当前位置:文档之家› 《平面向量及其应用》单元测试题doc

《平面向量及其应用》单元测试题doc

《平面向量及其应用》单元测试题doc
《平面向量及其应用》单元测试题doc

一、多选题

1.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是

( )

A .()

0a b c -?=

B .()

0a b c a +-?= C .()0a c b a --?=

D .2a b c ++=

2.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ?=,则0b =

B .向量a 、b 为不共线的非零向量,则22

()a b a b ?=? C .若非零向量a 、b 满足2

2

2

a b

a b +=+,则a 与b 垂直

D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是

2

π 3.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >

D .

sin sin sin +=+a b c

A B C

4.已知点()4,6A ,33,2B ??- ???

,与向量AB 平行的向量的坐标可以是( ) A .14,33??

???

B .97,2?? ???

C .14,33??

-

- ???

D .(7,9)

5.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )

A .()

a c

b

c a b c ?-?=-? B .()

()

b c a c a b ??-??与c 不垂直 C .a b a b -<-

D .(

)()

22

323294a b a b a b +?-=-

6.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )

A .1122

AE AB AC →

→→

=+

B .2AB EF →→

=

C .1133

CP CA CB →→→

=+

D .2233

CP CA CB →

→→

=+

7.在ABC 中,AB =1AC =,6

B π

=

,则角A 的可能取值为( )

A .

6

π B .

3

π C .

23

π D .

2

π 8.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b 方向上的投影为5 C .2m +n =4 D .mn 的最大值为2

9.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且

AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )

A .1A

B CE ?=- B .0OE O

C +=

C .3OA OB OC ++=

D .ED 在BC 方向上的投影为

76

10.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )

A .2

AB AB AC B .2

BC CB AC C .2AC

AB BD

D .2

BD

BA BD

BC BD

11.下列关于平面向量的说法中正确的是( )

A .已知A 、

B 、

C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ?=?且0b ≠,则a c =

C .若点G 为ΔABC 的重心,则0GA GB GC ++=

D .已知()1

2a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 12.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1

()2

AD AB AC =

+ C .8BA BC ?=

D .AB AC AB AC +=-

13.在ABC 中,15a =,20b =,30A =,则cos B =( ) A .5B .

23

C .23

-

D .

53

14.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa b

B .若a b ⊥,则a b a b +=-

C .若a b a b +=+,则a 在b 方向上的投影向量为a

D .若存在实数λ使得λa

b ,则a b a b +=-

15.下列说法中错误的是( )

A .向量A

B 与CD 是共线向量,则A ,B ,

C ,

D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =

D .温度含零上温度和零下温度,所以温度是向量

二、平面向量及其应用选择题

16.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且

2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )

A .

34

B .

58

C .38

D .23

17.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若

lg lg lg sin 2a c B -==-,且0,2B π??

∈ ???

,则ABC 的形状是( )

A .等边三角形

B .锐角三角形

C .等腰直角三角形

D .钝角三角形

18.若O 为ABC 所在平面内任意一点,且满足()

20BC OB OC OA ?+-=,则

ABC 一定为( )

A .锐角三角形

B .直角三角形

C .等腰三角形

D .钝角三角形

19.ABC 中,内角A ,B ,C 所对的边分别为a b c ,

,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则

ABC 一定为直角三角形;④若3

B π

=

,2a =,且该三角形有两解,则b 的范围是

)

3+∞.以上结论中正确的有( )

A .1个

B .2个

C .3个

D .4个

20.已知非零向量AB ,AC 满足0||||AB AC BC AB AC ??+= ? ???

,且1

||||2AB AC AB AC =,则ABC ?的形状是( ) A .三边均不相等的三角形 B .直角三角形 C .等腰(非等边)三角形

D .等边三角形

21.在ABC ?中,D 为BC 中点,且1

2

AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1

B .23

-

C .13

- D .34

-

22.ABC ?内有一点O ,满足3450OA OB OC ++=,则OBC ?与ABC ?的面积之比为( ) A .1:4

B .4:5

C .2:3

D .3:5

23.如图,在ABC 中,60,23,3C BC AC ?===

,点D 在边BC 上,且

27

sin BAD ∠=

,则CD 等于( )

A 23

B 3

C 33

D 43

24.若点G 是ABC 的重心,,,a b c 分别是BAC ∠,ABC ∠,ACB ∠的对边,且

3

0aGA bGB cGC ++

=.则BAC ∠等于( ) A .90°

B .60°

C .45°

D .30°

25.已知ABC 的面积为30,且12

cos 13

A =,则A

B A

C ?等于( ) A .72

B .144

C .150

D .300

26.在ABC ?中,内角,,A B C 的对边分别是,.a b c ,若cos 2a

B c

=,则ABC ?一定是( ) A .等腰三角形

B .等边三角形

C .直角三角形

D .等腰直角三角形

27.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得

45BDC ∠=?,则塔AB 的高是(单位:m )( )

A .102

B .106

C .103

D .10

28.ABC ?中,22:tan :tan a b A B =,则ABC ?一定是( ) A .等腰三角形 B .直角三角形

C .等腰直角三角形

D .等腰或直角三角形

29.如图所示,在ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+,则λμ+=( )

A .1-

B .12

-

C .2-

D .32

-

30.已知O ,N ,P 在ABC ?所在平面内,且,0OA OB OC NA NB NC ==++=,且

???PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ?的( )

(注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心

D .外心重心内心

31.已知菱形ABCD 边长为2,∠B =3

π

,点P 满足AP =λAB ,λ∈R ,若BD ·CP =-3,则λ的值为( ) A .

12

B .-

12

C .

13

D .-

13

32.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()2

26,c a b =-+3

C π

=

,则

ABC 的面积为( )

A .6

B 33

C .33

D 333.已知ABC 中,1,3,30a b A ?===,则B 等于( )

A .60°

B .120°

C .30°或150°

D .60°或120°

34.如图,在直角梯形ABCD 中,22AB AD DC ==,E 为BC 边上一点,

BC 3EC =,F 为AE 的中点,则BF =( )

A .21

33AB AD - B .

12

33AB AD - C .21

33

AB AD -+ D .12

33

AB AD -

+ 35.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠?=,BD 与

AC 交于E 点.若2AB =,则AE 的长为( )

A 62

B .

1

(62)2

C 62

D .

1

(62)2

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.ABC 【分析】

作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解 解析:ABC 【分析】

作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:

对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,

a b AB BC AB AD DB -=-=-=,()

0a b c DB AC ∴-?=?=,A 选项正确;

对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()

00a b c a a +-?=?=,B 选项正确;

对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则

()0a c b a --?=,C 选项正确;

对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】

本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.

2.CD 【分析】

对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解

解析:CD 【分析】

对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出

(

)

()()

2

2

2

a b

a b ?≠?,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题

是真命题;对于D 由条件推出向量a b +与a b -的夹角是2

π

,所以该命题是真命题. 【详解】

对于A ,若0a ≠,0a b ?=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()

2

2

2

2

2

cos cos a b

a b a b αα?==,而()()

2

2

2

2

a b

a b ?=,

由于a 、b 为不共线的非零向量,所以2

cos 1α≠,所以()()()2

2

2

a b a b ?≠?,

所以该命题是假命题;

对于C ,若非零向量a 、b 满足2

2

2

a b

a b +=+,22222a b a b a b ++?=+,所以

0a b ?=,则a 与b 垂直,所以该命题是真命题;

对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2

π

,所以该命题是真命题. 故选:CD. 【点睛】

本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.

3.ACD 【分析】

根据正弦定理的性质即可判断. 【详解】

对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角

解析:ACD 【分析】

根据正弦定理的性质即可判断. 【详解】

对于A ,在ABC ,由正弦定理得

2sin sin sin a b c

R A B C

===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;

对于B ,若sin 2sin 2A B =,则A B =或2

A B π

+=,所以a 和b 不一定相等,故B 错

误;

对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以

A B >,故C 正确;

对于D ,由正弦定理得

2sin sin sin a b c

R A B C

===,则2sin 2sin 2sin sin sin sin b c R B R C

R B C B C ++==++,故D 正确.

故选:ACD. 【点睛】

本题考查正弦定理的应用,属于基础题.

【分析】

先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则

选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选

解析:ABC 【分析】

先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】

由点()4,6A ,33,2B ?

?- ???,则972,

AB ??=-- ???

选项A . 914

73023

??-?--?= ???,所以A 选项正确. 选项B. 9977022??

-?

--?= ???

,所以B 选项正确. 选项C . ()91473023????

-?---?-= ? ?????

,所以C 选项正确. 选项D. 979702??

-?--?≠ ???

,所以选项D 不正确 故选:ABC 【点睛】

本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.

5.ACD 【分析】

A ,由平面向量数量积的运算律可判断;

B ,由平面向量垂直的条件、数量积的运算律可判断;

C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;

D ,由平

解析:ACD 【分析】

A ,由平面向量数量积的运算律可判断;

B ,由平面向量垂直的条件、数量积的运算律可判断;

C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;

D ,由平面向量的混合运算将式子进行展开即可得解.

选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,

()()()()()()()()

0b c a c a b c b c a c c a b c b c a c b c c a ????-???=???-???=???-???=??

, ∴()()b c a c a b ??-??与c 垂直,即B 错误;

选项C ,∵a 与b 不共线,

∴若a b ≤,则a b a b -<-显然成立;

若a b >,由平面向量的减法法则可作出如下图形:

由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;

选项D ,()()

22

223232966494a b a b a a b a b b a b +?-=-?+?-=-,即D 正确. 故选:ACD 【点睛】

本小题主要考查向量运算,属于中档题.

6.AC 【分析】

由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:

根据三角形中线性质和平行四边形法则知, , A 是正确的;

因为EF 是中位线,所以B 是正确的; 根据三角形重心

解析:AC 【分析】

由已知结合平面知识及向量共线定理分别检验各选项即可.

如图:

根据三角形中线性质和平行四边形法则知,

111()()222AE AB BE AB BC AB AC AB AC AB →

→→→→→

→=+=+=+-=+, A 是正确的;

因为EF 是中位线,所以B 是正确的;

根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →

→→→→→????

==?+=+ ? ?????

所以C 是正确的,D 错误. 故选:AC 【点睛】

本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.

7.AD 【分析】

由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得, 即,解得或.

当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以. 故选:AD 【点睛】 本题考查余弦

解析:AD 【分析】

由余弦定理得2222cos AC BC BA BC BA B =+-??,解得1BC =或2BC =,分别讨论即可. 【详解】

由余弦定理,得2222cos AC BC BA BC BA B =+-??,

即21322

BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6

A B π

==

当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2

π. 故选:AD 【点睛】

本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题.

8.CD 【分析】

对于A ,利用平面向量的数量积运算判断;

对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断. 【详解】 对于A ,向量(

解析:CD 【分析】

对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断. 【详解】

对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ?=-=>,则,a b 的夹角为锐角,错误;

对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为2

2

a b b

?=

,错误;

对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;

对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12=

(2m ?n )12

≤ (

22m n +)2

=2,即mn 的最大值为2,正确; 故选:CD. 【点睛】

本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.

9.BCD 【分析】

以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】

由题E 为AB 中点,则,

以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,

解析:BCD 【分析】

以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】

由题E 为AB 中点,则CE AB ⊥,

以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:

所以,123

(0,0),(1,0),(1,0),3),(,

)33

E A B C D -, 设123

(0,),3),(1,),(,3

3

O y y BO y DO y ∈==--,BO ∥DO , 所以3133y y -

=-,解得:3

y =

, 即O 是CE 中点,0OE OC +=,所以选项B 正确;

3

2OA OB OC OE OC OE ++=+==

,所以选项C 正确; 因为CE AB ⊥,0AB CE ?=,所以选项A 错误;

123(,33

ED =,(1,3)BC =,

ED 在BC 方向上的投影为12

7

326BC BC

ED +?==,所以选项D 正确.

故选:BCD

此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.

10.AD 【分析】

根据向量的数量积关系判断各个选项的正误. 【详解】

对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确. 故选:AD. 【点睛】 本题考查三角形

解析:AD 【分析】

根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2

cos AB AB AC AB AC A AB AC

AB AC

,故A 正确;

对于B ,

2

cos cos CB CB AC CB AC C CB AC C CB AC

CB AC

故B 错误; 对于C ,

2

cos cos BD AB BD AB BD ABD AB BD ABD AB BD

BD

AB

,故C 错误; 对于D ,2

cos BD BA BD

BA BD ABD BA BD BD BA

,

2

cos BD BC BD

BC BD CBD BC BD

BD BC

,故D 正确.

故选:AD.

本题考查三角形中的向量的数量积问题,属于基础题.

11.AC 【分析】

根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D . 【详解】

解:因为不能构成该平面的基底,所以,又有公共

解析:AC 【分析】

根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】

解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;

由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以

||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;

设线段AB 的中点为M ,若点G 为ABC ?的重心,则2GA GB GM +=,而

2GC GM =-,所以0GA GB GC ++=,即C 正确;

()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=?->解得1λ<,且a

与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;

故选:AC . 【点睛】

本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.

12.BC 【分析】

根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】

对于A 选项:,故A 错;

对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故

解析:BC 【分析】

根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】

对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,

()

111

++++()222

AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;

对于C 选项:cos 248BD BA BC BA BC B BA BC BA

?=??∠=??

=?=,故正确;

对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】

本题考查向量的线性运算和向量的数量积运算,属于基础题.

13.AD 【分析】

利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】

由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】

本题考查利用正弦定理与同

解析:AD 【分析】

利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B

的值. 【详解】

由正弦定理sin sin b a B A

=,可得1

20sin 22sin 153

b A B a ?

===, b a >,则30B A >=,所以,B 为锐角或钝角.

因此,cos B ==. 故选:AD. 【点睛】

本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.

14.AB 【分析】

根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论.

【详解】

当时,则、方向相反且,则存在负实数

解析:AB 【分析】

根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】

当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A

选项正确,D 选项错误;

若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】

本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.

15.AD 【分析】

利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】

向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B

解析:AD 【分析】

利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】

向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】

本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.

二、平面向量及其应用选择题

16.A 【分析】

设出()()()

11AP mAB m AF mAB m AD DF =+-=+-+,求得

()21

13

m AP AB m AD +=

+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,

所以()()()

11AP mAB m AF mAB m AD DF =+-=+-+, 因为2CF DF =,所以11

33

DF DC AB ==, 所以()21

13

m AP AB m AD +=

+-. 因为E 是BC 的中点, 所以11

22

AE AB BC AB AD =+

=+. 因为AP AE λ=, 所以

()211132m AB m AD AB AD λ+??+-=+ ???

, 则213

112m m λλ

+?=????-=??

解得3

4

λ=. 故选:A 【点睛】

本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 17.C 【分析】

化简条件可得sin 2

a B c ==

,由正弦定理化边为角,整理cos 0C =,即可求解. 【详解】

lg lg lg sin a c B -==-,

sin 2

a B c ∴

==

.0,2B π??∈ ???,

4

B π∴=

.

由正弦定理,得

sin sin 2

a A c C ==

3

sin cos sin 422C A C C C π???

∴==-=+? ?????

, 化简得cos 0C =.

()0,C π∈, 2

C π

∴=

, 则4

A B C π

π=--=

∴ABC 是等腰直角三角形. 故选:C. 【点睛】

本题主要考查了正弦定理,三角恒等变换,属于中档题. 18.C 【分析】

由向量的线性运算可知2OB OC OA AB AC +-=+,所以()

0BC AB AC ?+=,作出图形,结合向量加法的平行四边形法则,可得BC AD ⊥,进而可得AB AC =,即可得出答案. 【详解】

由题意,()()

2OB OC OA OB OA OC OA AB AC +-=-+-=+, 所以()

0BC AB AC ?+=,

取BC 的中点D ,连结AD ,并延长AD 到E ,使得AD DE =,连结BE ,EC ,则四边形ABEC 为平行四边形,所以AB AC AE +=. 所以0BC AE ?=,即BC AD ⊥, 故AB AC =,ABC 是等腰三角形. 故选:C.

【点睛】

本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题. 19.B 【分析】

由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误. 【详解】

①由正弦定理及大边对大角可知①正确; ②可得A B =或2

A B π

+=

,ABC 是等腰三角形或直角三角形,所以②错误;

③由正弦定理可得sin cos sin cos sin A B B A C -=, 结合()sin sin sin cos sin cos C A B A B B A =+=+ 可知cos sin 0=A B ,因为sin 0B ≠,所以cos 0A =, 因为0A π<<,所以2

A π

=,因此③正确;

④由正弦定理

sin sin a b A B =得sin 3sin sin a B b A A

==, 因为三角形有两解,所以

2,332

A B A πππ

>>=≠ 所以3sin 2A ??

∈ ? ???

,即)

3,2b ∈

,故④错误.

故选:B 【点睛】

本题考查的是正余弦定理的简单应用,要求我们要熟悉三角函数的和差公式及常见的变形

相关主题
文本预览
相关文档 最新文档