器的中性点绝缘,宜在中性点装设间隙。 c)变压器中性点间隙值的确定应综合考虑 ———间隙的标准雷电波动作值小于主变压器中性点的标准雷电波耐受值;———因接地故障形成局部不接地系统时间隙应动作; ———系统以有效接地方式运行、发生单相接地故障时,间隙不应动作。 2变压器中性点保护配置方式的分析 根据以上配置原则,参照广东省电力试验研究所的试验数据,直径16 mm、水平布置、半球头圆钢的棒-棒间隙放电电压与间隙距离的关系见图1,在Ucp(1±σ)和U50%(1±σ)区间内放电的概率为 99.7%[1]。 2.1变压器中性点绝缘水平的选取 根据GB

311.7-1998《高压输变电设备的绝缘配合使用导则》,对3~220 k V油纸绝缘设备,耐受操作冲击电压的能力为耐受雷电冲击的 0.83倍,其值远超过预期操作过电压水平,所以绝缘水平主要由雷电过电压决定,不需考虑操作过电压的影响。 取中性点绝缘老化累计安全系数为 0.85,参考G B311.1—1997《高压输变电设备的绝缘配合》,取雷电冲击安全系数为0.714,工频电压安全系数为 1.0,则中性点综合耐受雷电冲击裕度系数为 0.6,综合耐受工频裕度系数为 0.85。 主变压器中性点可能出现的最大暂时过电压见表1。 2.2中性点保护的配置方式 我国变压器中性点保护方式一般有: 单独间隙、单独避雷器、间隙与避雷器并联。下面结合常用中性点避雷器型号,对各种绝缘等级的变压器中性点保护方式(见表2)进行讨论。 2.2.135 kV绝缘等级 35 kV中性点绝缘水平为雷电冲击耐受电压185 k V,工频耐受电压85 k V;考虑安全系数后,绝缘水平为雷电冲击耐受电压111 kV,1 min工频耐受电压73 k V。 单独采用110 mm间隙时,间隙雷电冲击放电电压为93~112 k V,工频放电电压为47~57 k V。雷电冲击放电电压和工频放电电压均小于中性点绝缘水平,中性点有效接地系统最大暂时工频过电压下间隙不动作,中性点不接地系

2三段式电流保护的整定及计算

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取1.2~1.3。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验:

式中: X1— —线 路的 单位 阻抗, 一般 0.4Ω /KM; Xsmax ——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则: 不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取1.1~1.2; △t——时限级差,一般取0.5S; 灵敏度校验:

规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一般 取1.15~1.25; Krel——电流继电器返回系数,一般取0.85~0.95; Kss——电动机自起动系数,一般取1.5~3.0; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥1.3~1.5 作远后备使用时,Ksen≥1.2

晶闸管阻容吸收回路

晶闸管阻容吸收回路 一、晶闸管两端并联RC阻容吸收电路的作用 在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。 晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管可以看作是由三个PN结组成。 晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。 为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。 由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。 二、晶闸管阻容吸收元件的选择 . 例:晶闸管是200A/1400V(KP200A)的,阻容电路该如何选择啊? 结果:电阻:10欧姆,电容0.5微法电阻功率:P=F*C*Um*10^(-6)

主变压器中性点过电压保护配置原则

主变压器中性点过电压保护配置原则 由于电力系统运行的需要,110~220 k V有效接地系统的变压器中性点大部分采用不接地运行方式,变压器一般采用分级绝缘结构,绝缘水平相对较低,所以不接地运行的变压器中性点需要考虑对雷电过电压、操作过电压和暂时过电压的保护。 根据DL/T620—1997《交流电气装置的过电压保护和绝缘配合》的有关规定,提出以下保护配置意见: a)对110 kV和220 k V有效接地系统中可能偶然形成的局部不接地系统(如接地变压器误跳开关等原因引起)、低压侧有电源的变压器不接地中性点应装设间隙保护。 b)经验算,如断路器因操作机构故障出现非全相和严重不同期产生的铁磁谐振过电压可能危及中性点为标准分级绝缘、运行时中性点不接地的110 kV和220 k V变压器的中性点绝缘,宜在中性点装设间隙。 c)变压器中性点间隙值的确定应综合考虑 ———间隙的标准雷电波动作值小于主变压器中性点的标准雷电波耐受值; ———因接地故障形成局部不接地系统时间隙应动作; ———系统以有效接地方式运行、发生单相接地故障时,间隙不应动作。 2变压器中性点保护配置方式的分析 根据以上配置原则,参照广东省电力试验研究所的试验数据,直径16 mm、水平布置、半球头圆钢的棒-棒间隙放电电压与间隙距离的关系见图1,在Ucp(1±σ)和U50%(1±σ)区间内放电的概率为99.7%[1]。 2.1变压器中性点绝缘水平的选取 根据GB 311.7-1998《高压输变电设备的绝缘配合使用导则》,对3~220 k V油纸绝缘设备,耐受操作冲击电压的能力为耐受雷电冲击的0.83倍,其值远超过预期操作过电压水平,所以绝缘水平主要由雷电过电压决定,不需考虑操作过电压的影响。 取中性点绝缘老化累计安全系数为0.85,参考GB311.1—1997《高压输变电设备的绝缘配合》,取雷电冲击安全系数为0.714,工频电压安全系数为1.0,则中性点综合耐受雷电冲击裕度系数为0.6,综合耐受工频裕度系数为0.85。 主变压器中性点可能出现的最大暂时过电压见表1。 2.2中性点保护的配置方式 我国变压器中性点保护方式一般有:单独间隙、单独避雷器、间隙与避雷器并联。下面结合常用中性点避雷器型号,对各种绝缘等级的变压器中性点保护方式(见表2)进行讨论。 2.2.135 kV绝缘等级 35 kV中性点绝缘水平为雷电冲击耐受电压185 k V,工频耐受电压85 k V;考虑安全系数后,绝缘水平为雷电冲击耐受电压111 kV,1 min工频耐受电压73 k V。 单独采用110 mm间隙时,间隙雷电冲击放电电压为93~112 k V,工频放电电压为47~57 k V。雷电冲击放电电压和工频放电电压均小于中性点绝缘水平,中性点有效接地系统最大暂时工频过电压下间隙不动作,中性点不接地系统最大暂时工频过电压下间隙动作,满足保护中性点的要求。推荐采用此保护配置方式。 单独采用Y1.5 W-48/109型避雷器时,避雷器可以耐受中性点有效接地系统最大暂时工频过电压,但裕度较小。在中性点不接地系统最大暂时工频过电压下,避雷器可能损坏。 110 mm间隙与Y1.5 W-48/109型避雷器并联时,满足保护中性点要求。但Y1.5 W -48/109型避雷器非标准型号,在避雷器残压作用下,间隙可能同时动作;在中性点工频

阻容吸收回路

阻容吸收回路通常过电压均具有较高的频率,因此常用电容作为吸收元件,为防止振荡,常加阻尼电阻,构成阻容吸收回路。阻容吸收回路可接在电路的交流侧、直流侧,或并接在晶闸管的阳极与阴极之间。 压敏电阻是以氧化锌为基体的金属氧化物非线性电阻,其结构为两个电极,电极之间填充的粒径为10~50μm的不规则的ZNO微结晶,结晶粒间是厚约1μm的氧化铋粒界层。这个粒界层在正常电压下呈高阻状态,只有很小的漏电流,其值小于100μA。当加上电压时,引起了电子雪崩,粒界层迅速变成低阻抗,电流迅速增加,泄漏了能量,抑制了过电压,从而使晶闸管得到保护。浪涌过后,粒界层又恢复为高阻态。收电路最好选用无感电容,接线应尽量短 由于压敏电阻的通流容量大,残压低,抑制过电压能力强;平时漏电流小,放电后不会有续流,元件的标称电压等级多,便于用户选择;伏安特性是对称的,可用于交、直流或正负浪涌;因此用途较广。。 过电压产生的原因主要是供给的电功率或系统的储能发生了激烈的变化,使得系统来不及转换,或者系统中原来积聚的电磁能量来不及消散而造成的。主要发现为雷击等外来冲击引起的过电压和开关的开闭引起的冲击电压两种类型。 (1)交流电源接通、断开产生的过电压例如,交流开关的开闭、交流侧熔断器的熔断等引起的过电压,这些过电压由于变压器绕组的分布电容、漏抗造成的谐振回路、电容分压等使过电压数值为正常值的2至10多倍。一般地,开闭速度越快过电压越高,在空载情况下断开回路将会有更高的过电压。 (2)直流侧产生的过电压如切断回路的电感较大或者切断时的电流值较大,都会产生比较大的过电压。这种情况常出现于切除负载、正在导通的晶闸管开路或是快速熔断器熔体烧断等原因引起 浪涌电流是指电网中出现的短时间象“浪”一样的高电压引起的大电流。当某些大容量的电气设备接通或断开时间,由于电网中存在电感,将在电网产生“浪涌电压”,从而引发浪涌电流.

架空线路过电压保护器专业技术说明

架空线路过电压保护器技术说明

————————————————————————————————作者:————————————————————————————————日期:

绝缘线防雷装置的应用研究 技术报告 南昌供电局 武汉雷泰电力技术有限公司 摘要本文总结国内外防止配电线路架空绝缘导线雷击断线的技术措施和装置,比较其可靠性和经济性,经试验研究、性能价格比优选和实际运行验证,提出一种适合中国国情、防止配电线路架空绝缘导线雷击断线和减少雷击跳闸概率的新技术和装置,可有效地防止架空绝缘导线雷击断线、绝缘子损坏等事故。该装置结构简单、安装方便,技术先进、国内首创。 关键词:过电压保护架空绝缘线路 key words: Over-voltage Protection Insulated overhead line 1.提出问题 配电网由于其绝缘水平相对较低,往往容易发生雷害事故,造成绝缘子击穿和导线烧断。运行经验表明:配电网雷害事故约占整个电力系统雷害事故的70—80% 。特别是近年来,城市配电网线路多采用架空绝缘电缆,雷害造成的断线事故数量相对增加,必须引起人们的高度重视。 试验研究和实际事故原因分析证实:配电网雷电过电压闪络,亦即大气压或高于大气压中大电流放电,为电弧放电形式。对于架空绝缘线路,雷电过电压闪络时,瞬间电弧电流很大但时间很短,仅在架空绝缘导线绝缘层上形成击穿孔,不会烧断导线。但是,当雷电过电压闪络,特别是在两相或三相(不一定是在同一电杆上)之间闪络而形成金属性短路通道,引起数千安培工频续流,电弧能量将骤增。此时,由于架空绝缘导线绝缘层阻碍电弧在其表面滑移,高温弧根被固定在绝缘层的击穿点而在断路器动作之前烧断导线。 对于裸导线,电弧在电磁力的作用下,高温弧根沿导线表面滑移,并在工频续流烧断导线或损坏绝缘子之前引起断路器动作,切断电弧。因此,裸导线的断线故障率明显低于架空绝缘导线。 在不切断电源的情况下有两种较为简单的灭弧方法,一是使电弧拉长,二是使电弧冷却,通常是将两种方法结合起来使用。本研究项目根据试

电力变压器保护设计规范说明

电力变压器保护设计规范说明 电力变压器保护设计规范(GB/T50062—2008) 4·0·1电压为3~110kV,容量为63MV·A及以下的电力变压器,对下列故障及异常运行方式,应装设相应的保护装置: 1,绕组及其引出线的相问短路和在中性点直接接地或经小电阻接地侧的单相接地短路。2,绕组的匝间短路。 3,外部相间短路引起的过电流。 4,中性点直接接地或经小电阻接地的电力网中外部接地短路引起的过电流及中性点过电压。5,过负荷。 6,油面降低。 7,变压器油温过高、绕组温度过高、油箱压力过高、产生瓦斯或冷却系统故障。 4.0.2容量为0.4MV·A及以上的车间内油浸式变压器、容量为0.8MV·A及以上的油浸式变压器,以及带负荷调压变压器的充油调压开关均应装设瓦斯保护,当壳内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。 瓦斯保护应采取防止因震动、瓦斯继电器的引线故障等引起瓦斯保护误动作的措施。当变压器安装处电源侧无断路器或短路开关时,保护动作后应作用于信号并发出远跳命令,同时应断开线路对侧断路器。 4.0.3对变压器引出线、套管及内部的短路故障,应装设下列保护作为主保护,且应瞬时动作于断开变压器的各侧断路器,并应符合下列规定: 1,电压为10kV及以下、容量为10MV·A以下单独运行的变压器,应采用电流速断保护。 2,电压为10kV以上、容量为10MV·A及以上单独运行的变压器,以及容量为6.3MV·A及以上并列运行的变压器,应采用纵联差动保护。 3,容量为10MV·A以下单独运行的重要变压器,可装设纵联差动保护。 4,电压为10kV的重要变压器或容量为2MV·A及以上的变压器,当电流速断保护灵敏度不符合要求时,宜采用纵联差动保护。 5,容量为0.4MV·A及以上、一次电压为10kV及以下,且绕组为三角一星形连接的变压器,可采用两相三继电器式的电流速断保护。 4.0.4变压器的纵联差动保护应符合下列要求: 1,应能躲过励磁涌流和外部短路产生的不平衡电流。 2,应具有电流回路断线的判别功能,并应能选择报警或允许差动保护动作跳闸。 3,差动保护范围应包括变压器套管及其引出线,如不能包括引出线时,应采取快速切除故障的辅助措施。但在63kV或110kV电压等级的终端变电站和分支变电站,以及具有旁路母线的变电站在变压器断路器退出工作由旁路断路器代替时,纵联差动保护可短时利用变压器套管内的电流互感器,此时套管和引线故障可由后备保护动作切除;如电网安全稳定运行有要求时,应将纵联差动保护切至旁路断路器的电流互感器。 4.0.5对由外部相间短路引起的变压器过电流,应装设下列保护作为后备保护,并应带时限动作于断开相应的断路器,同时应符合下列规定: 1,过电流保护宜用于降压变压器。 2,复合电压启动的过电流保护或低电压闭锁的过电流保护,宜用于升压变压器、系统联络变压器和过电流保护不符合灵敏性要求的降压变压器。 4.0.6外部相间短路保护应符合下列规定:

TBP三相组合式过电压保护器使用说明书

YTB三相组合式过电压保护器使用说明 一、产品用途 三相组合式过电压保护器主要用于发电、供电和用电企业的电力电网中。用来保护变压器、开关、母线、电动机等电气设备,可限制大气过电压及各种开关引起的操作过电压,对相间和相对地的过电压均能起到可靠的限制作用。 二、结构/特点 三相组合式过电压保护器的电气原理如图(1)所示,图中FR为氧化锌非线形电阻,CG为放电间隙,由于采用对称结构,其中任意三个可分别接入A、B、C三相,另一个接地线。 三相组合式过电压保护器具有下面的一些特点: 1.用氧化锌非线性电阻和放电间隙的结构,使两者互为保护。放电间隙使氧化锌电 阻的荷电率为零,氧化锌电阻的非线性特性又使放电间隙动作后无续流,放电间隙不再 承担灭弧任务,提高了产品的使用寿命。 2.采用四星形接法,对相间和相对地的过电压均能起到可靠的限制作用。可将相间 过电压大大降低,保护的可靠性大为提高。 3.在各种电压波形下放电值均相等,不受各种操作过电压波形的影响,过电压保护 值准确,保护性能优良。 4.使用环境温度为-400C~+600C,海拔高度小于2000m。 三、型号说明 YTB-□/□ 组合式 电压等级 英特电力 1A-电动机;B-发电机、变压器、母线线路、开关;C- 并联补偿电容器;O-电机中性点;2.持续运行电压:允许持久地施加在YTB相间及相对地的工频电压有效值; 3.外套类型:F硅橡胶外套; 4.使用环境:W为户外型,无‘W’只适用于户内; 5.附加功能:“J”或“IM”为过电压动作记数器,(只适用于户内型YTB); 6.采用高压电缆外引结构,因此,对外引电缆长度“L”及线鼻子孔经“φ”要求,由用户在订货时注明。 四、技术参数表一 五、外型尺寸 10KV及以下电压等级 35KV电压等级

相关主题
文本预览
相关文档 最新文档