当前位置:文档之家› 载荷谱块的创建与疲劳寿命计算

载荷谱块的创建与疲劳寿命计算

载荷谱块的创建与疲劳寿命计算
载荷谱块的创建与疲劳寿命计算

疲劳载荷谱1

[1]. 李振兴, 5T悬挂吊车作用下焊接球网架结构的理论疲劳栽荷谱编制, 2014, 太原理工大学. 疲劳寿命计是结构承载过程中理想的疲劳状态监测元件,其电阻产生的不可逆变化反映了结构的疲劳加载历程。首先比较分析了普通应变片和疲劳寿命计在实际应用中的优劣,然后在采用恒幅加载实验研究其基本测试性能的基础上,通过多级加载实验进一步证实了疲劳寿命计电阻响应规律的正确性,由此研究 分析了桥梁等大型结构在实际的瑞利分布载荷作用下的疲劳加载历程,并对其 使用寿命和剩余寿命进行预测。 [1]. 罗艳利, 胡明敏与方义庆, 基于疲劳寿命计的桥梁载荷谱识别研究. 理化检验(物理分册), 2005(08): 第387-390页. 疲劳寿命计是结构承载过程中理想的疲劳状态监测元件,其电阻产生的不 可逆变化反映了结构的疲劳加载历程。首先比较分析了普通应变片和疲劳寿命计在实际应用中的优劣,然后在采用恒幅加载实验研究其基本测试性能的基础上,通过多级加载实验进一步证实了疲劳寿命计电阻响应规律的正确性,由此研究分析了桥梁等大型结构在实际的瑞利分布载荷作用下的疲劳加载历程,并对 其使用寿命和剩余寿命进行预测。 [1]. 孙乐与胡明敏, 基于数字疲劳传感器的桥梁载荷谱研究. 江苏航空, 2008(S1): 第91-93页. 数字疲劳传感器是一种电阻响应传感器,其核心元件疲劳计是由特殊退火处理康铜材料制成的,具有不逆电阻疲劳载荷响应的特性,在交变载荷作用下该传感器产生不可逆电阻改变,而且电阻的变化可以反映结构疲劳加载历程,是一种理想的结构状态监测装置。本文首先阐述了其基本特性和工作原理,然后根据桥梁载荷谱的瑞利分布特点,设计了双疲劳计响应载荷谱测定方法,得到疲劳传感器电阻变化与桥梁瑞利载荷谱的对应关系。最后介绍了基于该传感器的疲劳载荷监测系统和在东海大桥监测应用情况。 [1]. 陈景杰, 黄一与李玉刚, 考虑疲劳载荷相互影响的修正的Miner准则研究. 中国造船, 2014(03): 第36-42页. 基于疲劳加载过程中材料的疲劳极限由于损伤的出现而呈现逐渐下降的规律,提出了关于疲劳损伤计算的修正的Miner准则。在该方法中,引进一个参数来不断修正损伤过程中试件的S-N曲线,推导受损试件的疲劳极限与初始试件的疲劳极限之间的关系,使载荷间的相互作用及载荷加载顺序对材料累积损伤的影响得到考虑。通过对两个不同加载方式的疲劳试验的计算和误差比较,验证了该方法比传统的Miner准则具有更高的计算精度。同时,根据其中一种加载方式的疲劳实验数据模拟多种随机载荷谱,利用修正的Miner准则法进行计算,得知随机载荷下的疲劳寿命更接近试件的实际寿命,进一步证明该方法的正确性,从而拓展了该方法的使用范围。 [1].李宇, 螺栓球网架结构设置10T悬挂吊车时其吊点疲劳载荷谱的理论编制, 2014, 太原理工大学.

疲劳载荷及分析理论 谱 寿命 设计 累积损伤

第3章疲劳载荷及分析理论 (1) 3.1 疲劳载荷谱 (1) 3.1.1 疲劳载荷谱及其编谱 (1) 3.1.2 统计分析方法 (2) 3.2 疲劳累积损伤理论 (3) 3.2.1 概述 (3) 3.2.2 线性累积损伤理论 (4) 3.3起重机疲劳计算常用方法 (5) 3.3.1 应力比法 (6) 3.3.2 应力幅法 (6) 3.4 疲劳寿命设计方法 (7) 3.4.1无限寿命设计 (7) 3.4.2 安全寿命设计 (8) 3.4.3 损伤容限设计 (8) 3.4.4 概率疲劳设计 (9) 3.4 小结 (10) 第3章疲劳载荷及分析理论 疲劳载荷谱(fatigue load spectrum)是建立疲劳设计方法的基础。根据研究对象的不同,施加在对象上的疲劳载荷也是不同的,所以在应用时要依据某种统计分析方法和理论进行分析。 3.1 疲劳载荷谱 3.1.1 疲劳载荷谱及其编谱 载荷分为静载荷和动载荷两大类。动载荷又分为周期载荷、非周期载荷和冲击载荷。周期载荷和非周期载荷可统称为疲劳载荷。在很多情况下,作用在结构或机械上的载荷是随时间变化的,这种加载过程称为载荷—时间历程。由于随机载荷的不确定性,这种谱无法直接使用,必须对其进行统计处理。处理

后的载荷—时间—历程称为载荷谱。载荷谱是具有统计特性的图形,它能本质地反映零件的载荷变化情况[]。为了估算结构的使用寿命和进行疲劳可靠性分析,以及为最后设计阶段所必需的全尺寸结构和零部件疲劳试验,都必须有反映真实工作状态的疲劳载荷谱。 实测的应力—时间历程包含了外加载荷和结构的动态响应的影响,它不仅受结构系统的影响,而且也受应力—时间历程的观测部位的影响。将实测的载荷—时间历程处理成具有代表性的典型载荷谱的过程称为编谱。编谱的重要一环,是用统计理论来处理所获得的实测子样[]。 3.1.2 统计分析方法 对于随机载荷,统计分析方法主要有两类:计数法和功率谱法[]。由于产生疲劳损伤的主要原因是循环次数和应力幅值,因此在编谱时首先必须遵循某一等效损伤原则,将随机的应力—时间历程简化为一系列不同幅值的全循环和半循环,这一简化的过程叫做计数法。功率谱法是借助富氏变换,将连续变化的随机载荷分解为无限多个具有各种频率的简单变化,得出功率谱密度函数。在抗疲劳设计中广泛使用计数法。 目前,已有的计算法有十余种之多,同一应力—时间历程用不同计数法编制出的载荷谱有时会差别很大。当然,按照这些载荷谱来进行寿命估算或试验,也会给出不同的结果。从统计观点上看,计数法大体分为两类:单参数法和双参数法[]。 所谓单参数法是指只考虑应力循环中的一个变量,例如,峰谷值、变程(相邻的峰值与谷值之差),而双参数法则同时考虑两个变量。由于交变载荷本身固有的特性,对任一应力循环,总需要用两个参数来表示。其代表是雨流计数法。 雨流计数法是目前在疲劳设计和疲劳试验中用的最广泛的一种计数方法,是对随机信号进行计数的一种方法的一种。雨流计数法与变程对—均值计数法一样具有比较严格的力学基础,计数结果介于峰值法和变程法之间,提供比较符合实际的数据。雨流法是建立在对封闭的应力—应变迟滞回线逐个计数的基础上,它认为塑性的存在是疲劳损伤的必要条件,从疲劳观点上看它比较能够反映随机载荷的全过程。由载荷—时间历程得到的应力—应变迟滞回线与造成的疲劳损伤是等效的[]。

载荷谱

载荷谱 载荷谱是整机结构或零部件所承受的典型载荷时间历程,经数理统计处理后所得到的表示载荷大小与出现频次之间关系的图形、表格、矩阵和其他概率特征值的统称。机械结构部件多是在交变载荷作用下服役,因为载荷的变化,结构材料内部的应力应变也在发生变化,从而导致裂纹的产生、扩张,发生断裂,这个过程就是疲劳失效,大多数机械部件的失效都是疲劳失效。载荷谱的研究对疲劳失效有很大作用。载荷谱是进行可靠性设计的依据,是零部件结构定寿、延寿和动力学仿真、有限元分析等计算机辅助设计的先决条件,也是作为结构疲劳试验、强化试验、加速寿命试验和可靠性试验的基础。 一般机械产品,其载荷谱的编制流程如下: (1) 载荷样本数据的获取 载荷数据一般通过产品现场工作时实测的途径来获取。 (2) 平稳性检验 通过实测方法获得的载荷数据往往是一种随机过程,而在随机过程分析中,一组数据是否为平稳和历态的,对其进行统计处理所采用的方法是不相同的,因此需对试验获得的载荷数据进行平稳性分析。 (3) 无效幅值的去除 测试获得的载荷数据中有许多载荷值小的循环,将不能构成疲劳损伤的小量载荷循环去除即为无效幅值的去除。通过对无效幅值进行压缩和去除可以缩短试验时间,同时降低试验费用。 (4) 载荷循环的统计计数 将载荷- 时间历程转化为系列载荷循环的过程叫做“计数法”。在进行疲劳寿命分析时, 常常以载荷- 时间历程的损伤量为依据,对统计计数结果进行加速编辑。

(5)总体分布的估计 通过雨流计数法对随机载荷进行计数得到的是载荷均值和载荷幅值,之后进行统计处理得到二元(均值和幅值)随机变量的联合分布矩阵,采用二维(幅值和均值)函数进行分布参数的估计。分布函数获得后,利用假设检验对幅值和均值分布函数进行检验,最后分析二者的相关性,确定最优分布模型。 不同的机械产品,其载荷谱的采集及编制方法均有所不同。在对汽车零部件疲劳失效研究中,通常采集关键部位(如稳定连接杆、横拉杆等)的应变载荷和加速度信号作为载荷数据。对采集的加速度信号,常用于统计分析(如最大值、最小值、平均值、均方根和方差等的统计对比)及功率谱密度函数来描述其频率特性。对采集的应力-应变时间载荷数据,经 过雨流计数法得到各应力大小与循环次数的统计结果,最后应用累积损伤理论分析方法计算 疲劳寿命与安全使用寿命。汽车载荷谱多是基于损伤量进行的室内试验载荷谱编制。在进行汽车零部件设计时,要进行零部件室内疲劳寿命试验,而由于零部件使用寿命很长,在室内试验时,需要采用加速试验的方法。 对汽车载荷谱的加速编辑,计算原始信号的时间- 损伤分布图,对应变-时间信号用雨流 计数法计算损伤,然后对照时间- 损伤分布图,移去原始应变信号中无损伤或小于某一门槛值的信号片段,再插入一个递减或连接信号(常用半余弦曲线代替),避免在连接处有一个突然 的信号跳跃。在完成载荷谱加速编辑后,对加速信号应用到室内疲劳试验,在保证一定损伤量时,试验时间将大大缩短。汽车载荷谱对汽车设计、疲劳寿命研究有着重要的意义,对汽 车产品的改进、新产品的开发与产品质量检查等有极大的作用。 在对机床载荷分析时,通常采集机床的主轴转速、切削力、扭矩、主轴电机额定功率、最大进给速度、快速移动加速度等信号采集,其中以主轴转速谱、切削力谱和扭矩谱为主要采集分析对象。实际运行过程中数控机床的受载情况与一般机械产品不同,数控机床切削工况种类繁多,机床载荷是一个连续的随机过程,可利用统计方法对载荷数据加以整理,并对其进行某种分布拟合,通过分布假设检验,用频率图、累

飞机结构疲劳强度与断裂发展现状与发展趋势

飞机结构疲劳强度与断裂发展现状与发展趋势 领空权对于任何一个国家都是非常重要的,飞机的先进,是领空权的保证.飞机更是国家的国防的重要力量,提高飞机的性能更是每个军事大国追求的目标.飞机的结构抗疲劳强度与断裂强度是飞机性能的重要体现.通过这学期的学习,和老师耐心的讲解,我对我国飞机结构疲劳强度与断裂发展现状与发展趋势有了更进一步的了解. 疲劳强度是指飞机结果在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。实际上,飞机结构并不可能作无限多次交变载荷试验。 断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。 许多飞机结果,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后会产生裂纹或突然发生完全断裂。 疲劳破坏是机械零件失效的主要原因之一。据统计,在飞机结构失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。 疲劳失效是金属材料常见的失效形式,特别是轴类,连杆,轴承类等零件,长期在应力下工作的工件材料都要求较高的疲劳强度,这样的可以提高零件的使用寿命。疲劳强度同时还与硬度、强度、韧性有较大关系,所以他是金属材料的重要力学性能指标 航空工业作为技术密集、知识密集的高技术产业,集材料、机械、发动机、空气动力、电子、超密集加工、特种工艺等各种前沿技术之大成。目前,国际航空技术发达国家早已实施损伤容限耐久性规范,并成为国际适航性条例要求。然而,在飞机结构的三维损伤容限耐久性预测设计方面,由于研究队伍严重萎缩,国际上的实质性进展非常缓慢,三维损伤容限耐久性技术的发展停滞不前。与此同时,现代飞机大量使用三维整体结构,已有技术与需求的矛盾更加突出。 这一现状的存在,使得国内外的设计者们在已有技术基础上不得不依靠更加实际、但耗资巨大的全机试验和各级全尺寸部件试验来检验飞机结构的损伤容限和耐久性,虚拟试验的科学基础欠缺。近年随着计算机容量逐渐满足三维断裂分析的需要,国际上三维试验和数值研究骤增,多尺度研究骤增,虚拟试验的概念形成并得以应用。有影响和代表水平的工作主要出自美国NASA以Newman为主的研究组、英国Sheffield大学Code公司及其研究组、法国宇航院(ONERA)、瑞典航空研究实验室(FOI,德文首字)研究组,荷兰国防动力研究实验室、澳大利亚国防科技组织(DSTO)等[5-8]。但是其损伤容限耐久性技术依据的理论基础仍然是二维疲劳断裂理论,未取得本质上的突破,考虑三维约束的疲劳寿命分析模型也都是建立在大量经验参数基础上的。近年,我国某飞机设计行业以及相关单位已成功实现全数字化设计、制造,一些重点型号工程在设计阶段就已全面实施损伤容限与耐久性规范,开展了大量全尺寸静力、疲劳/耐久性和损伤容限试验,建立起宝贵的经验和高素质的队伍以及组织管理体系。然而,基于试验来保证性能的经验设计方法存在明显的局限:全尺寸试验之前主要是经验估计,如各种安全系数法,对经验积累依赖严重,不利创新发展;试验或一定要设法满足设计要

疲劳寿命预测方法

疲劳形成寿命预测方法 10船 王茹娇 080412010035 疲劳裂纹形成寿命的概念 发生疲劳破坏时的载荷循环次数,或从开始受载到发生断裂所经过的时间称 为该材料或构件的疲劳寿命。 疲劳寿命的种类很多。从疲劳损伤的发展看,疲劳寿命可分为裂纹形成和裂 纹扩展两个阶段:结构或材料从受载开始到裂纹达到某一给定的裂纹长度a0为 止的循环次数称为裂纹形成寿命。此后扩展到临界裂纹长度acr 为止的循环次数 称为裂纹扩展寿命,从疲劳寿命预测的角度看,这一给定的裂纹长度与预测所采 用的寿命性能曲线有关。此外还有三阶段和多阶段,疲劳寿命模型等。 疲劳损伤累积理论 疲劳破坏是一个累积损伤的过程。对于等幅交变应力,可用材料的S —N 曲 线来表示在不同应力水平下达到破坏所需要的循环次数。于是,对于给定的应力 水平σ,就可以利用材或零部件的S —N 曲线,确定该零件至破坏时的循环数N , 亦即可以估算出零件的寿命,但是,在仅受一个应力循环加载的情况下,才可以 直接利用S —N 曲线估算零件的寿命。如果在多个不同应力水平下循环加载就不 能直接利用S —N 曲线来估计寿命了。对于实际零部件,所承受的是一系列循环 载荷,因此还必须借助疲劳累积损伤理论。 损伤的概念是,在疲劳载荷谱作用下材料的改变(包括疲劳裂纹大小的变化, 循环应变硬化或软化以及残余应力的变化等)或材料的损坏程度。疲劳累积损伤 理论的基本假设是:在任何循环应力幅下工作都将产生疲劳损伤,疲劳损伤的严 重程度和该应力幅下工作的循环数有关,与无循环损伤的试样在该应力幅下产生 失效的总循环数有关。而且每个应力幅下产生的损伤是永存的,并且在不同应力 幅下循环工作所产生的累积总损伤等于每一应力水平下损伤之和。当累积总损伤 达到临界值就会产生疲劳失效。目前提出多种疲劳累积损伤理论,应用比较广泛 的主要有以下3种:线性损伤累积理论,修正的线性损伤累积理论和经验损伤累 积理论。 线性损伤累积理论在循环载荷作用下,疲劳损伤是可以线性地累加的,各个 应力之间相互独立和互不相干,当累加的损伤达到某一数值时,试件或构件就发 生疲劳破坏,线性损伤累积理论中典型的是Miner 理论。 根据该理论,假设在应力i σ下材料达到破坏的循环次数为i N ,设D 为最终 断裂时的临界值。根据线性损伤理论,应力i σ每作用一次对材料的损伤为i N D /, 则经过i n 次后,对材料造成的总损伤为i i N D n /。

对“雨流计数法”介绍

雨流计数法简介 0、前言 机械的疲劳失效是机械失效的主要失效方式,因此对机械失效的主要研究是机械疲劳失效. 目前, 机械疲劳失效的研究有两个方面: 一是根据求出的载荷谱来确定加载程序在试验室或者试验台上对机械进行疲劳试验, 得出机械(材料)在该工况下的实际寿命; 二是根据机械(材料)的特性与载荷谱并且用Miner 准则来估计机械的疲劳寿命. 无论是做疲劳试验还是估计疲劳寿命, 载荷谱的统计都是问题的关键[1]。 1、雨流计数法简介 雨流计数法又可称为“塔顶法”,是由英国的Matsuiski和Endo 两位工程师提出的, 距今已有50 多年。雨流计数法主要用于工程界, 特别在疲劳寿命计算中运用非常广泛。由来请参看图1, 把应变-时间历程数据记录转过90°,时间坐标轴竖直向下, 数据记录犹如一系列屋面, 雨水顺着屋面往下流, 故称为雨流计数法[2]。 雨流计数法的基本原理[3]如图1所示, 第一个雨流自0点处第一个谷的内侧流下, 从1点落1’后流至5, 然后下落。第二个雨流从峰1点内侧流至2点落下, 由于1点的峰值低于5点的峰值,故停止。第三个雨流自谷2点的内侧流到3, 自3点落下至3’, 流到1’处碰上上面屋顶流下的雨流而停止。如此下去, 可以得到如下的计数循环块:3-4-3’、1-2-1’、6-7- 6’、8-9- 8’、11-12-11、13-14-13’和12-15-12’。 1.1 雨流计数的基本流程如下。 (1) 根据采样定理作数据采集,得到时间历程记录,若截止频率为f c,则采样

间隔 Δt≤1/ 2f c (2) 根据连续的3个采样数据,删除既不是峰值也不是谷值的数据点,将时间历程记录转化为峰谷值序列。 (3) 针对峰谷值序列采用4点法雨流计数原则进行雨流计数,计数条件如下。 ①如果A>B;B≥D;C≤A,记录一个循环 (全波) BCB′,如图 2 所示。得到范围值S range=|B -C|幅值S a=|B -C|/ 2平均值S m=(B +C)/ 2 ②如果 A

疲劳载荷及分析报告理论 谱 寿命 设计 累积损伤

实用文档 第3章疲劳载荷及分析理论 (1) 3.1 疲劳载荷谱 (1) 3.1.1 疲劳载荷谱及其编谱 (1) 3.1.2 统计分析方法 (2) 3.2 疲劳累积损伤理论 (3) 3.2.1 概述 (3) 3.2.2 线性累积损伤理论 (4) 3.3起重机疲劳计算常用方法 (5) 3.3.1 应力比法 (6) 3.3.2 应力幅法 (6) 3.4 疲劳寿命设计方法 (7) 3.4.1无限寿命设计 (7) 3.4.2 安全寿命设计 (8) 3.4.3 损伤容限设计 (8) 3.4.4 概率疲劳设计 (9) 3.4 小结 (10) 第3章疲劳载荷及分析理论 疲劳载荷谱(fatigue load spectrum)是建立疲劳设计方法的基础。根据研究对象的不同,施加在对象上的疲劳载荷也是不同的,所以在应用时要依据某种统计分析方法和理论进行分析。 3.1 疲劳载荷谱 3.1.1 疲劳载荷谱及其编谱 载荷分为静载荷和动载荷两大类。动载荷又分为周期载荷、非周期载荷和冲击载荷。周期载荷和非周期载荷可统称为疲劳载荷。在很多情况下,作用在结构或机械上的载荷是随时间变化的,这种加载过程称为载荷—时间历程。由于随机载荷的不确定性,这种谱无法直接使用,必须对其进行统计处理。处理 实用文档 后的载荷—时间—历程称为载荷谱。载荷谱是具有统计特性的图形,它能本质地反映零件的载荷变化情况[]。为了估算结构的使用寿命和进行疲劳可靠性分析,以及为最后设计阶段所必需的全尺寸结构和零部件疲劳试验,都必须有反映真实工作状态的疲劳载荷谱。

实测的应力—时间历程包含了外加载荷和结构的动态响应的影响,它不仅受结构系统的影响,而且也受应力—时间历程的观测部位的影响。将实测的载荷—时间历程处理成具有代表性的典型载荷谱的过程称为编谱。编谱的重要一环,是用统计理论来处理所获得的实测子样[]。 3.1.2 统计分析方法 对于随机载荷,统计分析方法主要有两类:计数法和功率谱法[]。由于产生疲劳损伤的主要原因是循环次数和应力幅值,因此在编谱时首先必须遵循某一等效损伤原则,将随机的应力—时间历程简化为一系列不同幅值的全循环和半循环,这一简化的过程叫做计数法。功率谱法是借助富氏变换,将连续变化的随机载荷分解为无限多个具有各种频率的简单变化,得出功率谱密度函数。在抗疲劳设计中广泛使用计数法。 目前,已有的计算法有十余种之多,同一应力—时间历程用不同计数法编制出的载荷谱有时会差别很大。当然,按照这些载荷谱来进行寿命估算或试验,也会给出不同的结果。从统计观点上看,计数法大体分为两类:单参数法和双参数法[]。所谓单参数法是指只考虑应力循环中的一个变量,例如,峰谷值、变程(相邻的峰值与谷值之差),而双参数法则同时考虑两个变量。由于交变载荷本身固有的特性,对任一应力循环,总需要用两个参数来表示。其代表是雨流计数法。 雨流计数法是目前在疲劳设计和疲劳试验中用的最广泛的一种计数方法,是对随机信号进行计数的一种方法的一种。雨流计数法与变程对—均值计数法一样具有比较严格的力学基础,计数结果介于峰值法和变程法之间,提供比较符合实际的数据。雨流法是建立在对封闭的应力—应变迟滞回线逐个计数的基础上,它认为塑性的存在是疲劳损伤的必要条件,从疲劳观点上看它比较能够反映随机载荷的全过程。由载荷—时间历程得到的应力—应变迟滞回线与造成的疲劳损伤是等效的[]。 实用文档 应该指出,所有现行计数法均未记及载荷循环先后次序的信息资料。因为载荷先后次序的影响总是存在的,但如果将简化后的程序载荷谱的周期取短一些,则载荷先后次序的影响会减小至最小程度,这点已被荷兰国家宇航实验室 []。的试验结果证实 3.2 疲劳累积损伤理论 3.2.1 概述在疲劳研究过程中,人们早就提 出了“损伤”这一概念。所谓损伤,是指。累积损[]在疲劳过程中初期材料内的细微结构变化和后期裂纹的形成和扩展伤规律是疲劳研究中最重要的课题之一,它是估算变幅载荷作用下结构和零件疲劳寿命的基础。大多数结构和零件所受循环载荷的幅值都是变化的,也就是说,大多数结构和零件都是在变幅载荷下工作的。变幅载荷下的疲劳破坏,是不同频率和幅值的载荷所造成的损伤逐渐累积的结果。因此,疲劳累积损伤是有限寿命设计的核心问题。当材料承受高于疲劳极限的应力时,每一个循环都使材料产生一定的损伤,N1次恒幅载荷所。这种损伤是可以积累的,每一个循环所造成的平均损伤为nN nC造成的损伤等于

飞机结构20题。无答案

1.飞机设计的技术要求主要有哪些? 定量指标:升限,Vmax,航程,载重,起飞重量,起飞着陆距离,机动性指标(加速,盘旋,爬升),寿命; 非定量指标:全天候,机场要求,维护要求;发展趋势:V ,Hmax ,载重,航程。 2.飞机在飞行、起飞、着陆及地面停放等过程中,作用在飞机上的外载荷有哪些? 空气动力、发动机推力、质量力、着陆时的地面冲击力。 3.飞机疲劳载荷谱中主要有哪几种典型载荷状态? ①机动载荷②突风载荷③地面载荷④内部增压载荷 4.分别说明常用紧固件(铆钉、螺栓和螺钉)和受力元件(杆、薄板、厚板)的承力特性。 铆钉:通常把它设计成传剪的受力状态 螺栓:螺栓既可受剪也能受拉,视具体情况而定 螺钉:主要用于压紧被连接的零构件,螺钉本身主要处于受拉状态 杆——只能承受(或传递)沿杆轴向的分散力或集中力。 薄板——适合承受在板平面内的分布载荷(受剪受拉受集中力) 厚板——各种力(分布、集中,剪力、拉压力) 5.现代飞机结构中最广泛采用的结构材料有哪些? 1) 铝合金2) 镁合金3) 钛合金4) 高强度合金钢5) 不锈钢6) 复合材料 6.复合材料在飞机上应用的几种典型结构。 夹层结构加筋板结构波形腹板梁结构编织结构多梁式翼面结构整体结构翼身融合体结构 7.在外载荷作用下机翼上能形成哪几种形式内力? 外载荷(空气动力载荷、机翼结构质量力、其他部件和装载等传来的集中载荷) 垂直剪力,水平剪力、垂直弯矩,水平弯矩、扭矩 8.梁式机翼的受力特点。 弯矩主要由翼梁缘条承受;剪力由翼梁腹板承受;扭矩由蒙皮和翼梁腹板形成的闭室承受。 3.简要说明整体式机翼的两种结构型式及受力特点。 单块式机翼:弯矩主要由蒙皮和桁条承受;剪力由翼梁腹板承受;扭矩由蒙皮和翼梁腹板形成的闭室承受。 多腹板式机翼:弯矩主要由蒙皮和缘条承受;剪力由翼梁腹板承受;扭矩由蒙皮和翼梁腹板形成的闭室承受。 9.举例说明机翼开口的种类和加强形式。 梁式机翼小开口、梁式机翼中开口:开口周围用围框式垫板或冲压加强框 10.机翼上气动载荷的传递情况。 蒙皮将气动载荷分别传给桁条和翼肋、桁条将其自身承担的那部分气动载荷传给翼肋、翼肋将气动载荷传给翼梁、翼梁将载荷向根部传递、周缘闭室将扭矩以剪流形式向根部传递、周缘闭室将力矩以剪流形式向根部传递 11.说明气动力增升装置的型式。 简单襟翼、开裂式襟翼、开缝襟翼、双缝襟翼、后退式襟翼、前缘襟翼、前缘缝翼、克鲁格襟翼、前缘吹气襟翼、后缘吹气襟翼。 12.机身的结构受力形式。 构架式、桁梁式、桁条式、硬壳式 13.说明机身受力构件布置的依据。 开口情况:(位置、形状、大小和开口特性):由内部布置和机身 集中载荷:由装载布置与机身-机翼、机身-尾翼、机身-起落架确与其它部件的连接协调关系确定。 构件布置:主要是指横向构件(加强框、普通框)、纵向构件(长桁、桁梁、纵向加强壁板、加强长桁)以及蒙

飞机结构强度有关适航条例

第25.305条强度和变形 (a) 结构必须能够承受限制载荷而无有害的永久变形。在直到限制载荷的任何载荷作用下,变形不得妨害安全运行。 (b) 结构必须能够承受极限载荷至少三秒钟而不破坏,但是当用模拟真实载荷情况的动力试验来表明强度的符合性时,则此三秒钟的限制不适用。进行到极限载荷的静力试验必须包括加载引起的极限变位和极限变形。当采用分析方法来表明符合极限载荷强度要求时,必须表明符合下列三种情况之一: (1) 变形的影响是不显著的; (2) 在分析中已充分考虑所涉及的变形; (3) 所用的方法和假设足以计及这些变形影响。 (c) 如果结构的柔度特性使在飞机运行情况中很可能出现的任一加载速率会产生比相应于静载荷的应力大得多的瞬态应力,则必须考虑这种加载速率的影响。 (d) [备用] (e) 飞机必须设计成能承受在直到V D /M D的任何可能的运行条件下(包括失速和可能发生的无意中超出抖振包线边界)会发生的任何振动和抖振。这一点必须通过分析、飞行试验、或中国民用航空局适航部门认为必要的其它试验进行验证。 (f) 除经证明为极不可能的情况外,飞机必须设计成能承受因飞行操纵系统的任何故障、失效或不利情况而引起的结构强迫振动。这些强迫振动必须视为限制载荷,并必须在直到 V C /M C 的各种空速下进行研究。 〔中国民用航空局1995 年12 月18 日第二次修订,2001 年5 月14 日第三次修订〕 第25.307 条结构符合性的证明 (a) 必须表明每一临界受载情况下均符合本分部的强度和变形要求。只有在经验表明某种结构分析方法对某种结构是可靠的情况下,对于同类的结构,才可用结构分析来表明结构的符合性。当限制载荷试验可能不足以表明符合性时,适航当局可以要求作极限载荷试验。 (b) [备用] (c) [备用] (d) 当用静力或动力试验来表明符合第25.305(b)条对飞行结构的要求时,对于试验结果必须采用合适的材料修正系数。如果被试验的结构或其一部分具有下列特征:多个元件对结构总强度均有贡献,而当一个元件损坏以后,载荷通过其它路径传递导致重新分布,则不必采用材料修正系数。

机械零件疲劳载荷谱的编制方法研究

机械零件疲劳载荷谱的编制方法研究 郝晋峰,石 全,史宪铭,黄轶州(军械工程学院,河北石家庄050003) Weave M et hod Study of M achine Part Fat igue Loading Spectrum HAO Jin -feng,SHI Quan,SHI Xian -ming,HUANG Yi -zhou (O rdnance Eng ineering Co llege,Shijiazhuang 050003,China) 摘要:在对疲劳载荷进行统计处理的基础上,利用双参数雨流计数法和零均值转化公式对疲劳载荷均值进行了处理,消除了非零均值的影响,得出了均值与幅值的影响,得出了疲劳载荷谱多工况编制方法,为疲劳寿命分析奠定了基础,并给出了具体实例. 关键词:机械零件;疲劳;载荷谱;编制方法中图分类号:T H 17文献标识码:B 文章编号:1001-2257(2009)01-0076-03收稿日期:2008-08-26 Abstract:This page based on statistically trea ting w ith the fatigue loading data,using do uble pa r am eters rain flow take count of method and using zero av er ag e value transform formula to treat w ith the average of the fatig ue lo ading data,elim inate the influence o f the no n -zero average value,gained the influence of aver ag e v alue and r ange val ue,g ained the m any w or k instances w eave method of the fatigue loading data,establish the base of fa tig ue life,and giv e out an ex ample. Key words:m achine part;fatigue;loading spec trum;w eave m ethod 0 引言 机械零件疲劳载荷谱的编制是机械设计及疲劳寿命估计评估的基础,也是疲劳强度全寿命设计的重要依据,因此有必要确定作用在零部件上的随机疲劳载荷及由此所产生的应力,由于疲劳载荷通常具有时变性、周期性与随机性等,使得这一问题变得极其复杂,因此准确计算,分析随机疲劳载荷是机械 全寿命设计的关键步骤[1]. 1 载荷谱的数据处理 幅值的变化对疲劳强度和疲劳可靠性设计研究而言是最主要的,因为应力(或应变)幅值是累积疲劳损伤中的主要因素,因而常用计数法进行分析.1.1 载荷谱的雨流计数法和无效幅值的舍弃 使构件产生疲劳损伤的主要因素是应力幅值和应力循环的次数,将实测的随机载荷时间历程简化为一系列的全循环或半循环的过程叫做 计数法".目前,计数法从统计观点上可分为单参数和双参数.其中雨流计数法[1]近年来被认为是最有效的双参数计数方法,由于其技术原理与实际载荷对金属零件的循环应力-应变行为较为相似,有坚实的力学基础.经雨流计数法处理后就可以得到载荷幅值、均值和相应频次的重要关系. 参考文献[2]利用Fortran 语言编写了相应的程序,将复杂的转矩-时间历程简化为对损伤具有等效影响的均、幅值二维雨流矩阵. 但是并不是所有的载荷都对结构造成破坏影响,对这些不能构成疲劳损伤的小量循环,一般称为无效幅值.在进行载荷-时间历程计数时,应该将无效幅值舍弃.关于无效幅值的取舍基准,一般取随机载荷历程的极差(最大应力幅-最小应力幅)的5%~10%[3]. 1.2 非零平均应力的等效转换 目前国内用得较多的程序载荷谱仅保留了幅值和频次的关系,但是我们得到的实际应力循环中平均应力并不为零.研究表明平均应力对累积损伤也有较大的影响.因此,必须按等损伤的原则将非零平均应力的应力循环等效转换为零平均应力的应力循环.设S i 为等效零均值应力;S ai 为第i 个应力幅值;S m i 为第i 个应力均值; b 为拉伸强度极限.根据 76 机械与电子 2009(1)

细解Ansys疲劳寿命分析概要

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

二十 疲劳寿命试验

实验二十 疲劳寿命试验 一、实验目的 1.了解材料的疲劳性质,测定某个应力等级下的疲劳寿命。 2.了解高频疲劳试验机的工作原理和操作方法。 3.掌握不确定性测量的基本分析方法 二、实验设备 1.高频疲劳试验机(PLG-100) 三、实验概述 材料疲劳寿命是一个特殊的机械性质。疲劳寿命的一个主要因素是应力水平。在不同的应力水平下材料具有不同的疲劳寿命。在测定了各级应力水平的疲劳寿命(包括疲劳极限)时,可以确定一条材料的疲劳寿命曲线,即S-N 曲线(应力——寿命曲线)。 各应力级别的寿命并不是一个确定性的量值。它的对数是按照概率正态分布的一个随机变量。因此,试验需要测定多个同应力级别的试件的寿命(n 个寿命),对这n 个寿命计算对数寿命的平均值和标准差。 平均值: 标准差: -55- ∑==n i i x n x 111)(1 2 ??=∑ =n x x s n i i

定义:变异系数为 x s C v = 其中:x 为寿命的对数,即 由概率分析理论和统计推断理论,可以确定当置信度达到95%时变异系数的要求(见附件),由此可以确定最少的试件个数n 。 四、实验步骤 1.每两个人一组(一根试件),测量试件截面几何尺寸。 2.根据拟定的应力水平和应力比R ,计算最大载荷和最小载荷,计算平均静载荷和动载荷。 应力水平是指交变应力中的最大应力 。 应力比R 定义: max min σσ=R 。 平均静载荷: 2min max P P P j += 动载荷: 2 min max P P P d ?= 3.将试件夹卡到高频疲劳试验机上。注意试件对中。 4.启动疲劳试验机静载荷和动载荷。记录寿命。 5.五根试件计算平均值和标准差、以及变异系数。 6.三个应力水平或四个应力水平的对数疲劳寿命可画出一条疲劳寿命曲线。 五、予习要求 1. 阅读本试验讲义及有关的附录标准(见附录?)。 2. 阅读附录中有关高频疲劳试验机的原理和操作。 六、实验报告要求 1. 内容应包括实验目的、设备、测试原理与方法,原始记录,实验数据处理。每五根试件处理一个数值。 2. 在对数坐标纸上作S-N 曲线图。 -56- i i N x lg =max σ

疲劳载荷及分析理论资料

疲劳载荷及分析理论 疲劳载荷谱(fatigue load spectrum)是建立疲劳设计方法的基础。根据研究对象的不同,施加在对象上的疲劳载荷也是不同的,所以在应用时要依据某种统计分析方法和理论进行分析。 1 疲劳载荷谱 1.1 疲劳载荷谱及其编谱 载荷分为静载荷和动载荷两大类。动载荷又分为周期载荷、非周期载荷和冲击载荷。周期载荷和非周期载荷可统称为疲劳载荷。在很多情况下,作用在结构或机械上的载荷是随时间变化的,这种加载过程称为载荷—时间历程。由于随机载荷的不确定性,这种谱无法直接使用,必须对其进行统计处理。处理后的载荷—时间—历程称为载荷谱。载荷谱是具有统计特性的图形,它能本质地反映零件的载荷变化情况[]。为了估算结构的使用寿命和进行疲劳可靠性分析,以及为最后设计阶段所必需的全尺寸结构和零部件疲劳试验,都必须有反映真实工作状态的疲劳载荷谱。 实测的应力—时间历程包含了外加载荷和结构的动态响应的影响,它不仅受结构系统的影响,而且也受应力—时间历程的观测部位的影响。将实测的载荷—时间历程处理成具有代表性的典型载荷谱的过程称为编谱。编谱的重要一环,是用统计理论来处理所获得的实测子样[]。 1.2 统计分析方法 对于随机载荷,统计分析方法主要有两类:计数法和功率谱法[]。由于产生疲劳损伤的主要原因是循环次数和应力幅值,因此在编谱时首先必须遵循某一等效损伤原则,将随机的应力—时间历程简化为一系列不同幅值的全循环和半循环,这一简化的过程叫做计数法。功率谱法是借助富氏变换,将连续变化的随机载荷分解为无限多个具有各种频率的简单变化,得出功率谱密度函数。在抗疲劳设计中广泛使用计数法。 目前,已有的计算法有十余种之多,同一应力—时间历程用不同计数法编制出的载荷谱有时会差别很大。当然,按照这些载荷谱来进行寿命估算或试验,

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

细解Ansys疲劳寿命分析

2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论.

…恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷 …成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

相关主题
文本预览
相关文档 最新文档