当前位置:文档之家› 螺柱焊与凸焊对比分析

螺柱焊与凸焊对比分析

螺柱焊与凸焊对比分析
螺柱焊与凸焊对比分析

前言

大家在实际拆车过程中,会发现:无论哪辆车的白车身上都有很多的螺柱或者凸焊螺母、螺栓;但是他们看起来十分相似,傻傻分不清是什么标准件,今天我们将一起了解他们不同的

工艺及特点。

中通道处螺柱细节图

1 工艺介绍

螺柱焊是指将螺柱一端与待焊工件(板件或管件)表面接触,在这两者之间产生电弧,待接

合面熔化时迅速给螺柱施加一定压力,快速挤压在一起形成焊缝,形成牢固连接的工艺方法。

螺柱焊接工艺,具有快速可靠、简化、操作简便、降低成本等众多优点,目前螺柱在车厢内

的作用是固定线束、内饰件和地毯;在车厢外的作用是固定线束、油管、制动油管以及隔热板、导流板等底盘附件。

凸焊是在焊接件的接合面上预先加工出一个或多个凸点,使其与另一焊接件表面相接触,加压并通电加热,凸点压溃后,使这些接触点形成焊点的电阻焊方法。

1.上电极臂

2.下电极臂

3.上电极夹持器

4.下电极夹持器

5.上电极

6.下电极

7.定位销

8.凸焊标准件

9.钣金

螺柱焊

凸焊机

对比,如下:

?螺柱焊是将螺柱一端与钣金件的表面接触,并通电引弧,待接触面溶化后,施加压力,完成焊接操作。

?凸焊是在焊件上预先加工出焊点,或利用焊件上原有的能使电流集中的型面,通过加压通电,凸点融化形成焊点,焊接设备直观看起来更是不同。

2 螺柱焊

螺柱焊分为:拉弧式螺柱焊和储能式螺柱焊

拉弧式螺柱焊机是一种在螺柱焊接时,首先由机器产生的一股小电流引弧,在这股小电流将焊接母材表面的各种附着物燃烧清除后,再由机器产生一股大电流,将螺柱焊接在母材上的一种焊接方式。根据焊接拉弧时间的不用实现不同板厚的焊接。

拉弧式螺柱焊分步图

储能式螺柱焊机的工作原理是输入单项220V的电流,先由电容进行储能,然后由控制系统控制电容放电,放电的电压的高低,可根据焊接需要进行调节,在电容放电的瞬间,将装在焊枪上的螺柱焊接在母材上。

储能式螺柱焊分布图

3 凸焊

凸焊分为凸焊螺母、端面凸焊螺栓、承面凸焊螺栓

凸焊螺母根据使用区域不同、强度不同,如在安装电池的凸焊螺母一般选用等级较高的螺母,凸焊螺栓分为端面凸焊螺栓和承面凸焊螺栓,承面凸焊螺栓需要开孔,凸焊螺栓底孔统一定

为(M+0.5),适用于安装件紧密贴合与钣金的部件,端面凸焊螺栓不需要钣金开孔,适用于安装件无需紧密贴合与钣金的部件。

凸焊螺母

承面凸焊螺栓

端面凸焊螺栓

4 凸焊与螺柱焊的区别

形状标准件形状不同,凸焊标准件上会有多个凸点,螺柱焊储能式标准件在中心处有一个凸点,约0.8*0.8的引弧点,拉弧式标准件在焊接端面有3到5度的锥度

储能式螺柱拉弧式螺柱

承面凸焊

端面凸焊

型号标准件直径要求不同,储能式螺柱焊一般用于焊接直径为3-10毫米的螺柱,拉弧式螺柱焊,可焊螺柱直径范围为3-25mm,凸焊标准件型号一般在M4到M12之间,且因为采购问题,过小的可能在实际过程不予应用。

材料凸焊主要应用在底强钢和高强钢上,热成型钢上也有应用但是对于铝件无法凸焊,拉弧式螺柱焊对焊接母材要求焊接母材表面能导电,即使焊接的表面有轻微锈蚀、油污、金属镀

层、其他杂质也不影响焊接、储能式螺柱焊对母材要求严格,母材表面不良将导致电阻增大,无法焊接活焊不牢,如果镀层较厚将很难焊接。

外观储能式螺柱焊接处周围板材表面无明显破坏痕迹;板材背面,无明显印痕拉弧式螺柱

焊正面焊接处周围发黑,无法擦除;背面有一定变形,螺柱焊周边会有一定的熔融痕迹,凸

焊焊接完后周边没有推积,且周围不会发黑,除了端面凸焊,其他凸焊过程钣金需要开孔,

螺柱焊过程不需要开孔。

储能式实物图

拉弧式实物图

空间螺柱焊仅需要单侧空间,凸焊需要双侧空间,且因凸焊机喉深尺寸限制对于尺寸较大的钣金凸焊易发生干涉,因此凸焊在焊接过程中没有螺柱焊便捷。

总结

本文主要介绍了凸焊工艺、螺柱焊工艺,凸焊与螺柱焊的区别,主要通过标准件周边情况、标准件形貌、空间需求及有无开孔、焊接件材料等,来实现区分标准件样式。

如果大家有了解的相关区别方法或者其他核心知识点,欢迎在留言区留言、评论。

螺柱焊接技术

目前,我国汽车制造业主要应用的螺柱焊接技术是短周期拉弧式螺柱焊,辅以相关的自动控制设备,大幅提高了汽车的焊接质量,提升了汽车品质。 螺柱焊接技术由于具有快速、可靠、操作简单和成本低等优点,可替代铆接、钻孔、手工电弧焊和钎焊等连接工艺,可焊接碳钢、不锈钢、铝以及铜及其合金等金属,现在已广泛应用在汽车、船舶制造等领域。我国应用螺柱焊接技术的历史不长,但是随着我国经济的快速发展和制造业水平的不断提高,螺柱焊接技术正被越来越多的国内企业所采用。 螺柱焊接技术及原理 将螺柱或类似的金属柱状物及其他紧固件焊接在工件上的方法称为螺柱焊。实现螺柱焊的方法有多种:电阻焊、摩擦焊、爆炸焊及电弧焊等。目前应用最广泛的方法是电弧法螺柱焊,根据焊接电源的不同,可细分为储能式(电容放电)螺柱焊和拉弧式螺柱焊。 1.储能式螺柱焊 储能式螺柱焊由充电电容放电提供焊接所需的能量,当电容放电时,螺柱和工件之间出现很短时间的电弧,电弧会熔化工件表面和螺柱顶端的少量金属,随后螺柱浸入熔池,熔化金属迅速冷却,形成焊接接头。储能式螺柱焊的焊接时间极短,通常情况下在5ms 之内,无需保护气体;熔池浅,约0.1mm,工件背面无变形、压痕,适于薄板焊接; 可用于焊接碳钢、不锈钢、铝、铜及其合金等金属;板厚与螺柱直径比可达1∶10。 储能式螺柱焊设备根据焊枪的配置不同,可分为接触式和间隙式两种。 接触式螺柱焊依靠焊枪内置弹簧压紧螺柱,工件和螺柱之间的距离由螺柱顶部小凸台来保证,当电容放电时,小凸台迅速气化,螺柱和工件之间出现电弧,电弧产生的热量使螺柱顶部形成熔化层,工件表面形成很浅的熔池。在焊枪内置弹簧压力下,螺柱快速下

螺柱焊

螺柱焊(stud welding ) 将螺柱一端与板件(或管件)表面接触并通电引弧,待接触面熔化后,给螺柱一定压 力完成焊接的方法。 螺柱焊钉 螺柱焊(stud welding)是将螺柱一端与板件(或管件)表面接触,通电引弧,待接触面熔化后,给螺柱一定压力完成焊接的方法。电弧螺柱焊用圆柱头焊钉适用高层钢骨结构建筑、工业厂房建筑、公路、铁路、桥梁、塔架、汽车、能源、交通设施建筑、机场、车站、电站、管道支架、起重机械及其它钢结构等。 简介主要由螺柱焊电源和焊枪组成. 电弧螺柱焊的基本原理是在待焊螺柱与工件间引燃电弧,当螺柱与工件被加热到合适温度时,在外力作用下,螺柱送入工件上的焊接熔池形成焊接接头。根据焊接过程中所用焊接电源的不同,传统电弧螺柱焊可以分为普通电弧螺柱焊和电容储能电弧螺柱焊两种基本方法 螺柱焊原理分析螺柱焊是将金属螺柱或其他紧固件焊接在工件上的方法。实现螺柱焊接的方法有多种,如:拉弧式螺柱焊、储能式螺柱焊、电阻焊、凸焊等。与之相对应的焊机也有所不同,分别为拉弧式螺柱焊机、储能式螺柱焊机、电阻焊机、凸焊机等。 [1]螺柱焊机在国内有多种非正规称法,如种焊机,植焊机,种钉机,植钉机,植焊机,螺钉焊机,螺丝焊机等等,均是指螺柱焊机。 储能式螺柱焊机 储能式螺柱焊机采用大容量电容作为焊接能量的来源,通过可控硅精确控制放电时间,以瞬间低电压-强电流的方式将螺柱尖端迅速熔化,使螺柱和工作面间隙快速合并,将螺柱牢固的焊接在工作面上,整个过程持续约1-3ms。 储能式螺柱焊机的工作原理简图如下:

螺柱焊原理图 储能式螺柱焊机采用220V交流电,通过变压器1降压,再通过整流桥2将交流电变为直流电,经过双向整流管3和充电电阻向电容6充电。由智能芯片精确控制可控硅5,使储能电容6瞬间释放全部电量完成整个焊接过程。 储能式螺柱焊机广泛运用于钣金工程、电子业开关柜、试验和医疗设备、食品工业、家电工业、通讯工程、工业全套炊具、办公室和银行设备、投币式督货机、玻璃幕墙结构和绝缘技术等。 螺柱焊的特点 1.非常节省时间和成本所有螺柱焊的结构不用钻孔,冲孔,车螺纹,铆接,拧螺纹和精整等步骤。 2.不断扩展结构设计的应用潜力在螺柱焊时起焊接过程是短时间,大电流和较小的熔深。因此,可以焊接到很薄的板材上。对于使用陶瓷环拉弧螺柱焊和短周期拉弧螺柱焊的板厚可以到1mm。电容放电拉弧螺柱焊可以到0.6mm,而储能式螺柱可以到0.5mm。 螺柱焊的工件必须是从一侧焊接。 能在全位置焊接,借助于扩展器可以焊接到受限制的垂直隔板上。 由于是短时间焊接且焊后很少变形,故不需要修整。 因为焊接的结构不需要钻孔,故不会造成泄漏。 螺柱焊的接头可以达到很高的强度,即螺柱焊的接头强度大于螺柱本身强度。 在镀层或高合金板材焊接后,背面没有印痕。 3.良好的经济性 螺柱焊相对于其他焊接方法的优点,在于焊接功率上。对于批量生产的工件,在很短的焊接时间(3-980ms)内可打到8-40个/min(根据不同直径螺柱和不同焊接功率)。而自动送料螺柱焊机可以达到60个/min的超高效率。 标准的螺柱是低成本的。 螺柱焊设备和焊枪具有多种类型,设备的购置费用相对较低。 根据产品,可以制成多工位自动焊机,或高精度龙门式数控自动焊机。 螺柱焊具有较高的质量再现率和较小的废品率。

螺柱焊机及其焊接技术

螺柱焊机及其焊接技术 前言 所谓螺柱焊是指在金属或类似金属件的端面与另一金属工件表 面之间产生电弧,待接合面熔化时迅速施加压力,完成焊接的一种方法。螺柱焊接方法起源于1918年,由于这种焊接新技术具有快速、可靠、简化工序、降低成本等一系列优点,因而引起了世界各国的普遍重视,经过不断地改进和完善,特别是二次世界大战后得到了迅速发展,现已广泛应用到桥梁、高速公路、房屋建筑、造船、汽车、电站、电控柜等行业。可焊接低碳钢、不锈钢、低合金钢,铜、铝及其合金材质的螺柱、焊钉、销钉、栓钉等。近年来我国经济建设发展迅速,使用螺柱焊接的领域也越来越广泛,螺柱焊接技术发展到今天,已成为一种基本的热加工方法,螺柱(焊钉)的焊接大约有90%以上是通过螺柱焊机完成的。 1.螺柱焊机的分类 螺柱焊机分为电弧螺柱焊机和电容放电螺柱焊机两大类,前者以弧焊整流器作为电源进行焊接,后者则以电容器贮存的能量瞬间放电而进行焊接。两种焊接方式的特点及应用情况见表1。 表1 电弧螺柱焊和电容放电螺柱焊的特点:

注:最低板厚是指避免烧穿的厚度。 1.1 电弧螺柱焊机 电弧螺柱焊机是由焊接电源、控制器、焊枪、地线钳、焊接电缆等部分组成。但大多数焊接设备的焊接电源都与控制器合并为一体,称为主机。比较先进的控制方式是使用微处理器,以便精确设置和适时控制焊接过程中的焊接电流、焊接时间等参数。焊接电源一般为晶闸管控制的或逆变式的弧焊整流器。逆变式的弧焊整流器体积小、重量轻、动特性好,无疑是焊机的首选,但受大功率器件的限制,所以目前大容量的焊机还是以晶闸管控制的弧焊整流器为主。但不论那种结构的焊接电源,其安全要求都应符合ISO14555的规定。用于螺柱焊的直流焊接电源应具有以下特点: a、焊接电源应具有下降的静外特性。只有这样才能维持电弧

焊接中常见的缺陷及解决方法

焊接中常见的缺陷及解决方法 1.漏焊---漏焊包括焊点漏焊、螺栓漏焊、螺母漏焊等。 原因---主要原因是因为没有自检、互检,对工艺不熟悉造成的。 解决方法---在焊接后对所有焊点(螺母、螺栓等)进行检查,确认焊点(螺母、螺栓等)数量,熟悉工艺要求,加强自检意识,补焊等。 2.脱焊---包括焊点、螺母、螺栓等脱焊。(除材料与零部件本身不合格) 以下3种可视为脱焊: ①.接头贴合面未形成熔核,呈塑料性连接; ②.贴合面上的熔核尺寸小于规定值; ③.熔核核移,使一侧板焊透率达不到要求。 产生脱焊原因: ①.焊接电流过,焊接区输入热量不足; ②.电极压力过大,接触面积增大,接触电阻降低,散热加强; ③.通电时间短,加热不均匀,输入热量不足; ④.表面清理不良,焊接区电阻增大,分流相应增大; ⑤.点距不当,装配不当,焊接顺序不当,分流增大。 解决方法:在调整焊接电流后,对焊点做半破坏检查(试片做全破坏检查),目视焊点形状;补焊,检查上次半破坏后的相关焊点。 3.补焊---多焊了工艺上不要求焊接的焊点。 原因---不熟悉工艺或焊接中误操作焊钳。 解决方法---熟悉工艺或加强操作技能。 注意:两个或多于两个的连续点焊不能有偏焊现象,边缘及拐角处也不能存在偏焊的现象。(如两个连点偏焊,至少要有一个焊点需要重新点焊。) 4.焊渣---由于电流过大或压力过小,造成钢板的一部分母材在高温熔合 时沿着两钢板贴合面被挤出而形成的冷却物. 原因---主要原因是电流和压力的变化,以及焊钳操作不当引起的。 解决方法---调整焊接参数与电极压力,加强操作技能及清除焊渣。 5.飞溅---飞溅分为内部飞溅和外部飞溅两种。 内部飞溅---高温液态金属在电极压力的作用下,沿着最薄弱的两钢板间贴合而挤出。 产生原因 ①.电流过大,电极压力不足; ②.板间有异物或贴合不紧密。 外部飞溅---电极与焊件之间融合金属溢出的现象. 产生原因 ①.电极修磨得太尖锐;

螺柱焊机的工作及原理

螺柱焊(stud welding)是将螺柱一端与板件(或管件)表面接触,通电引弧,待接触面熔化后,给螺柱一定压力完成焊接的方法。电弧螺柱焊用圆柱头焊钉适用高层钢骨结构建筑、工业厂房建筑、公路、铁路、桥梁、塔架、汽车、能源、交通设施建筑、机场、车站、电站、管道支架、起重机械及其它钢结构等。 主要由螺柱焊电源和焊枪组成. 电弧螺柱焊的基本原理是在待焊螺柱与 工件间引燃电弧,当螺柱与工件被加热到合适温度时,在外力作用下,螺柱送入工件上的焊接熔池形成焊接接头。根据焊接过程中所用焊接电源的不同,传统电弧螺柱焊可以分为普通电弧螺柱焊和电容储能电弧螺柱焊两种基本方法 编辑本段螺柱焊原理分析 螺柱焊是将金属螺柱或其他紧固件焊接在工件上的方法。实现螺柱焊接的方法有多种,如:拉弧式螺柱焊、储能式螺柱焊、电阻焊、凸焊等。与之相对应的焊机也有所不同,分别为拉弧式螺柱焊机、储能式螺柱焊机、电阻焊机、凸焊机等。[1]螺柱焊机在国内有多种非正规称法,如种焊机,植焊机,种钉机,植钉机,植焊机,螺钉焊机,螺丝焊机等等,均是指螺柱焊机。储能式螺柱焊机储能式螺柱焊机采用大容量电容作为焊接能量的来源,通过可控硅精确控制放电时间,以瞬间低电压-强电流的方式将螺柱尖端迅速熔化,使螺柱和工作面间隙快速合并,将螺柱牢固的焊接在工作面上,整个过程持续约1-3ms。储能式螺柱焊机的工作原理简图如下:螺柱焊原理图 储能式螺柱焊机采用220V交流电,通过变压器1降压,再通过整流桥2将交流电变为直流电,经过双向整流管3和充电电阻向电容6充电。由智能芯片精确控制可控硅5,使储能电容6瞬间释放全部电量完成整个焊接过程。储能式螺柱焊机广泛运用于钣金工程、电子业开关柜、试验和医疗设备、食品工业、家电工业、通讯工程、工业全套炊具、办公室和银行设备、投币式督货机、玻璃幕墙结构和绝缘技术等。 编辑本段螺柱焊的特点 1.非常节省时间和成本 所有螺柱焊的结构不用钻孔,冲孔,车螺纹,铆接,拧螺纹和精整等步骤。 2.不断扩展结构设计的应用潜力 在螺柱焊时起焊接过程是短时间,大电流和较小的熔深。因此,可以焊接到很薄的板材上。对于使用陶瓷环拉弧螺柱焊和短周期拉弧螺柱焊的板厚可以到 1mm。电容放电拉弧螺柱焊可以到0.6mm,而储能式螺柱可以到0.5mm。螺柱焊的工件必须是从一侧焊接。能在全位置焊接,借助于扩展器可以焊接到受限制的垂直隔板上。由于是短时间焊接且焊后很少变形,故不需要修整。因为焊接的结构不需要钻孔,故不会造成泄漏。螺柱焊的接头可以达到很高的强度,即螺柱焊的接头强度大于螺柱本身强度。在镀层或高合金板材焊接后,背面没有印痕。 3.良好的经济性 螺柱焊相对于其他焊接方法的优点,在于焊接功率上。对于批量生产的工件,在很短的焊接时间(3-980ms)内可打到8-40个/min(根据不同直径螺柱和不同焊接功率)。而自动送料螺柱焊机可以达到60个/min的超高效率。标准的螺柱是低成本的。螺柱焊设备和焊枪具有多种类型,设备的购置费用相对较低。根据产品,可以制成多工位自动焊机,或高精度龙门式数控自动焊机。螺柱焊具有较高的质量再现率和较小的废品率。

螺柱焊机及其焊接工艺

螺柱焊机及其焊接工艺 单位:二十二冶市政工程分公司姓名:徐升乾 时间:2010年4月 前言

所谓螺柱焊是指在金属或类似金属件的端面与另一金属工件表面之间产生电弧,待接合面熔化时迅速施加压力,完成焊接的一种方法。螺柱焊接方法起源于1918年,由于这种焊接新技术具有快速、可靠、简化工序、降低成本等一系列优点,因而引起了世界各国的普遍重视,经过不断地改进和完善,特别是二次世界大战后得到了迅速发展,现已广泛应用到桥梁、高速公路、房屋建筑、造船、汽车、电站、电控柜等行业。可焊接低碳钢、不锈钢、低合金钢,铜、铝及其合金材质的螺柱、焊钉、销钉、栓钉等。据报道1),日本园柱头焊钉(栓钉)的年焊接量为6000万个,异型棒状焊钉年焊接量为300万个。可见螺柱焊接在日本钢结构建筑中的应用规模。近年来我国经济建设发展迅速,使用螺柱焊接的领域也越来越广泛,因此有必要对螺柱焊接技术和焊接工艺进行深入研究,以便提高焊接质量,推广普及这种焊接技术。 螺柱焊接技术发展到今天,已经成为西方发达国家的一种基本的热加工方法,螺柱(焊钉)的焊接大约有80%以上是通过螺柱焊机完成的。而我国1986年才在成都试制成功第一台螺柱焊机。至于螺柱焊接技术的应用,还是从上世纪的九十年代才逐步展开的,到现在也只有20来年的历史,因此螺柱焊在我国还是一种刚刚兴起的行业,不论焊接设备,还是焊接工艺都与国外有不少差距。分析这种差距,并逐步缩短这种差距,直至赶超世界水平则是我国螺柱焊接行业的神圣使命。 1.螺柱焊机的分类 螺柱焊机分为电弧螺柱焊机和电容放电螺柱焊机两大类,前者以弧焊整流器作为电源进行焊接,后者则以电容器贮存的能量瞬间放电而进行焊接。两种焊接方式的特点及应用情况见表1。 表1 电弧螺柱焊和电容放电螺柱焊的特点

常见的焊接缺陷与缺陷图片

常见的焊接缺陷(1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应

力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

波峰焊工艺管控要点

1.目的 保持工艺过程的稳定,实行对缺陷的预防。检验波峰焊制程是否符合产品的焊接质量要求,工艺制程管控按照此制程为依据。 2.范围 本公司波峰焊所有生产的产品。 3.权责 生产部:波峰焊操作人员负责执行监控; 工程部:工程师负责工艺制程编制,处理和调整生产过程中波峰焊不能满足控制要求等异常状况;监控锡料槽杂志的含量、送样检测成分、检测报告分析及异常处置。4.内容 4.1影响波峰焊接效果的主要因素(鱼刺图) 元器件引线PCB

图形大小浸入状态湿度人际关系 图形间隔退出状态振动社会状态 图形密度喷流波形照明包装状态工作态度 图形形状夹送倾角噪音搬运状态家庭状态 图形大小浸入状态湿度人际关系 图形间隔退出状态振动社会状态 图形方向浸入时间存放技术水平 安装方式压波深度心情 波峰平稳度 设计波峰焊接环璋储存和搬运操作者4.2波峰焊相关工作参数设置和控制要求 4.2.1波峰焊设备设置 1)定义:焊点预热温度均指产品上的实际温度,波峰焊预热温度设定值以获得合格波峰曲线时设定温度为准。 2)有铅波峰焊锡炉温度控制在235-245℃,测温曲线PCB板上焊点温度的最低值为215℃;无铅锡炉温度控制在255-265℃,PCB板上焊点温度的最低值为235℃。 3)如客户或产品对温度曲线参数有单独规定和要求,应根据公司波峰焊机的实际性能与客户协商确定的标准,以满足客户和产品的要求。 4)波峰焊基本设置要求: a.浸锡时间为:波峰1控制在0.3~1秒,波峰2控制在2~3秒; b.传送速度为:0.8~1.7米/分钟; c:导轨倾斜角度4-6度; d:助焊剂喷雾压力为0.3-0.6MPa,助焊剂容量在4.5L; e.针阀压力为2-4Psi; f:除以上参数设置标准范围外,如客户对其产品有特殊指定要求则由工艺工程师在产

常见的焊接缺陷及处理办法

常见的焊接缺陷及处理办法 一、外部缺陷 一)、焊缝成型差 1、现象 焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。 2、原因分析 焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。 ⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。 ⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。 ⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。 4、治理措施 ⑴加强焊后自检和专检,发现问题及时处理; ⑵对于焊缝成型差的焊缝,进行打磨、补焊; ⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊; ⑷加强焊接验收标准的学习,严格按照标准施工。 二)、焊缝余高不合格 1、现象 管道焊口和板对接焊缝余高大于 3 ㎜;局部出现负余高;余高差过大;角焊缝高度不够或 焊角尺寸过大,余高差过大。 2、原因分析 焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数; ⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢; ⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀; ⑷注意保持正确的焊条(枪)角度。 4、治理措施 ⑴加强焊工操作技能培训,提高焊缝盖面水平; ⑵对焊缝进行必要的打磨和补焊; ⑶加强焊后检查,发现问题及时处理; ⑷技术员的交底中,对焊角角度要求做详细说明。 三)、焊缝宽窄差不合格 1、现象 焊缝边缘不匀直,焊缝宽窄差大于 3 ㎜。 2、原因分析 焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。

波峰焊十大缺陷原因分析及解决方法

波峰焊十大缺陷原因分析及解决方法 波峰焊是让插件板的焊接面直接与高温液态锡接触达到焊接目的,其高温液态锡保持一个斜面,并由特殊装置使液态锡形成一道道类似波浪的现象,所以叫“波峰焊”,其主要材料是焊锡条。下面小编为大家分析下线路板波峰焊接后常见缺陷及解决办法:一、元件脚间焊接点桥接连锡原因:桥接连锡是波峰焊中个比较常见的缺陷,元件引脚间距过近或者波不稳都有可能导致桥接连锡,可能原因如下,焊接温度设置过低,焊接时间过短,焊接完成后下降时间过快,助焊剂喷涂量过少。般这种情况下要检查波和确认焊接坐标是否正确,可以通过提高焊接温度或预热温度,提高焊接时间,增加下降时间,提高助焊剂喷涂量的方法来改善。 二、线路板焊锡面的上锡高度达不到原因:对于二以上产品来说这也是个比较常见的缺陷,般来讲些金属材质的大元件如电源模块等,由于他们大多与接地脚相接散热较快上锡困难,当然般上锡高度标准会有相应的放松。除此外焊接温度低,助焊剂喷涂量少,波高度低都会导致上锡高度不够。提高预热和焊接温度,多喷涂些助焊剂等可以解决问题。 三、线路板过波峰焊时正面元件浮高原因:元件过轻或波抬高会导致波将元件冲击浮高上去,或者在插装元件的时候元件没有插到位,轨道速度过快或不稳导致元件歪斜抬高。可以制作夹具将原件压住,由于夹具的吸热可能需要提高预热或焊接温度。推荐阅读:再次焊锡产生的不良原因 四、波峰焊接后线路板有焊点空洞原因:元件引脚太短尚不能伸出通孔或元件引脚横截面被氧化不上锡,可以加喷助焊剂。 五、波峰焊接后焊点拉原因:这是个和桥接样发生频率较高的缺陷种类,预热和焊接温度过低,焊接时间太短会导致拉的发生。 六、波峰焊接后线路板上有锡珠原因:有锡珠时要检查助焊剂的质量或者板子表面是否沾上锡膏,助焊剂中含水在焊接时会炸裂导致锡珠。

螺柱焊接工艺

一螺柱焊的原理与用途 采用螺柱焊的连接方法可将金属螺柱、销钉或类似连接紧固件焊至工件上的焊接方法。 焊接时螺柱被夹持在焊枪的夹持器内,操作者或机器人将焊枪移至焊接位置,螺柱与工件接触。焊枪中的磁力提升机构使螺柱上升与工件脱离接触,控制机构同时在螺柱与工件间施加一引弧电压,在螺柱端面与工件间引出电弧,电弧使螺柱端面与工件熔化。随着螺柱被提升到设定的高度,工件间的电压被加到焊接电压,焊接时间达到预设时间,焊接电压被切断并同时提升机构的电磁铁被断电,螺柱在焊枪的弹簧机构的弹力作用下浸入工件熔化形成的熔池,螺柱将部分液态金属挤出,熔池金属冷却结晶形成螺柱与工件的共同连接接头。 二焊接设备及焊接定位夹具 螺柱焊接系统包括焊接电源、焊接控制器、送料机构、焊枪、手工焊接需采用焊接定位夹具确保螺柱焊接位置的准确。 三焊接工艺参数 根据螺柱的型号、直径,焊接工件的材料、厚度等条件选择下列螺柱焊工艺参数:引弧电压、螺柱提升高度、焊接电压、焊接电流、焊接时间。 四焊接操作 1接通焊机电源,检查焊接电缆是否可靠连接,送料机构里螺柱品种是否正确、数量合适,送钉正常。 2焊接时保证焊枪与工件表面垂直,如不垂直要及时调整焊枪的焊接角度。 3进行焊接。焊接过程中要定期检查螺柱夹持器的烧损情况,及时更换。定期清理防护套内壁上的焊接飞溅。 4焊后清理工件表面上的焊接飞溅。 五. 焊工 焊工必须经过专门的训练并具备下列专业知识和技能: (1)熟悉焊机基本技术性能; (2)熟知焊机维护,使用及调整方法; (3)熟知被焊总成的技术要求,装配要点及使用情况; (4)了解工艺参数的选择原则,协助设备调整人员对工艺参数进行调整。

常见波峰焊不良

波峰焊-波峰焊过程中,十五种常见不良分析概要 一、焊后PCB板面残留多板子脏: 1.FLUX固含量高,不挥发物太多。 2.焊接前未预热或预热温度过低(浸焊时,时间太短)。 3.走板速度太快(FLUX未能充分挥发)。 4.锡炉温度不够。 5.锡炉中杂质太多或锡的度数低。 6.加了防氧化剂或防氧化油造成的。 7.助焊剂涂布太多。 8.PCB上扦座或开放性元件太多,没有上预热。 9.元件脚和板孔不成比例(孔太大)使助焊剂上升。 10.PCB本身有预涂松香。 11.在搪锡工艺中,FLUX润湿性过强。 12.PCB工艺问题,过孔太少,造成FLUX挥发不畅。 13.手浸时PCB入锡液角度不对。 14.FLUX使用过程中,较长时间未添加稀释剂。 二、着火: 1.助焊剂闪点太低未加阻燃剂。 2.没有风刀,造成助焊剂涂布量过多,预热时滴到加热管上。 3.风刀的角度不对(使助焊剂在PCB上涂布不均匀)。 4.PCB上胶条太多,把胶条引燃了。 5.PCB上助焊剂太多,往下滴到加热管上。 6.走板速度太快(FLUX未完全挥发,FLUX滴下)或太慢(造成板面热温度 7.预热温度太高。 8.工艺问题(PCB板材不好,发热管与PCB距离太近)。 三、腐蚀(元器件发绿,焊点发黑) 1. 铜与FLUX起化学反应,形成绿色的铜的化合物。 2. 铅锡与FLUX起化学反应,形成黑色的铅锡的化合物。 3. 预热不充分(预热温度低,走板速度快)造成FLUX残留多,4.残留物发生吸水现象,(水溶物电导率未达标) 5.用了需要清洗的FLUX,焊完后未清洗或未及时清洗。 6.FLUX活性太强。 7.电子元器件与FLUX中活性物质反应。 四、连电,漏电(绝缘性不好) 1. FLUX在板上成离子残留;或FLUX残留吸水,吸水导电。

螺柱焊的过程及工艺参数

第2章螺柱焊的过程及工艺参数 2.1螺柱焊的过程 螺柱焊的基本过程是引弧→焊接电弧→顶锻→冷却凝固;在这一过程中,焊接电流、焊接时间以及焊接过程中电弧的形态,对焊接结果有很大影响。 螺柱焊的引弧受程序控制,先是螺钉接触到工件,当按住启动按钮后,焊机首先提供一个微小电流,之后螺钉被提升,在螺钉尖端的铝极与工件之间建立电弧。(说明:铝极是襄嵌在螺柱尖端的一部份铝材料,其作用是便于引弧及还原被氧化的铁。) 当建立了电弧之后,焊机自动进入大电流焊接:螺柱端部开始熔化,工件上形成溶池。此时的燃弧过程称焊接电弧阶段。 当到达设定的焊接时间之后,电弧熄灭,螺柱在外力(一般为弹簧力)的作用下,浸入溶池。进入顶锻阶段。 然后,溶池自然冷却凝固,完成焊接过程。 2.2螺柱焊的工艺参数 螺柱焊的工艺参数主要包括极性选取、电流和焊接时间的选择、提升高度、浸入尺寸及速度的调节。首先说明的是,螺柱直径增加时,焊接所需要的能量也增加。 1.极性 极性是指工件到焊接电源的连接方式,以工件为准:工件接正极即为正极性,工件接负即为负极性。一般的钢质螺钉采用正极性接法。而对于铝及其合金,黄铜材料的螺钉,常采用负极性连接方式。 2.焊接电流与焊接时间 一般情况下,焊接电流正比与螺柱的公称直径。当直径小于16mm时,焊接电流一般是公称直径的80倍,即10mm的螺钉,使用的焊接电流为800A。当直径超过16mm时,焊接电流一般取值为公称直径的90倍。当螺钉材料为合金钢时,电流取值减少10%。焊接时间的取值也与直径成比例关系:对于公称直径小于12mm的螺柱,一般取0.02d(d为螺柱的公称直径),对于公称直径大于12mm的螺柱,一般取0.04d。 如果焊接位置不是平焊,而是横焊或仰焊,一般采用增大电流和减少焊接时间进行焊接。当工件为薄板时,为了不致工件烧穿,也采用增大电流和减少焊接时间的方法。 3.提升高度 对于不同直径形状的螺柱,要求的提升高度是不一样的,提升高度是否合适,要看是否在焊接过程中出现磁偏吹或短路。当提升高度过大时,电弧燃烧不稳定,容易产生电弧漂移和电弧偏吹。提升高度过小时,电弧容易产生短路而断弧。提升高度对于同一端部形状的螺柱来说,正比于其公称直径,一般在

螺柱焊焊接质量规范(110320)

药品追溯 长城汽车股份有限公司企业标准 Q/CC Q/CC G Y041—2010 2010-09-20发布 2010-09-27实施

药品追溯 前言 在白车身焊接工艺中,螺柱焊接质量直接影响着整车的装配,为了提高螺柱焊接质量,○b规范其焊接控制方法,保证和提高整车的装配性,从而编制本标准。 本标准由长城汽车股份有限公司工程院焊装技术部提出; 本标准由长城汽车股份有限公司工程院综合技术部归口; 本标准主要起草单位:工程院焊装技术部; 本标准主要起草人:武万斌、齐庆祝、张彭、王晓阳、朱士超、刘英明。

螺柱焊焊接质量规范○ b 1 范围 本标准规定了白车身螺柱焊接的判断基准、焊接过程注意事项、螺柱焊接的检验方法、检验频次等要求。○b 本标准适用于长城汽车股份公司各制造事业部及子公司所有涉及到螺柱焊作业的部门。 2 术语和定义 下列术语和定义适用于本标准。 2.1 储能式螺柱焊 储能式螺柱焊:储能式螺柱焊机采用大容量电容作为焊接能量的来源,通过可控硅精确控制放电时间,以瞬间低电压-强电流的方式将螺柱尖端迅速熔化,在外加压力的作用下使螺柱和工作面间隙快速合并,将螺柱牢固的焊接在工作面上,整个过程持续约1 ms~3 ms,储能式螺柱焊焊接过程见图1。 图1 储能式螺柱焊焊接过程 2.2 拉弧式螺柱焊 拉弧式螺柱焊:螺柱接触工件,通电后利用螺柱夹持机构提升螺柱,此时螺柱与工件之间出现稳定燃烧电弧,电弧热熔化螺柱顶部和工件表面,随后螺柱夹持机构压迫螺柱下沉到工件熔池,断电后形成焊接接头,拉弧式螺柱焊焊接过程见图2。 图 2 拉弧式螺柱焊焊接过程 3 螺柱焊接质量判定标准○b 螺柱焊接质量判定标准见表1。○b 表1螺柱焊接质量判定标准○b 序 号 项目标准图片备注 1虚焊螺柱应完全插入溶池, 螺柱周围焊接均匀 外观

焊缝中常见的焊接缺陷

焊缝中常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。(2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔

(4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊 缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工 具钢)-45钢棒 对接电阻焊缝中 的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部 夹渣和两侧线状夹渣 钢板对接焊缝X射线照相底片 V型坡口,钨极氩弧焊打底+ 手工电弧焊,夹钨 (5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。 焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。 裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近的母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生的时间和温度的不同,可以把裂纹分为以下几类:

波峰焊常见焊接缺陷原因分析及预防对策

波峰焊常见焊接缺陷原因分析及预防对策 A、焊料不足:焊点干瘪/不完整/有空洞,插装孔及导通孔焊料不饱满,焊料未爬到元件面的焊盘上原因:a) P CB 预热和焊接温度过高,使焊料的黏度过低; b) 插装孔的孔径过大,焊料从孔中流岀; c) 插装元件细引线大焊盘,焊料被拉到焊盘上,使焊点干瘪; d) 金属化孔质量差或阻焊剂流入孔中; e) PCB 爬坡角度偏小,不利于焊剂排气。 对策:a) 预热温度90-130 C,元件较多时取上限,锡波温度250+/-5 C,焊接时间3?5S。 b) 插装孔的孔径比引脚直径大0.15?0.4mm,细引线取下限,粗引线取上线。 c) 焊盘尺寸与引脚直径应匹配,要有利于形成弯月面; d) 反映给PCB加工厂,提高加工质量; e) PCB的爬坡角度为3?7 Co B、焊料过多:元件焊端和引脚有过多的焊料包围,润湿角大于90 原因:a) 焊接温度过低或传送带速度过快,使熔融焊料的黏度过大; b) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; c) 助焊剂的活性差或比重过小; d) 焊盘、插装孔或引脚可焊性差,不能充分浸润,产生的气泡裹在焊点中; e) 焊料中锡的比例减少,或焊料中杂质CU的成份高,使焊料黏度增加、流动性变差。 f) 焊料残渣太多。 对策:a) 锡波温度250+/-5 C,焊接时间3?5S。 b) 根据PCB 尺寸、板层、元件多少、有无贴装元件等设置预热温度,PCB 底面温度在90-130。 c) 更换焊剂或调整适当的比例; d) 提高PCB 板的加工质量,元器件先到先用,不要存放在潮湿的环境中; e) 锡的比例<61.4%时,可适量添加一些纯锡,杂质过高时应更换焊料; f) 每天结束工作时应清理残渣。 C焊点桥接或短路 原因:a) PCB设计不合理,焊盘间距过窄; b) 插装元件引脚不规则或插装歪斜,焊接前引脚之间已经接近或已经碰上; c) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; d) 焊接温度过低或传送带速度过快,使熔融焊料的黏度降低; e) 阻焊剂活性差。 对策:a) 按照PCB设计规范进行设计。两个端头ChiP元件的长轴应尽量与焊接时PCB运行方向垂直,SOT、SOP的长轴应与PCB运行方向平行。将SOP最后一个引脚的焊盘加宽(设计一个窃锡焊盘)。 b) 插装元件引脚应根据PCB 的孔距及装配要求成型,如采用短插一次焊工艺,焊接面元件引 脚露岀PCB表面0.8?3mm ,插装时要求元件体端正。 C)根据PCB尺寸、板层、元件多少、有无贴装元件等设置预热温度,PCB底面温度在90-130。 d)锡波温度250+/-5 C,焊接时间3?5S。温度略低时,传送带速度应调慢些。 D、润湿不良、漏焊、虚焊 原因:a) 元件焊端、引脚、印制板基板的焊盘氧化或污染,或PCB 受潮。 b) Chip 元件端头金属电极附着力差或采用单层电极,在焊接温度下产生脱帽现象。 C) PCB 设计不合理,波峰焊时阴影效应造成漏焊。

螺柱焊接原理简介

螺柱焊接原理简介 ——供稿人:集团技术管理部刘春峰 螺柱焊接是将直径2-25mm的螺柱或柱状金属高效、低成本、全断面融合地焊接在金属表面的一种特种焊接工艺方法。此项技术的应用可替代一些传统的加工方法,例如:钻孔、攻丝、手工焊接、焊后处理等。 螺柱焊接过程:首先,将焊接螺柱(或柱状金属)放置于焊接母材上;随后,提升焊接螺柱,同时导通电流,在焊接螺柱和焊接母材之间激发电弧,电弧将焊接螺柱端部和焊接母材表面溶化,并形成焊接熔池;接下来,焊接螺柱和焊接母材相对运动,焊接螺柱在一定速度下受控地插入熔池;最后,焊接电流终止,电弧熄灭,同时熔池凝固,焊接过程完成,形成全断面熔合的焊缝。 螺柱焊接优点:①焊缝全断面熔合,提高了焊接部位的安全性; ②焊接在瞬间完成,提高了焊接工作效率;③可适应多种金属材料; ④热影响区小,焊接母材变形小;⑤焊接损伤很小,母材背面没有或只有很小的焊接损伤;⑥保持中空零件的密闭性;⑦实现单面焊接; ⑧操作简便。

螺柱焊接分类:根据焊接的特性和电源原理,我们通常将螺柱焊接分为电容储能式螺柱焊接和拉弧式螺柱焊接,前者焊接在0.003秒内完成,用于在薄板上焊接螺柱,后者焊接时间在0.1-1.5秒内完成,用于在更复杂的环境下焊接螺柱。 电容储能式螺柱焊接具体可分为:①接触式螺柱焊接;②间隙式螺柱焊接。 拉弧式螺柱焊接具体可分为:①陶瓷保护环模式螺柱焊接;②气体保护模式螺柱焊接;③短周期模式螺柱焊接(分为有气体保护和无气体保护二种)。 无论采用哪种螺柱焊接工艺,要想取得理想的焊接效果,都需要我们对以下参数严格控制: 例如:焊接时间,焊接电流,运动的可控性,设备的易操作性,被焊金属材料的成分等。 以下图示了几种常用的螺柱焊接工艺方法: ●接触式电容储能螺柱焊接: 是一种最常用的电容储能螺柱焊接方法(从下图0.001秒开始工作) ●间隙式电容储能螺柱焊接:

螺柱焊接三种模式

电弧螺柱焊机分两种:可控硅整流电弧螺柱焊机和逆变电弧螺柱焊机(IGBT整流)。 可控硅电弧螺柱焊机是采用可控硅作为整流核心元器件、工频变压器进行变压处理的一种电弧螺柱焊机;逆变电弧螺柱焊机主要是通过对高频变压器变压后的电源,通过IGBT等一系列高频元器件进行整流,输出直流的一种焊机。 由于元器件本身的特性,可控硅本身具备溢载能力:即当电流在特定时间内超过该元器件的设计最大值,可控硅本身是不会被损坏的,例如600A的可控硅,瞬间电流超过600A以上,一般情况下不会损毁;逆变的核心元器件IGBT,其元件本身特性是不允许溢载的,例如450A的IGBT,电流超过450A,则可能损毁。故逆变电弧螺柱,核心元器件例如IGBT等,应该采用一些技术成熟的品牌或者推荐选择国际一流产品; 可控硅电弧螺柱焊机具备:输出稳定、抗电网干扰能力强、焊接熔透能力强,故障率低;但是有体积大、重量重等弊端; 逆变电弧螺柱焊机具备的优点:重量轻(是可控硅机器的三分之一)、体积小,节能(单位时间内节能15-30%);但是存在:较为依赖核心元器件品质、维护较为复杂等缺点。 螺柱焊接本身是不需要焊剂、焊材或者其他辅助材料的,其本质就是瞬间熔化螺钉待焊接的这个端面(通常熔化2mm左右,根据螺钉直径调整熔化长度),然后给予一定的辅助力量插入母板,瞬间冷却成型的一个过程。简单来说,就是金属与金属之间的二次铸造或者二次结晶的过程。 由于其熔化的是螺钉本身,在熔化部分成熔融状态时,为了让熔化部分:减少或者防止氧化、成型有规律,通常会添加一些辅助手段,人为的控制和改变焊肉的成型。 故此,从焊接方式上,电弧螺柱焊机分为:瓷环保护焊接、气体保护焊接、无保护焊接等三种焊接模式。 1、瓷环保护模式:一般在焊接M8或者M8以上的螺柱,通常采取瓷环作为保护介质,控制铁水成型。原因:螺柱相对较大,熔化部分相对较多,“瓷环”相当于一个一次性模具,熔融部分自然流入瓷环,冷却成型。重点:瓷环保护一般是针对较大螺柱采取的一种模式,通常为M8-25直径范围。PS:25mm以上斯达特推荐选择埋弧螺柱焊接的方式,即采用埋弧焊剂作为保护介质,由于贵公司暂无此直径的焊接需求,故不作阐述。 2、气体保护模式:通常在焊接M5-10范围内的螺柱时,由于部分客户更在意焊肉材质的改变,同时该范围的螺柱熔化部分相对较少,即使不用瓷环保护,熔融部分也不至于四处乱溢;这种情况下选择83%的氩气保护,也是一个不错的选择。在焊接前,保护气体进入焊接范围,直到焊接完全结束后停止,可以有效将施焊范围内的气体无用气体(比如氧气)挤压出去,防止螺柱被氧化或者掺杂其它物质。重点强调一下:由于市场上M8以下直径的瓷环比较少,选择气体保护模式,也是因为M5、6之类直径螺钉没有对应瓷环而不得不选择的一种方式。 3、无保护焊接:既没有瓷环保护也没有气体保护,直接施焊。通常针对M8以下的螺柱,该方式在焊接强度和品质上会有所降低,但是对于焊接要求不高的场所,也是一种普遍存在的焊接工艺。但是,M8以上直径的螺柱,斯达特不建议采取这种方式。 瓷环保护气体保护栓钉和瓷环 成都斯达特焊接研究所 2020年3月18日

常见焊接缺陷及排除

四、常见焊接缺陷及排除 影响焊接质量的因素是很多的,下表列出的是一些常见缺陷及排除方法,以供参考. 缺陷产生原因 焊点不全 1、助焊剂喷涂量不足 2、预热不好 3、传送速度过快 4、波峰不平 5、元件氧化 6、焊盘氧化 7、焊锡有较多浮渣 解决方法 1、加大助焊剂喷涂量 2、提高预热温度、延长预热时间 3、降低传送速度 4、稳定波峰 5、除去元件氧化层或更换元件 6、更换PCB 7、除去浮渣 桥接 1、焊接温度过高 2、焊接时间过长 3、轨道倾角太小 解决方法 1、降低焊接温度 2、减少焊接时间 3、提高轨道倾角 焊锡冲上印制板 1、印制板压锡深度太深 2、波峰高度太高 3、印制板葬翘曲 解决方法 1、降低压锡深度 2、降低波峰高度 3、整平或采用框架固 波峰焊锡作业中问题点与改善方法 1.沾锡不良POOR WETTING: 这种情况是不可接受的缺点,在焊点上只有部分沾锡.分析其原因及改善方式如下:

1-1.外界的污染物如油,脂,腊等,此类污染物通常可用溶剂清洗,此类油污有时是在印刷防焊剂时沾上的. 1-2.SILICON OIL 通常用于脱模及润滑之用,通常会在基板及零件脚上发现,而SILICON OIL 不易清理,因之使用它要非常小心尤其是当它做抗氧化油常会发生问题,因它会蒸发沾在基板上而造成沾锡不良. 1-3.常因贮存状况不良或基板制程上的问题发生氧化,而助焊剂无法去除时会造成沾锡不良,过二次锡或可解决此问题. 1-4.沾助焊剂方式不正确,造成原因为发泡气压不稳定或不足,致使泡沫高度不稳或不均匀而使基板部分没有沾到助焊剂. 1-5.吃锡时间不足或锡温不足会造成沾锡不良,因为熔锡需要足够的温度及时间WETTING,通常焊锡温度应高于熔点温度50℃至80℃之间,沾锡总时间约3秒. 2.局部沾锡不良DE WETTING: 此一情形与沾锡不良相似,不同的是局部沾锡不良不会露出铜箔面,只有薄薄的一层锡无法形成饱满的焊点. 3.冷焊或焊点不亮COLD SOLDER OR DISTURRED SOLDER JOINTS: 焊点看似碎裂,不平,大部分原因是零件在焊锡正要冷却形成焊点时振动而造成,注意锡炉输送是否有异常振动. 4.焊点破裂CRACKS IN SOLDER FILLET: 此一情形通常是焊锡,基板,导通孔,及零件脚之间膨胀系数,未配合而造成,应在基板材质,零件材料及设计上去改善. 5.焊点锡量太大EXCES SOLDER: 通常在评定一个焊点,希望能又大又圆又胖的焊点,但事实上过大的焊点对导电性及抗拉强度未必有所帮助. 5-1.锡炉输送角度不正确会造成焊点过大,倾斜角度由1到7度依基板设计方式?#123;整,一般角度约3.5度角,角度越大沾锡越薄角度越小沾锡越厚. 5-2.提高锡槽温度,加长焊锡时间,使多余的锡再回流到锡槽. 5-3.提高预热温度,可减少基板沾锡所需热量,曾加助焊效果. 5-4.改变助焊剂比重,略为降低助焊剂比重,通常比重越高吃锡越厚也越易短路,比重越低吃锡越薄但越易造成锡桥,锡尖. 6.锡尖(冰柱) ICICLING: 此一问题通常发生在DIP或WIVE的焊接制程上,在零件脚顶端或焊点上发现有冰尖般的锡. 6-1.基板的可焊性差,此一问题通常伴随着沾锡不良,此问题应由基板可焊性去探讨,可试由提升助焊剂比重来改善. 6-2.基板上金道(PAD)面积过大,可用绿(防焊)漆线将金道分隔来改善,原则上用绿(防焊)漆线在大金道面分隔成5mm乘10mm区块. 6-3.锡槽温度不足沾锡时间太短,可用提高锡槽温度加长焊锡时间,使多余的锡再回流到锡槽来改善. 6-4.出波峰后之冷却风流角度不对,不可朝锡槽方向吹,会造成锡点急速,多余焊锡无法受重力与内聚力拉回锡槽.

相关主题
文本预览
相关文档 最新文档