当前位置:文档之家› 供电系统中谐波的产生危害及治理

供电系统中谐波的产生危害及治理

供电系统中谐波的产生危害及治理
供电系统中谐波的产生危害及治理

供电系统中谐波的产生-危害及治理

————————————————————————————————作者:————————————————————————————————日期:

1、概述 (1)

2、谐波的定义 (2)

3、谐波的产生 (3)

3.1 发电机产生的谐波 (4)

3.2 输配电系统产生的谐波 (4)

3.3 用电设备产生的谐波 (5)

4.谐波的危害 (7)

4.1 谐波增加发、输、供和用电设备的附加损耗 (7)

4.2 影响电力测量的准确性 (9)

4.3影响继电保护和自动装置的工作和可靠性 (10)

4.4 干扰通信系统工作 (10)

4.5 影响用电设备的正常工作 (10)

5 谐波检测的方法 (11)

5.1 傅里叶变换的基本原理 (11)

5.2 FFT算法 (12)

5.3 FFT算法在谐波检测中的应用 (12)

6.谐波的治理方法 (19)

6.1 主动型谐波抑制 (19)

6.2 被动型谐波抑制 (21)

7.结语 (23)

参考文献 (24)

致谢 (25)

“谐波”一词起源于声学,后来才慢慢延伸成一个较为严谨的定义。一般在理想情况下,供电部门向用户提供具有单一恒定的工业频率和规定的系统标准称电压的电能,但在实际中供电电压的波形往往会偏离正弦波形而发生畸变,即产生谐波[1]。

有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文[2]。

到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。

之所以有很多的科研工作者致力于研究谐波,主要是因为谐波的危害十分严重,它会使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。

造成电力系统电压波形畸变的根本原因是系统中的非线性负荷以及系统本身存在非线性元件。谐波会增加电力系统损耗,降低安全,增加计量装置误差,可能导致保护系统和自动装置误动作,干扰通信线路的正常工作。因此,谐波是电力质量的重要指标之一。为保证供电系统中所有的电气、电子设备进行正常的工作,必须采取有力的措施,抑制电网谐波。

2、谐波的定义

供电系统谐波,是指一些频率为基波频率(我国取50HZ)整数倍的正弦波分量,又称为高次谐波。

这是由于在交流电网中,由于存在许多的非线性电气设备,电压u(t)和电流i(t)的波形实际上不是完全的正弦波形,而是存在一定畸变的非正弦波。它通常是周期性的电气分量,利用傅里叶级数分析,可得到如下等式:

式中项称为基波,称为基波频率;其他各项均成为谐波。由于谐波频率是基波频率的整数倍,所以被称为二次谐波,被称为三次谐波,……。、为第n次谐波电压、电流的有效值,、

是第n次谐波电压、电流的初相角。

为了能够更好的理解谐波的定义,我们可以参照图2.1和图2.2。

图2.1 理想的交流电压、电流波形

图2.2 实际的交流电压、电流波形

)

sin(

2

)(

1

n

n

n

t

n

U

t

ω+

=∑∞

=

)

sin(

2

)

(

1

n

n

n

t

n

I

t iβ

ω+

=∑∞

=

t

ω

sinω

2

sin tω

3

sin

n

U

n

I

n

α

n

β

图2.1是理想的交流电压,电流波形,图2.2是实际的交流电压,电流波形。比对两个图,可以发现在图2.2中的波形中存在明显毛疵,凹陷或者凸起,这些瑕疵就是由于谐波的存在而造成的。

在国际电工标准(IEC555-2)和在国际大电流会议的文献中的定义:“谐波分量为周期量的傅里叶级数中大于1的n次分量”。IEEE标准中定义为:“谐波为一周期波或量的正弦波分量,其频率为基波频率的整数倍”。由于谐波频率是基波频率的整数倍,因此,我们也常称它为高次谐波。

3、谐波的产生

在电能的生产、传输、转换和使用的各个环节中都会产生谐波。

在其它几个环节中,谐波的产生主要是来自具有非线性特性的电气设备:

①具有铁磁饱和特性的铁芯设备,如:变压器、电抗器等;②以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯,交流弧焊机、炼钢电弧炉等;③以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置、大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道、冶金、矿山等工矿企业以及各式各样的家用电器中。

即使电源电压是正弦波形,但由于负荷具有其电流不随电压同步变化的非线性的电压—电流特性,使得流过负荷的电流是非正弦波形的,它由基波及其整数倍的谐波组成。产生的谐波使电网电压严重失真,而电网还必须向它提供额外的电能。低压供电系统的非线性设备产生的谐波电流可分为稳定的和波动的两大类谐波。前者的幅度不随时间变化,如视频显示设备和测试仪表等产生的谐波,这类设备对电网来说表现为恒定的负载;后者由激光打印机、复印机、微波炉等产生,各次谐波的幅值随时间变化,这类设备对电网来说是一个随时间变化的负载。

随着电力电子设备使用的不断增加,产生的谐波又具有较大的振幅,它们是电力系统在稳态运行下的主要谐波源。

前面已经提到谐波源通常是指各类特定的电气设备,即非线性电气设备,我们将这些电气设备进行分类,主要可以分为以下四大类:(1)电弧加热设备:如电弧炉、电焊机等。(2)交流整流的直流用电设备:如电力机车、电解、电镀等。(3)交流整流再逆变用电设备:如变频调速、变频空调等。(4)开关电源设备:如中频炉、彩色电视机、电脑、电子整流器等。

目前,电力系统谐波的产生主要来自三方面:发电机产生谐波,输配电系统产生谐波,用电设备产生谐波。

3.1 发电机产生的谐波

发电机由于三相励磁绕组在制作上很难做到绝对对称,因此,磁极磁场也并

非完全按正弦分布,感应电势也就不完全是正弦波,多少也会产生一些谐波。但是,正常设计的发电机,由于对发电机的结构和接线采取一些措施,在一定程度上消弱谐波的电势,其电势谐波含量很小,一般可以忽略不计。当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。

3.2 输配电系统产生的谐波

输配电系统中,电力变压器是产生谐波主要设备。由于变压器铁芯具有非线性的磁化特性,加上设计变压器是考虑经济性,其设计磁通密度选择在磁滞回线的拐点附近,造成变压器的励磁电流(即空载电流)为非正弦波形,其中含有大量的谐波电流。谐波电流的大小与设备工作时施加的电压幅值有关,电压越高,运行点越深入饱和区,空载电流的波形畸变越大,谐波含量越高,其中3次谐波电流可达额定电流的0. 5%。由于配电系统中存在为数众多的变压器,空载电流中的谐波在线路电感和对地电容的放大下,可以汇合成相当大的配电系统谐波电流。

3.3 用电设备产生的谐波

晶闸管整流设备:由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源大等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单向整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则有奇次谐波电压,其谐波含量随电容值的增

大而增大。经统计表明:整流装置产生的谐波占所有谐波的近40%,这是最大的

谐波源。

变频装置:变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成分很复杂,除含有整数次谐波外,还含有份数次谐波,这类装置的功率一般较大,随着变频调速的发展,对产生的谐波也越来越多。

电弧炉、电石炉:电弧炉在冶炼过程的熔化期造成的由于三相电极间的反复不规则金属性短路、断弧而产生谐波。由于三相负荷不对称,产生较多三次谐波。电石炉在配电网或较小供电网中也是重要的谐波源,其中主要是2至7次的谐波,平均可达基波的8%、20%,最大可达45%。

气体放电光源:荧光灯、高压汞灯、高压纳灯与金属卤化物灯等属于气体放电类电光源。它们利用具有一定压力的汞、钠、镝、铟或金属卤化物的蒸汽,电弧放电时因具有负的伏安特性而产生谐波电流。气体放电灯主要产生三次谐波。

家用电器:电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会生产较深的奇次谐波。在洗衣机、电风扇、空调等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。同时这些设备产生的谐波又具有较大的振幅,所以目前它们是供电系统中的主要谐波源。

以上为目前电力系统中存在的主要谐波源,在读文献的过程中我们不难发现,一般情况下我们在进行谐波分析的时候只考虑电力系统中存在的奇次谐波,而不考虑偶次谐波,这主要是因为以下两个方面的原因:一是,奇次谐波的危害远远大于偶次谐波的危害;二是,在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。

4.谐波的危害

谐波的危害表现为干扰通信线路的正常工作;引起电机、变压器和电容器等电气设备附加损耗和发热,使设备温度升高,效率降低;绝缘加速老化,缩短使用寿命,甚至损坏;降低继电保护、控制,以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至可能引发并联或串联谐振,损坏电气设备。随着电子技术的发展,使用大功率半导体开关器件以及各类开关电源的产品的增多,如电视机、空调器、节能灯、调光器、洗衣机、微波炉等家用电器和信息技术设备等迅速涌入居民家庭,虽然每台设备向电网注入的谐波电流不大,但设备数量大、分布广。有些家用电器如电视机、空调器等还有集中使用的特点,使某些时段对公用电网造成的谐波问题特别突出,不但使接入电网的设备无法正常工作,甚至造成故障,而且还会使供电系统中性线承受的电流超载,影响供电系统的电力输送。

在电压跌落、浪涌、电压脉冲与瞬时供电中断等电能质量问题,虽然持续时间很短、变化很快,但对敏感的设备还是会造成一定的破坏作用。如计算机失去电源2s就可能破坏数据或数据丢失;在0·1s内电压突降就可能对自动化设备控制的连续精加工生产线造成异常的生产状况和质量破坏等。又如谐波电压在电动机短路阻抗上产生的谐波电流和电动机负序基波电流一起使设备产生附加热损耗,并且在电动机起动时容易发展成干扰力矩,并产生附加谐波损耗,降低功率因数。

因此谐波问题引起了各有关方面的高度重视。本文会在接下来的章节中分别介绍谐波的主要危害。

4.1 谐波增加发、输、供和用电设备的附加损耗

谐波的存在会增加发、输、供和用电设备的附加损耗,使设备发热,降低设备的效率和利用率。比如:

(1)对旋转电机的危害

谐波对同步电动机的危害主要是由于趋肤效应引起转子表面局部过热,降低使用寿命。也能引起定子零部件过热。当谐波电流频率接近于定子零部件固有频率时,能引起电机发生强烈震动。对于感应电机来讲,会引起定子绕组过热,对

于绕线电机也会引起转子过热,危及绝缘,缩短电动机使用寿命。也可能引起机械震动,甚至损坏。定子绕组中的正序和负序谐波电流分别产生正向和反向旋转磁场,从而降低电机效率。

谐波对旋转电机的另一项危害是产生附加的损耗和转矩。磁滞、涡流等随着频率的增高使旋转电机的铁心和绕组中的附加损耗增加。供电系统中电动机负荷约占总负荷的85%。因此,谐波使附加损耗增加的影响最为显著。电动机的出力一般不能按发热情况调整,由谐波引起电动机的发热效应按它能承受的谐波电压折算成等值的基波负序电压来考虑。试验表明,额定出力下持续承受3%额定电压的负序电压时,电动机的绝缘寿命要减少一半。因此,国际上一般建议在持续工作的条件下,电动机承受的负序电压不宜超过额定电压的2%。谐波电流产生的谐波转矩对电动机的平均转矩影响不大,但谐波会产生显著的脉冲转矩,这种振荡力矩使汽轮发电机的转子元件发生扭振,并使汽轮机叶片产生疲劳循环。

(2)对变压器的危害

谐波电流除会引起变压器绕组附加发热外,还会使外壳、外层的钢片和某些紧固件发热,造成绝缘介质老化,缩短变压器使用寿命。正序和负序谐波电流同样使变压器铁芯产生磁滞伸缩和噪声。谐振情况下的谐波过电压也有可能造成变压器损坏。

谐波电流还会使变压器的铜耗增加,特别是3次及其倍数次谐波,对三角形连接的变压器会在其绕组中形成环流,使绕组过热;对全星形连接的变压器,当绕组中性点接地,而该侧电网中分布电容较大或者装有中性点接地的并联电容时,可能形成3次谐波振荡,使变压器附加损耗增加。

(3)对输电线路的危害

谐波电流主要使输电线路的电能损耗增加。由于电缆的分布电容对谐波电流有放大作用,会引起电缆局部放电、介损和温升的增大,缩短电缆使用年限。输电线路阻抗的频率特性使线路电阻随着频率的升高而增加。在集肤效应的作用下,谐波电流使输电线路的附加损耗增加,从而使电网网损增大。谐波还使三相供电系统中的中性线的电流增大,导致中性线过载。输电线路的分布电感和对地电容与产生谐波的设备组成串联或并联回路,在一定的参数配合条件下,会发

生串联谐振或并联谐振。一般情况下,并联谐波谐振所产生的谐波过电压和过电流对相关设备的危害性较大。当注入电网的谐波频率处于在网络谐振点附近时,会激励电感、电容产生部分谐振、形成谐波放大。谐波电压、电流放大会引起继电保护装置误动甚至损坏,同时产生相当大的谐波网损。对于电力电缆线路,因其对地电容比架空线路约大10~20倍,而感抗仅为1/2~1/3,故更易激励出较大的谐波谐振和放大,造成绝缘击穿的事故。

(4)对电力电容器的危害

据统计,在受谐波影响而损坏的电气设备中,电力电容器所占比例最大,由于电容器容性阻抗特性及阻抗随频率增大而减小的特性,是电容器个更容易受谐波影响和损坏。谐波危害电容器的机理包括电效应、热效应和机械效应。谐波电压很容易使电容器所受到的峰值电压升高,使电容器介质更容易发生局部放电。在谐波作用下,电容器内损耗会更大而造成温升增加,缩短电容器使用寿命。在谐波电压作用下,装在构架上的电容器外壳与接线有可能产生机械力学上的共振。

4.2 影响电力测量的准确性

谐波对电力测量仪表也有一定影响,特别是对电能测量影响。电力计量装置按50 Hz的标准正弦波设计,供电电压或负荷电流中的谐波成分会影响感应式电能表的正常工作。

当谐波较大时,电能计量的准确性、合理性都会受到影响,增加电能计量误差。因为当有谐波源存在时,该处用户的电能表的记录为其吸收的基波电能减去小部分谐波电能,故谐波源污染电网却反而少交电费;而线性负荷用户处电能表的记录是该用户吸收的基波电能及部分的谐波电能,后者不但使线性负荷性能变坏,还要多交电费。也就是说,在非线性系统中,对于线性用户,受谐波功率的干扰,是谐波的“受害者”,却还得为这一部分电能支付一定的费用;对于非线性用户,它吸收基波电能中的一部分转化为谐波输人电网,是谐波的“制造者”,这部分电费却由线性用户支付。电子式电能表更不利于供电部门而有利于非线性负荷用户。

4.3影响继电保护和自动装置的工作和可靠性

谐波严重影响电力系统中以负序(基波)量为基础的继电保护和自动装置,因为按负序(基波)量整定的保护装置,整定值小、灵敏度高。如果在负序基础上再叠加谐波干扰(电气化铁道、电弧炉等谐波源本身即负序源)则可能引起发电机

负序电流保护误动跳闸,产生严重后果。其它如变电站主变复合电压启动过电流保护装置负序电压元件误动、母线差动保护的负序电压闭锁元件误动以及线路

各种型号的距离保护、高频保护、故障录波器、自动准同期装置等发生误动。

换而言之,谐波会引起继电保护和自动装置误动和拒动,引起事故或扩大停电范围。对于由电压或电流信号启动动作的继电器或启动开关,当基波动作量未达到整定值,由于较大的谐波量和基波量叠加后超过动作值而使装置动作。某些继电器或启动开关的整定值较低,容易受到谐波电压或电流的影响。这些都会严重威胁电力系统的安全运行。

4.4 干扰通信系统工作

电力线路上流过的3、5、7、11等幅值较大的奇次低频谐波电流通过磁场

耦合,在邻近的通信线路中产生干扰电压,干扰通信系统的工作,影响通信线路通话的清晰度,而且在谐波和基波的共同作用下,触发电话铃响,甚至在极端情况下威胁通信设备和人员的安全。高压直流换流站换相过程中产生的电磁噪声(3~10) kHz会干扰电力载波通信的正常工作,并使利用载波工作的闭锁和继电保护装置

动作失误,影响电网运行的安全。

同时,电力系统中的谐波还会通过电磁感应、电容耦合与电气传导等方式

对通信造成干扰。供电系统中的静止变流器在换相期间电流波形发生急剧变化,产生的脉冲电压所包含的谐波频率较高,甚至达到1MIb,因而会引起电磁干扰,

对通信线路、通信设备会产生根大的影响。比如电力载波通信、远动装置信号

以及与架空线平行的通信线路,谐波的影响都很大。电气传导在有接地故障时,

可引起危险的过电压。

4.5 影响用电设备的正常工作

谐波会使电视机、计算机的图形畸变,画面亮度发生波动变化,并使机内的

元件过热,计算机及数据处理系统出现错误。对于带有启动用的镇流器和提高功率因数用的电容器的荧光灯及汞灯则会在一定参数的配合下,形成某次谐波谐振,

损坏镇流器或电容器。对于采用晶闸管的变速装置,谐波可使晶闸管或控制回路误动。

5 谐波检测的方法

谐波检测是谐波治理的首要问题。在谐波检测理论的发展中,先后形成了多种检测方法,如模拟带通或带阻滤波器谐波检测法,小波变换的谐波检测法,人工神经网络的谐波检测法,傅里叶变换的谐波检测法,瞬时无功功率理论等。

本文主要讲述一下基于傅里叶变换的谐波检测法。

5.1 傅里叶变换的基本原理

假设输入信号为一个周期信号,除基波分量外,只含有恒定的直流分量和各种整数次谐波分量。电压、电流信号均为工频周期信号,可统一表示为:

其中,T 为基频分量的周期, 为基波角频率, 、 为傅里叶系数,分别表示各次谐波的余弦项和正弦项的幅值,其中0a 表示直流分量,1a ,1b 表示基波分量。

为k 次谐波分量幅值, 为第k 次谐波分量初相角。

将以上两式离散化后可以得到:

∑∑∞

=∞=++=++=1101110)]

sin([)]sin()cos([)(k k k k k k t k A a t k b t k a a t x ?ωωωT πω21=k a k b dt t k t x T b dt t k t x T a T

k T k )sin()(2)cos()(21010ωω?=?=

22

k

k k b a A +=)arctan(k k k b a =?∑∑-=-===1010)2sin()(2)2cos()(2N n k N n k nk N

n x N b nk N n x N a ππ

其中N 为一周期内采样的点数,x(n)为第n 次的采样值,n 为0到N-1之间的整数。

离散傅里叶变换的表达式如下:

一般情况下,X(k)是一个复量,可表示为:

振幅谱: 相位谱: 离散傅里叶变换不仅能完全滤除各次谐波分量和恒定的直流分量,而且能较好的滤除线路分布电容引起的高频分量,对随即干扰信号的反应也较小,而对畸变波形中的基频分量准确测量。

5.2 FFT 算法

快速傅里叶变换(FFT )是计算离散傅里叶变换(DFT )的快速算法。DFT 的定义式为:∑-==10)()()(N n N kn N k R W

n x k X

FFT 的基本思想:将大点数的DFT 分解为若干个小点数DFT 的组合,从而减少运算量。

5.3 FFT 算法在谐波检测中的应用

为了能够更好地理解快速傅里叶变换的应用原理,我们可以结合以下实例。

以一个实际工业电力系统为例,通过测量我们可以得到一些有效数据,以下列举了电力传送装置中的相电流几次谐波测量平均值,基波为50HZ 。 ∑∑∑-=-=-=--==1

010102)2sin()()2cos()()()(N n N n N n k N j nk N n x j nk N n x e n x k X πππ)

()()(k jX k X k X I R +=)()()(22k X k X k X I R +=

)

()

(arctan )(k X k X k I R =θ

表5.3.1为谐波信号模型参数:

表5.3.1 谐波信号模型参数

谐波次数幅值(A)相位(°)

1 380.4 0

3 2.035 60

5 3.15

6 135

7 1.042 157.5

9 4.291 0

11 16.13 60

13 2.016 0

(1)用Matlab仿真谐波电压信号图的程序如下:

% diyige.m

clc

fs=3000; f0=50;

N=1024;

n=1:N;

t=(n-1)/fs;

m=13;

Am=[380.4 0 2.035 0 3.156 0 1.042 0 4.291 0 16.13 0 2.016 ];

PH=[0 0 60 0 135 0 157.5 0 0 0 60 0 0];

x=zeros(1,N);

for k=1 : m

x=x+Am(k)*cos(2*pi*f0*k*t+PH(k)/180*pi);

end;

figure(1);

plot(x);

图5.3.1是用Matlab仿真出的谐波电压信号图:

图5.3.1 谐波电压信号图

(2)当取采样频率为3000HZ,数据长度为1024采样点时,利用FFT编写Matlab 语言得到信号频谱的程序如下:

%dierge.m

N=length(x);

f=50;

m=13;

n=1:N;

Fn=zeros(9,3);

An=zeros(9,2);

Pn=zeros(9,2);

for i=1 : m

Fn(i,1) = i; Fn(i,2) = f * i;

An(i,1) = i;

Pn(i,1) = i;

end

fsN=fs/N;

f0=50;

X=fft(x);

X=X(1:N);

Xabs=abs(X);

for i= 1 : m

[Amax,index]=TriFind(Xabs,floor((i*f0-15)/fsN),ceil((i*f0+15)/fsN));

if(index==-1)

Fn(i,3) = 0;

An(i,2) = 0;

Pn(i,2) = 0;

else

if(Xabs(index-1) > Xabs(index+1))

a1 = Xabs(index-1) / Xabs(index);

r1 = 1/(1+a1);

k01 = index -1;

else

a1 = Xabs(index) / Xabs(index+1);

r1 = 1/(1+a1);

k01 = index;

end

Fn(i,3) = (k01+r1-1)*fs/N;

An(i,2) = 2*pi*r1*Xabs(k01)/(N*sin(r1*pi));

Pn(i,2) = phase(X(k01))-pi*r1;

Pn(i,2) = Pn(i,2)*180/pi;

Pn(i,2) = mod(Pn(i,2),180);

end

end

Fn

An

Pn

dlmwrite('An.txt',An,'delimiter', '\t','precision', '%.10f','newline', 'pc'); dlmwrite('Fn.txt',Fn,'delimiter', '\t','precision', '%.10f','newline', 'pc');

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法 2008-05-05 23:08:43| 分类:默认分类| 标签:|字号大中小订阅 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。 近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。 国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。在IEEEstd.519—1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。 1 电网谐波的产生 1.1电源本身谐波--由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。 1.2由非线性负载所致 1.2.1非线性负载---谐波产生的另一个原因是由于非线性负载。当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。 1.2.2 主要非线性负载装置 (1)开关电源的高次谐波:开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。 (2)变压器空载合闸涌流产生谐波:铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。所产生的励磁涌流所含的谐波成份以3次谐波为主。

基于MATLAB的电力谐波分析

目录 摘要 (2) Abstract (2) 1:绪论 (2) 1.1课题背景 (2) 1.2谐波的产生 (3) 1.3电网中谐波的危害 (5) 1.4研究谐波的重要性 (5) 2:谐波的限制标准和常用措施 (7) 2.1国外谐波的标准和规定 (8) 2.1.1谐波电压标准 (8) 2.1.2谐波电流的限制 (9) 2.2我国谐波的标准和规定 (9) 2.2.1谐波电压标准 (10) 2.2.2谐波电流的限制 (11) 2.3谐波的限制措施 (12) 3:谐波的检测与分析 (15) 3.1电力系统谐波检测的基本要求 (15) 3.2国内外电力谐波检测与分析方法研究现状 (15) 3.3谐波的分析 (18) 3.3.1电力系统电压(或电流)的傅立叶分析 (19) 3.3.2基于连续信号傅立叶级数的谐波分析 (19) 4:电力谐波基于FFT的访真 (21) 4.1快速傅立叶变换的简要和计算方法 (21) 4.1.1快速傅立叶变换的简要 (21) 4.1.2快速傅立叶变换的计算方法 (21) 4.2 FFT应用举例 (22) 5:结论 (28) 附录: (28) 参考文献: (30) 致谢: (30)

基于MATLAB的电力谐波分析 学生: 指导老师: 电气信息工程学院 摘要:电力系统的谐波问题早在20世纪20年代就引起人们的注意,到了50年代和60年代,由于高压直流输电技术的发展,发表了有关换流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分的关注。 本文首先对目前国内外电力谐波检测与分析方法进行了综述与展望,并对电力谐波的基本概念、性质和特征参数进行了详细的分析,给出了谐波抑制的措施。并得出基于连续信号傅立叶级数的各次谐波系数的计算公式,推导了该计算公式与MATLAB函数FFT计算出的谐波系数的关系。实例证明:准确测量各次谐波参数,对电力系统谐波分析和抑制具有很大意义,可确保系统安全、可靠、经济地运行。同时实验结果表明,该法对设备要求不高,易于实现。 关键字:MA TLAB电力谐波分析 Harmonic Analysis of Electric Power System Based On Matlab Student: Teacher: Electrical and Information Engineering Abstract:The harmonic problem of electric power system has caused the attention of people in1920s and 1930s.Until 1950s,owing to the development of high voltage direct current transportation electricity technology,people published a large number of theses about the electricity power system harmonic problem,which caused by the current transform device.Since 1970s,because of the speedly development of eletricity power electronics technology,the various electric power electronics devices were applied extensively in the electric power system,industry,traffic and family,but the harm which the harmonic creates was serious more and more.Many country of the world all pay attention to the harmonic problem. Summary and Prospects of the first domestic and international power harmonics detection and analysis methods, and power harmonics of the basic concepts of the nature and characteristic parameters of a detailed analysis, given a harmonic suppression measures. Obtained based on the

谐波对电网危害

谐波污染对电网有哪些具体影响? 谐波污染对电网的影响主要表现在: (1)造成电网的功率损耗增加、设备寿命缩短、接地保护功能失常、遥控功能失常、线路和设备过热灯,特别是三次谐波会产生非常打的中性线电流,使得配电变压器的零线电流甚至超过相线电流值,造成设备的不安全运行。谐波对电网的安全性、稳定性、可靠性的影响还表现在可能引起电网发生谐振、使正常的供电中断、事故扩大、电网解裂灯。 (2)引起变电站局部的并联或串联谐振,造成电压互感器灯设备损坏;造成变电站系统中的设备和元件产生附加的谐波损耗,引起电力变压器、电力电缆、电动机等设备发热,电容器损坏,并加速绝缘材料的老化;造成断路器电弧熄灭时间的延长,影响断路器的开断容器;造成电子元器件的继电保护或自动装置误动作;影响电子仪表和通信系统的正常工作,降低通信质量;增大附加磁场的干扰等。 谐波对电力电容器有哪些影响? 当配电系统非线性用电负荷比重较大,并联电容器组投入时,一方面由于电容器组的谐波阻抗小,注入电容器组的谐波电流打,使电容器过负荷而严重影响其使用寿命,另一方面当电容器组的谐波容抗与系统等效谐波感相等而发生谐振时,引起电容器谐波电流严重放大使电容器过热而导致损坏。因此,电压谐波和电流谐波超标,都会使电容器的工作电流增大和出现异常,例如,对于常用自愈式并联电容器,其允许过电流倍数是1.3倍额定电流,当电容器的电流超过这一限制时,将会造成电容器的损坏增加、发热异常、绝缘加速老化而导致使用寿命降低,甚至造成损坏事故。同时,谐波使工频正弦波形发生畸变,产生锯齿状尖顶波,易在绝缘介质中引发局部放电,长时间的局部放电也会加速绝缘介质的老化、自愈性能下降,而容易导致电容器损坏。 按照电力系统谐波管理规定,电网中任何一点电压正弦波的畸变率(歌词谐波电压有效值的均方根与基波电压有效值的百分比),均不得超过表2-5规定。 表2-5 电网电压正弦波形畸变极限值 用户供电电压(kV)总电压正弦波形畸变率极限值各奇、偶次谐波电压正弦波形畸变率极限之(%) 0.38 5 4 2 6或10 4 3 1.75 35或63 3 2 1 110 1.5 1 0.5 谐波对电力变压器有哪些影响? (1)谐波电流使变压器的铜耗增加,引起局部过热,振动,噪声增大,绕组附加发热等。(2)谐波电压引起的附加损耗使变压器的磁滞及涡流损耗增加,当系统运行电压偏高或三相不对称时,励磁电流中的谐波分量增加,绝缘材料承受的电气应力

电力系统的谐波产生的原因

电力系统的谐波产生的原因电网谐波来自于3个方面: 一是发电源质量不高产生谐波: 发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。 二是输配电系统产生谐波: 输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。 三是用电设备产生的谐波: 晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。 电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。 气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。 家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。 供电系统的无功补偿及谐波治理 在供电系统中,为了节能降损、提高电压质量和电网经济运行水平,经常采用各种无功补偿装置。近年来,配电网中整流器、变频调速装置、电弧炉、各种电力电子设备以及电气化铁路大量应用。这些负荷大都具有非线性、冲击性和不平衡性的特点,在运行中会产

电力系统谐波治理的四种方法

谐波,这个新鲜的电力系统名词,在当今的电力行业中,已广为“传播”,几乎在电力行业工作,以及与电力行业有直接关系的人,都对这个名词不陌生,尤其是用电大户单位,谈之色变,一是“谐波”直接影响了工厂的正常工作,由于谐波的存在,工厂的负荷上不去,即便上去了,无功也特高,而传统的“无功补偿”又不能凑效。而是即便无功补偿达到了要求,但谐波含量超标,管理部门不答应,自身的电费多交了不说,还讨不了好。 那么,是否拿“谐波”的肆虐就没有办法了,不!“办法总比问题多”,上海坤友电气有限公司集多年治理“谐波”的经验,针对不同的工况,总结了几种解决问题的方法,公布如下,与各位同仁共勉。 首先,我们讨论谐波的产生原因: 近年来,电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS)、节能荧光灯系统等,这些非线性负载导致电网污染,电力品质下降,引起供、用电设备故障,甚至引发严重火灾事故等。电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐波、三相不平衡等。 其次,我们讨论谐波的危害: 电源污染会对用电设备造成严重危害,主要有: 增加输、供和用电设备的额外附加损耗,使设备的温度过热,降低设备的利用率和经济效益: 谐波电流使输电线路的电能损耗增加。当注入电网的谐波频率位于在网络谐振点附近的谐振区内时,对输电线路和电力电缆线路会造成绝缘击穿。 干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机。 影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。 引起电气自动装置误动作,甚至发生严重事故。 使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁。

电力系统谐波影响及消除

电力系统谐波影响及消除(网络摘录)2011.12.20 返回日志列表 从补偿电容无法投入,谈谐波危害,分析谐波来源,提出治理谐波的初步建议随着个私经济特别是特钢和化学工业在我市的发展,我公司的供电量也不断的增长,为了使功率因素达到标准,必须投入补偿电容,但是这几个乡镇的变电所的补偿电容器却无法投上,强行投入后,电容器熔丝也会很快熔断。但根据其他变电所运行经验,在此功率因数下,无功电流不应大于熔丝熔断电流。这是为什么呢? 经过对该地区的供电现状分析,这是由于谐波引起的。所谓谐波,即理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,但是由于各种原因,使这种理想状态在实际中无法存在。因此通过对周期性电压或电流的傅立叶分解,所得到的频率为基波整数倍分量的含有量,称为谐波。 谐波对于电网的危害非常大,主要表现在以下方面: 1.由于电网主要是按基波设计的。由于LC元件的存在,虽然在基波时不会发生谐振,但在某个特定谐波时却可能引起谐振,可能将谐波电流放大几倍甚至数十倍,电网谐振引起设备过电压,产生谐波过流,对设备造成危害。特别是对电容器和与之串联的电抗器。其中,特别要注意的是,由于电容器是容性负载,能与电网上感性设备(其它设备主要是感性设备)配合,构成共振条件,又由于其大小与谐波频率成反比,因此,电容更容易吸收谐波共振电流,引起电容过载,造成电容损坏,或者熔丝熔断。 2.使电网中的电气设备产生额外的损耗(谐波功率),降低了设备的效率,同时谐波会影响设备的正常工作,例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。 3.导致继电保护和自动装置误动或拒动,造成不必要的损失,谐波会使电气测量仪表测量不准确,造成计量误差。 另外,谐波还会产生对设备附近的通信系统产生干扰等其他危害。 既然谐波危害如此之大,那么谐波是如何产生的?又如何能减小它的影响和危害呢? 谐波来源 1、中频炉、电弧炉等设备是该地区谐波的主要来源 对该地区负荷进行分析,发现主要的原因是该地区特钢工业发达,中频炉、电弧炉等作为一类高效的加热源已经非常普及。电弧炉是利用电极物料间产生的电弧熔炼金属,因此,它的电流波形很不规则,含有多种谐波(2次到7次)以及间谐波,这是谐波的一个重要来源。而中频炉是工频电流整流后再变为中频,再利用电磁感应来熔炼金属,因此产生大量的高次谐波,其中以5次、7次、11次等奇次谐波为主。这正是该地区谐波的主要来源。 2、用户变压器群是该地区谐波的重要来源 一般情况下,三相变压器由于铁芯为“日”形状,中相比边相要短一半,因此,三个磁路的不对称引起变压器励磁电流中含有谐波分量。所以当对空载三相变压器加电压激励时,即使受电侧没有零序电流通路(中性点不接地或三角形接线),励磁电流中也会有谐波分量。虽然在实际运行时,这个谐波分量很小,但由于变压器绕组接法以及各绕组和电网各相的连接统一规定时,则各台变压器励磁电流里的同次谐波彼此叠加,形成了电网中谐波的又一重要来源。例如,在绝大多数配变中,都是Y,yn接线,变压器的中间的铁柱对应的线圈即中相接的都是B相,这样的统一接法,就为3、5、7等次谐波提供了一个分别互相叠加的条件。在该地区,现有35kV用户变压器5台,总容量400kVA,10kV用户变压器约800台,总容量330kVA.如此庞大的用户变群又成为了谐波的又一个重要来源。

谐波的危害及治理

谐波的危害及治理

谐波对供电系统的危害及治理 中铝贵州分公司第一铝矿汪元江 [摘要] [关键词] 1、引言 一个理想的电力系统是以单一恒定频率与规定幅值的稳定电压供电的。但实际上,由于近年来随着科学技术的不断发展,在电力系统中大功率整流设备和调压装置的利用、高压直流输电的应用、大量非线性负荷的出现以及供电系统本身存在的非线性元件等使得系统中的电压波形畸变越来越严重,对电力系统造成了很大的危害。因此,要实现对电网谐波的综合治理,就必须搞清楚谐波的来源、危害及电网在各种不同运行方式下谐波潮流的分布情况,以采取相应的措施限制和消除谐波,从而改善供电系统供电质量和确保系统的安全经济运行。 2、谐波产生的原因 在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率、幅度与相角。谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次,n 为整数,例如5、7、11、13、17、19等。变频器主要产生5、7次谐波。 3、电网谐波的来源 3.1 发电源产生谐波,由于发电机三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀等其他一些原因,发电源多少也会产生一些谐波,但对电网影响很小。 3.2 输配电系统产生谐波,输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性特性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。 3.3 整流设备产生谐波,近年来,由于晶闸管整流装置在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。目前,常用的整流电路几乎都采用晶闸管相控整流电路或二极管整流电路,其中以三相桥式和单相桥式

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

电力系统谐波检测与分析毕业设计论文

毕业设计(论文)题目:电力系统谐波检测与分析

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

电厂发电机的谐波危害分析与测试

电厂发电机的谐波危害分析与测试 发表时间:2017-03-09T15:51:09.617Z 来源:《电力设备》2017年第1期作者:丁超孟庆铭张晓彤 [导读] 本文重点针对谐波的危害进行分析,并研究一下我国谐波的监测。 一、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。谐波的产生主要是来自下列具有非线性特性的电气设备:具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式家用电器中。 二、谐波的危害 1、增加了发、输、供和用电设备的附加损耗 发电机出现谐波会使设备过热,降低设备的效率和利用率。由于谐波电流的频率为基波频率的整数倍,高频电流流过导体时,因集肤效应的作用,使导体对谐波电流的有效电阻增加,从而增加了设备的功率损耗、电能损耗,使导体的发热严重。 2、影响继电保护和自动装置的工作和可靠性 谐波对电力系统中以负序(基波)量为基础的继电保护和自动装置的影响十分严重,这是由于这些按负序(基波)量整定的保护装置,整定值小、灵敏度高。如果在负序基础上再叠加上谐波的干扰(如电气化铁道、电弧炉等谐波源还是负序源)则会引起发电机负序电流保护误动(若误动引起跳闸,则后果严重)、变电站主变的复合电压启动过电流保护装置负序电压元件误动,母线差动保护的负序电压闭锁元件误动以及线路各种型号的距离保护、高频保护、故障录波器、自动准同期装置等发生误动,严重威胁电力系统的安全运行。 3、使测量和计量仪器的指示和计量不准确 由于电力计量装置都是按50Hz的标准的正弦波设计的,当供电电压或负荷电流中有谐波成分时,会影响感应式电能表的正常工作。在有谐波源的情况下,谐波源用户处的电能表记录了该用户吸收的基波电能并扣除一小部分谐波电能,从而谐波源虽然污染了电网,却反而少交电费;而与此同时,在线性负荷用户处,电能表记录的是该用户吸收的基波电能及部分的谐波电能,这部分谐波电能不但使线性负荷性能变坏,而且还要多交电费。电子式电能表更不利于供电部门而有利于非线性负荷用户。 4、干扰通信系统的工作 电力线路上流过的3、5、7、11等幅值较大的奇次低频谐波电流通过磁场耦合,在邻近电力线的通信线路中产生干扰电压,干扰通信系统的工作,影响通信线路通话的清晰度,而且在谐波和基波的共同作用下,触发电话铃响,甚至在极端情况下,还会威胁通信设备和人员的安全。另外高压直流(HVDC)换流站换相过程中产生的电磁噪声(3-10kHz)会干扰电力载波通信的正常工作,并使利用载波工作的闭锁和继电保护装置动作失误,影响电网运行的安全。 5、对用电设备的影响 谐波会使电视机、计算机的图形畸变,画面亮度发生波动变化,并使机内的元件出现过热,使计算机及数据处理系统出现错误。对于带有启动用的镇流器和提高功率因数用的电容器的荧光灯及汞灯来说,会因为在一定参数的配合下,形成某次谐波频率下的谐振,使镇流器或电容器因过热而损坏。对于采用晶闸管的变速装置,谐波可能使晶闸管误动作,或使控制回路误触发。 三、谐波的测试与监测 1、谐波的实验室测试 我们可以利用示波器来记录发电机端线电压和三相电流,其波形如下: 实验可知,当发电机带整流负载时,受负载非线性工作特性的影响,发电机的机端线电压和三相电流的波形都发生了严重的畸变,含有大量的谐波。而且发电机伴随着震动现象,这是受谐波电磁转矩的影响,另外发电机的定子和转子发热严重。 2、我国的谐波监测发展 我国为加强对谐波的监测,管理及治理,于1994年正式颁布了GB/T14549-93国家标准《电能质量--公用电网谐波》。为了配合国家电力公司《电网电能质量技术监督管理规定》和国家《公用电网谐波标准》的执行,各企业生产了许多电能质量监测仪等系列产品。这些产品可测量三相电压、三相电流的谐波、序分量、电压变动和闪变、电压偏差、功率因数、有功、无功、频率、暂态电压等参数,谐波可测量63次,仪器实时监测定时记录,记录结果可以存盘并打印,为用户提供丰富、完整的实测记录资料。产品广泛应用于变电站、风电场、钢铁企业及电气化铁路,产品通过相关认证,完全能够满足电网运行要求,实现对电网安全保驾护航。 谐波分析是信号处理的一种基本手段。在电力系统的谐波分析中,主要采用各种谐波分析仪分析电网电压、电流信号的谐波,该类仪表的谐波分析次数一般在40次以下。对于变频器而言,其谐波分布与电网不同,电网谐波主要为低次谐波,而变频器的谐波主要为集中在载波频率整数倍附近的高次谐波,一般的谐波分析设备只能分析50次以下的谐波,不能测量变频器输出的高次谐波。对于PWM波,当载波频率固定时,谐波的频率范围相对固定,而所需分析的谐波次数,与基波频率密切相关,基波频率越低,需要分析的谐波次数越高。一般宜采用宽频带的,运算能力较强、存储容量较大的变频功率分析仪,根据需要,其谐波分析的次数可达数百甚至数千次。例如,当载波频率为2kHz,基波频率为50Hz时,其40次左右的谐波含量最大;当基波频率为5Hz时,其400次左右的谐波含量最大,需要分析的谐波次数

电力系统的谐波

《电力系统的谐波》 电气工程与自动化 1.什么是谐波?特性?分类? 2.含有谐波的电量的电气参数如何计算? 3.衡量谐波含量的参数有哪些?定义? 4.电力系统常见的谐波源有哪些? 5.谐波的危害是什么?治理方法有哪些? 理想的交流电压和交流电流波形应是单一频率的正弦波,而实际电力系统中由于负荷 的非线性常会使电压和电流波形产生畸变而偏离正弦,出现各种谐波分量。谐波的含量是 衡量电能质量的重要指标之一。 那么什么是谐波呢?谐波 (harmonic wave),从严格的意义来讲,谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,这时“谐波”这个词的意义已经变得与原意有些不符。正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。 奇次谐波:额定频率为基波频率奇数倍的谐波,被称为“奇次谐波”,如3、5、7次谐波; 偶次谐波:额定频率为基波频率偶数倍的谐波,被称为“偶次谐波”,如2、4、6、8次谐波。 一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n ±1次谐波,例如5、7、11、13、17、19等。 变频器主要产生5、7次谐波; 分量谐波:频率为基波非整数倍的分量称为间谐波,有时候也将低于基波的间谐波称为次谐波,次谐波可看成直流与工频之间的间谐波。 电气参数计算 有效值: U= 1T u 2T 0(t)dt I= 1T i 2T 0(t)dt u(t)= 2∞n =1U n sin ?(nw 1t +αn ) i(t)= 2∞ n =1I n sin ?(nw 1t +βn ) w 1=2πT =2πf 1 I= A A= 1T [ 2I 1T sin w 1t +β1 + 2I 2sin 2w 1t +β2 +?+ 2I n sin nw 1t +βn ]∧2dt

浅谈谐波的含义及为什么必须治理

浅谈谐波的含义及为什么必须治理 安科瑞王长幸 江苏安科瑞电器制造有限公司江苏江阴214405 1引言 随着科技发展,电子产品大量应用,电网中谐波大量产生,作为设计人员需要了解谐波的成因及危害,以便更好地防御及治理,提高电能质量。 近年来,电气产品行业出于节能和生产的需要,积极运用新技术,大量地运用了可控变流装置、变频调速装置等非线性负荷设备。其所产生的谐波问题直接影响到了公用电网的电能质量,已引起人们的广泛重视。 2谐波产生的原因及影响 2.1谐波的成因 电网中的谐波主要指频率为工频(基波频率)整数倍成分的谐波及工频非整数成分的间谐波,它们都是造成电网电能质量污染的重要原因。根据大量现场测试的分析结果证实,电力变压器也是电力系统中谐波的一个重要谐波源。电力变压器的激磁电流、铁心饱和及三相电路和磁路的不对称,致使在变压器三角绕组的线电压和线电流中也仍然存在三次谐波分量,尤其在负荷低谷时,随着电网电压的升高,变压器铁心饱和程度加剧,产生的谐波含量也随之增大。随着电网大量电容装置的投运,通过对现场谐波实测发现,谐波并不是只有零序分量可被变压器三角绕组所环路,而是波及全网,并给电容装置及电网的正常运行带来影响和威胁。 在民用建筑中,UPS电源、电子调速装备、节能型灯具及家用电器中的计算机、微波炉等电力电子设备和电器设备应用的大量增加,以及医院等特殊场合的放射X光机、CT机等大型医疗设备等,使各类非线性负荷注入电网的谐波日益增多,造成电网电能质量的污染的影响也越来越大。在这些设备集中使用的地区,如医院、大型商场、居民小区、写字楼、酒店公寓等,谐波污染已相当严重。谐波污染的影响使电能质量明显下降,因此,对电能质量谐波污染的抑制和治理已刻不容缓。 2.2谐波源的分析 2.2.1电力电子设备 电力电子设备主要包括整流器、变频器、开关电源、静态换流器、晶闸管系统及其它SCR控制系统等。由于工业与民用电力设备常用到这类电力电子设备和电路,如整流和变频电路,其负载性质一般分为感性和容性两种,感性负载的单相整流电路为含奇次谐波的电流型谐波源。而容性负载的单相整流电路,由于电容电压会通过整流管向电源反馈,属于电压型谐波源,其谐波含量与电容值的大小有关,电容值越大,谐波含量越大。变频电路谐波源由于采用的是相位控制,其谐波成分不仅含有整数倍数的谐波,还含有非整数倍数的间谐波。 2.2.2可饱和设备 可饱和设备主要包括变压器、电动机、发电机等。可饱和设备是非线性设备,与电力电子设备和电弧设备相比,可饱和设备上的谐波在未饱和的情况下,其谐波的幅值往往可以忽略。 2.2.3电弧炉设备及气体电光源设备 ①电弧炉在熔炼金属过程中的非线性影响将产生大量的谐波 ②气体电光源包括荧光灯、霓虹灯、卤化灯。根据这类气体放电光源的伏安特性。其非线

电力系统谐波管理暂行规定

电力系统谐波管理暂行规定 SD126~84 第一章总则 第一条电力系统中的谐波主要是治金、化工、电气化铁路等换流设备及其他非线性用电设备产生的。随着硅整流及可控硅换流设备的广泛使用和各种非线性负荷的增加,大量的谐波电流注入电网,造成电压正弦波形畸变,使电能质量下降,给发供电设备及用户用电设备带来严重危害。为保证向国民经济各部门提供质量合格的50赫兹电能,必须对各种非线性用电设备注入电网的谐波电流加以限制,以保证电网和用户用电设备的安全经济运行,特制订本规定。 第二条本规定适于电力系统以及由电网供电的所有电力用户。 第三条电网原有的谐波超过本规定的电压正弦波形畸变率极限值时,应查明谐波源并采取措施,把电压正弦波形畸变率限制在规定的极限值以内。在本规定颁发前已接入电网的非线性用电设备注入电网的谐波电流超过本规定的谐波电流允许值时,应制订改造计划并限期把谐波电流限制在允许范围以内。所需投资和设备由非线性用电设备的所属单位负责。 第四条新建或扩建的非线性用电设备接入电网,必须按本规定执行。如用户的非线性用电设备接入电网,增加或改变了电网的谐波值及其分布,特别是使与电网连接点的谐波电压、电流升高,用户必须采取措施,把谐波电流限制在允许的范围内,方能接入电网运行。 第五条进口设备和技术合作项目亦应执行本规定。但如对方的国家标准或企业标准的全部或部分规定比本规定严格,则应按对方较严格的规定执行。 第六条谐波对通讯等的影响应按国内有关规定执行。 第七条用户用电设备对谐波电压的要求较本规定的电压正弦波畴变率极限更严格时,由用户自行采取限制谐波电压的措施。 第二章电压正弦波形畸变率极限值和谐波电流允许值 第八条电网中任何一点的电压正弦波形畴变率均不得超过表1规定的极限值。 表1 电网电压正弦畸形畸变率极限值(相电压)

供电系统中的谐波及其抑制

供电系统中的谐波及其抑制 发布者:admin 发布时间:2006-6-27 15:48:56 来自:互联网浏览统计:20 减小字体增大字体一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。 供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。 二、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。 在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。 在其它几个环节中,谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。

电力系统谐波检测与治理的研究

电力系统谐波检测与治理的研究 1、谐波的定义 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的力量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。 2、谐波的危害 电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。电力系统中谐波的危害是多方面的,概括起来有以下几个方面: 2.1 对供配电线路的危害 2.1.1 影响线路的稳定运行 供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下,不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。 2.1.2影响电网的质量 电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用电配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较低,可达40%;三相配电线路中,相线上的3的整数倍谐波,在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。 2.2 对电力设备的危害 2.2.1对电力容器的危害 当电网存在谐波时,投入电容器后,其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜低复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器,允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的存在往往使电压器呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。 2.2.2 对电力变压器的危害 谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。同时

电力系统中谐波的危害与产生

编号:AQ-JS-03716 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 电力系统中谐波的危害与产生 Harm and generation of harmonics in power system

电力系统中谐波的危害与产生 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。本文全面论述了电力系统中谐波的危害及产生情况,希望能引起我们的高度重视。 谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面: 1.对供配电线路的危害 (1)影响线路的稳定运行 供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,

但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。 (2)影响电网的质量 电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。 2.对电力设备的危害 对电力电容器的危害 当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但

相关主题
文本预览
相关文档 最新文档