当前位置:文档之家› 薄壁构件

薄壁构件

浅谈数学在建筑薄壁杆件中的应用

浅谈数学在建筑薄壁杆件中的应用 关健华刘陈平 (湖南科技工业职业技术学院湖南湘潭 411207) 摘要:数学作为一门应用广泛的学科,在建筑专业中具有及其重要的作用,本文以薄壁杆件为例,探讨应用微积分研究薄壁杆件的扭转和变形。 关键词:微积分;开口截面杆;闭口截面杆;切应力 On mathematics in the building of the application of the thin-walled bar Guan Jianhua Liu Chenping (Hunan science and technology Career Technical College Hunan Xiangtan 411207) Abstract:Mathematics as a widely used discipline, in building professional with and its important role, this paper thin walled bar as an example, this paper discusses the application of differential and integral calculus study thin walled bar torsion and deformation. Key words:Calculus;Open cross section bar;Closed section bar;Shear stress 随着材料强度的不断提高,结构构件的壁厚日益减薄。因此,薄壁杆件弯曲和扭转的研究,在工程结构设计中变得越来越重要。特别是扭转问题,一直是我们工程设计人员比较头痛、敏感的问题。在实际中,我们很多建筑物、组成建筑物的构件都是在弯剪扭多重应力的反复作用下工作。给我们人民的生命财产带来了很大的影响。扭转问题尤为突出,同时使我们的建筑成本提高了很多。 下面笔者就一些薄壁杆件的扭转问题运用数学和力学原理,做一些简单的研究和总结。 薄壁杆件是指杆件的长度,截面的轮廓尺寸和截面的厚度三者是不同级的量。杆件的长度l与截面的宽度a或高度h之比看作:l/b和l/h≥10,就可以认为是薄壁杆件。 在土建工程中,常设计一些开口薄壁截面的构件,如各种轧制型钢、T型截面、Z字型截面,这些开口的薄壁型构件在外力作用下常会发生扭曲变形,为了更合理地充分发挥材料的性能,就要研究它的应力和变形。我们运用数学中微积分知识来分析薄壁杆件在自由扭转时应力和变形的计算。

‘壳盖’薄壁铝合金件加工工艺

‘壳盖’薄壁铝合金件加工工艺 “壳盖”薄壁铝合金件加工工艺分析中国航空工业集团公司航宇救生装备有限公司(湖北襄阳441002) 袁开波 “壳盖”零件是一个薄壁的铝合金零件,其形状及尺寸如图1所示.零件的主要特点就是壁薄,由于是铝合金件,其强度差,加工时容易变形,要高效率加工合格的零件,加工过程中编制好工艺路线,做好准确的装夹与定位,就至关重要,同时要控制由于切削对零件产生的变形。 图1“壳盖” 注:未注圆角,凸R1.8mm,凹R1mm,未注壁厚0.8mm. 一、工艺分析 考虑到此零件的内、外形均为圆环形状,其主要的加工方法为数车工序完成,数车工序为分别加工内、外形2个步骤。这里就要考虑加工完第一工序后,在进行第二工序加工时的装夹与定位问题。既要能准确装夹与定位,又要使第二工序的加工操作方便。在经过多次的工艺路线分析及相配合的夹具结构设计之后,确定了先加工内形面,并在其端面上制出装夹定位的位置,然后进行外形面的加工。 二、工艺路线

在加工零件的内形面之后,“壳盖”需要安装在一种辅助夹具上,才能进行第二工序的加工,如图2所示。 (a) 第一工序图 (b) 第二工序简图 图2 “壳盖”工艺路线简图 1.第一工序的加工 “壳盖”在第一工序中要完成如图2(a)所示的加工内容,注意保持各个孔与 M64×0.75螺孔的同轴度。由于“壳盖”壁薄,偏心更易使“壳盖”产生变形。 2. 第二工序的加工 如图2(b)所示,型腔口部的M64×0.75螺纹段位为装夹部分,用M64X0.75螺纹与辅助夹具进行定位与连接。其夹具的设计,如图2(b)所示。从图中可以看出,辅助夹具的设计,其型面尺寸与零件的内形面是一致的,零件扣在夹具上,并通过M64X0.75螺纹拧紧,以保证零件内形面与夹具相贴合,这样,在加工外形面时,零件不会产生变形。 3.安装在辅助夹具上“壳盖”切削时加紧状况的分析 零件在装夹后,车刀切削时,零件的状态是否会松动,可通过图3做一个装夹及切削的状况分析。

铝合金薄壁零件加工夹具设计

铝合金薄壁零件加工夹具设计 发表时间:2018-06-11T17:20:42.613Z 来源:《基层建设》2018年第11期作者:唐丰江 [导读] 摘要:随着经济的发展和社会的进步对我国的各行各业都产生了十分深远的影响,尤其是经济的发展在很大程度上带动了科技的发展,而科技的发展将直接带动铝合金薄壁零件加工技术的发展。 广东长盈精密技术有限公司广东东莞 523000 摘要:随着经济的发展和社会的进步对我国的各行各业都产生了十分深远的影响,尤其是经济的发展在很大程度上带动了科技的发展,而科技的发展将直接带动铝合金薄壁零件加工技术的发展。铝合金薄壁零件的应用十分广泛,为减少在加工期间的变形情况,本文对铝合金薄壁零件加工夹具的设计进行系统的探究。 关键词:铝合金;薄壁零件;加工;夹具 薄壁零件在当前社会中是一件应用比较广泛的零件,尤其是在航天材料的制作方面,多能看到薄壁材料的身影。但是薄壁材料本身的硬度比较小,在加工的过程中稍有不慎或者使用的器具不合规格便容易造成薄壁材料变形的情况。如何有效的控制其变形一直是人们未曾彻底解决的问题。基于此,本文对零件的夹具进行分析和研究,并且结合各项的测量数据来实现对夹具的改进。 1 铝合金薄壁零件加工过程中存在的问题 某需要加工零件为长方体,长度为435mm,宽度为356mm,厚度为20mm,由铝合金制成。加工要求其平面度为 0.06mm,粗糙度Ral.6。铝合金材料的韧性以及其本身的可塑性都比较好,但是在对其进行切割的过程中容易出现吸附现象,如在加工的过程中,已经被切掉的碎屑很容易吸附在刀具的刀刃上,从而形成一种比较聚集的碎屑“瘤”,而这种现象一旦形成之后将会很大程度上影响刀刃的使用情况,废屑不能够及时的排出并且很大程度上影响到加工材料的粗糙程度。 此外,在进行加工的过程中铝合金材料十分容易发生变热反应,而一旦变热之后便十分容易变形,从而产生且切削震动的现象,这种不正常的现象将对加工过程的本身产生很大的影响。切削震动现象的发生不仅仅是会影响到加工完成之后的材料的质量,更会大大降低刀具本身和机床的使用效率和寿命。 2 夹具的设计的原则 2.1如何设计夹具 在进行夹具设计的过程中应满足以下几点要求:其加工的材料应具备足够的硬度,并且适当对其进行人工时效处理;在进行加紧处理时应注意其稳固程度;使用的过程要简洁方便;加工过程容易。并且受到铝合金材质的影响,在进行加工的环节中还应格外注意以下几点: ①受到其使用特点的影响,其夹紧力会施加在定位的面上,因此在此处的设计的过程中注重其坚硬程度;而对于接触面的大小设计来讲,不同的思考角度会产生不同的表现方式,若从稳定性的角度上来思考,则应将接触面设计的越小越好;而从夹紧力的角度上来考虑,则应将接触面设计的越大越好。这是因为此处的接触面在进行加工零件的过程中会产生受热变形的现象。 ②零件的装夹部位易产生变形是因为这部分容易受到压紧力的影响,压紧力的大小将直接导致其本身的使用情况。研究显示,在等同压紧力下,三点夹紧的形变为 1,六点夹紧的形变为 1/16,十二点夹紧的形变可忽略。可见,通过适当的增加压紧力施加点的方式来减少压紧力承受部位的压紧力,从而使之能够不易让施加点产生变形的情况。 ③在针对部分特殊的零件如壁薄和尺寸都要求较高的零件的加工过程中,可适当的通过添加辅助支撑的方式来减少压紧变形的情况。 2.2夹具的设计 据传统的设计方式进行设计,初始的设计图情况如下: 受到毛坯件的影响,及其定位孔的精度比较差,因此夹具采用 2 个浮动定位销,3 个辅助支撑、3 个支撑钉,并选用 3 个压紧点用气缸压紧。

(完整版)第八章地下洞室围岩稳定性分析

第八章地下洞室围岩稳定性分析 第一节概述 1.地下洞室(underground cavity): 指人工开挖或天然存在于岩土体中作为各种用途的构筑物。 2.我国古代的采矿巷道,埋深60m,距今约3000年左右(西周)。 目前,地下洞室的最大埋深已达2500m,跨度已过50m,同时还出现有群洞。 3.分类: 按作用分类:交通隧洞(道)、水工隧洞、矿山巷道、地下厂房仓库、地铁等等; 按内壁有无水压力:有压洞室和无压洞室; 按断面形状为:圆形、矩形或门洞形和马蹄形洞室等; 按洞轴线与水平面间的关系分为:水平洞室、竖井和倾斜洞室三类; 按介质,土洞和岩洞。 4.地下洞室→引发的岩体力学问题过程: 地下开挖→天然应力失衡,应力重分布→洞室围岩变形和破坏→洞室的稳定性问题→初砌支护:围岩压力、围岩抗力(有内压时) (洞室的稳定性问题主要研究围岩重分布应力与围岩强度间的相对关系) 第二节围岩重分布应力计算 1.围岩:指由于人工开挖使岩体的应力状态发生了变化,而这部分被改变了应力状态的岩体。 2.地下洞室围岩应力计算问题可归纳的三个方面: ①开挖前岩体天然应力状态(一次应力、初始应力和地应力)的确定; ②开挖后围岩重分布应力(二次应力)的计算; ③支护衬砌后围岩应力状态的改善。 3.围岩的重分布应力状态(二次应力状态): 指经开挖后岩体在无支护条件下,岩体经应力调整后的应力状态。

一、无压洞室围岩重分布应力计算 1.弹性围岩重分布应力 坚硬致密的块状岩体,当天然应力()c v h σσσ2 1 ≤ 、,地下洞室开挖后围岩将呈弹性变形状态。这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩重分布应力可用弹性力学方法计算。重点讨论圆形洞室。 (1)圆形洞室 深埋于弹性岩体中的水平圆形洞室,可以用柯西求解,看作平面应变问题处理。 无限大弹性薄板,沿X 方向的外力为P ,半径为R 0的小圆孔,如图8.1所示。 任取一点M (r ,θ)按平面问题处理,不计体力。则: ……………………① 式中Φ为应力函数,它是x 和y 的函数,也是r 和θ的函数。 边界条件: ()()()()()??? ? ?? ???===>>-=??? ??--=>>+=-++=====003103131R b 0)(2sin 22sin 2)(2cos 222cos 22b r r b r r b r r b r r R b p R b p p θθτσθθσστθθσσσσσ ………………② 设满足方程①的应力函数φ为: () θ2cos ln 222F Dr cr Br r A ++++=Φ- ………………………………③ 由③代入①,并由②可得: 2 R F ,4-D ,4-c ,4B ,2204020p pR p p pR A = ===-= ???? ???????Φ ?-?Φ?=?Φ?= ?Φ ?+?Φ?=θθτσθσθθr r r r r r r r r 22 2 22 221111 图 8.1柯西课题分析示意图

‘壳盖’薄壁铝合金件加工工艺

'壳盖’薄壁铝合金件加工工艺 壳盖”薄壁铝合金件加工工艺分析中国航空工业集团公司航宇救生装备有限公司(湖北襄阳441002)袁开波 “壳盖”零件是一个薄壁的铝合金零件,其形状及尺寸如图1所示.零件的主 要特点就是壁薄,由于是铝合金件,其强度差,加工时容易变形,要高效率加工合格的零件,加工过程中编制好工艺路线,做好准确的装夹与定位,就至关重要,同时要控制由于切削对零件产生的变形。 图1冗盖 注:未注圆角,凸R1.8mm凹R1mm未注壁厚0.8mm. 、工艺分析 考虑到此零件的内、外形均为圆环形状,其主要的加工方法为数车工序完成,数车工序为分别加工内、外形2个步骤。这里就要考虑加工完第一工序后,在进行第二工序加工时的装夹与定位问题。既要能准确装夹与定位,又要使第二工序的加工操作方便。在经过多次的工艺路线分析及相配合的夹具结构设计之后,确定了先加工内形面,并在其端面上制出装夹定位的位置,然后进行外形面的加工。 、工艺路线

在加工零件的内形面之后,“壳盖”需要安装在一种辅助夹具上,才能进行第 工序的加工,如图 2所示 (a)第一工序图(b)第二工序简图 图2 “壳盖”工艺路线简图 1. 第一工序的加工 “壳盖”在第一工序中要完成如图2(a)所示的加工内容,注意保持各个孔与M64X 0.75螺孔的同轴度。由于“壳盖”壁薄,偏心更易使“壳盖”产生变形。 2. 第二工序的加工 如图2(b)所示,型腔口部的M64X 0.75螺纹段位为装夹部分,用M64X0.75螺纹与辅助夹具进行定位与连接。其夹具的设计,如图2(b)所示。从图中可以看 出,辅助夹具的设计,其型面尺寸与零件的内形面是一致的,零件扣在夹具上,并通过M64X0.75螺纹拧紧,以保证零件内形面与夹具相贴合,这样,在加工外形面时,零件不会产生变形。 3. 安装在辅助夹具上“壳盖”切削时加紧状况的分析 零件在装夹后,车刀切削时,零件的状态是否会松动,可通过图3做一个装夹 及切削的状况分析 从图3(a)中,显示零件在装夹到夹具上时,是顺时针方向旋紧。从图3(b)中 4 一

铝合金薄壁异型件数控加工及工装

目录 摘要 (2) 关键词 (2) 一、件分析及设计任务书 (2) (一)铝合金薄壁异型件的分析 (2) (二)零件结构特点 (2) (三)零件的技术要求 (2) (四)零件的加工要求 (3) (五)数控加工特点 (3) 二、工规程的制定 (4) (一)生产类型及工艺特点 (4) (二)零件材料及毛坯 (4) (三) 定位基准选择 (5) (四)工艺路线的拟定 (5) (五)切削用量的选择 (5) (六)铣削功率的校验 (6) 三、专用夹具 (7) (一)夹具的主要作用及分类 (7) (二)被加工零件工序图 (7) 四、数控加工程序编程 (7) (一)A面程序加工 (8) (二)B面加工程序 (9) (三)、外侧面加工程序 (11) (五)、参考文献 (16)

摘要 在航空、航天等机载设备中,应用铝合金薄壁异形件是为了减轻重量,从而在运行过程中减轻阻力等其他干扰,以便节约能源。 本器件在数控机床上完成,设计过程中力求获得较高的强度、加工精度、可靠性,论文提出了强化处理与数控编程加工,从而让达到相应的目的。 在查阅相关资料的基础上,综合应用了各学科的知识,包括:《互换性与测量技术》、《机械制造工艺基础》、《机械制造基础》、《机械设计基础》、《数控加工编程与操作》。主要完成工作:铝合金薄壁异形件的分析,工艺规程的制定,专用夹具的选择,数控加工程序的编制。设计容如下: 零件分析及设计任务书 工艺规程的制定 专用夹具的选择 数控加工编程 关键词 数控加工加工精度加工工艺 铝合金薄壁异型件数控加工及工装 一、零件分析及设计任务书 (一)铝合金薄壁异型件的分析 铝合金薄壁异型件主要应用在航天航空等机载设备中,因此要求壁薄厚已达到减轻重量的目的。同时需要保证一定的强度、刚度,通过它将若干只微波器件按一定的相互位置装配在一起,按慰波设计要求,实现微波信号的发射与接收。因此该类零件的加工精度要求更高。 (二)零件的结构特点 铝合金薄壁异型件的种类很多,其尺寸、大小和结构形式随其用途的不同也有很大差异。一般来说铝合金薄壁异型件的主要结构特点是:有加工精度要求高的装孔;加工复杂形状怪异,没有明显的基准面薄厚而且不均匀;与一般钢件相比质地软切削后容易产生切削应力导致变形。 (三)零件的技术要求 (1)零件加工后要求保证T6状态

个人总结的铝合金压铸件结构设计方法

铝合金压铸件的结构设计经验 钢铁零件在含有磷酸溶液中进行化学处理,使钢铁表面生成一层难溶于水的保护膜的过程,叫做磷化处理! 它主要有以下特点: 1、磷化膜表面呈灰色或暗灰色。 2、磷化膜经填充、上油或涂漆处理,在大气条件下具有较好的抗腐蚀能力。 3、膜层的吸附能力强,常作为涂料的底层。 4、磷化膜具有较高的电绝缘性。 5、经磷化处理后,原金属的机械性能、强度、磁性等基本不变。 6、磷化膜有很好的润滑性能。 7、渗氮零件表面可以用磷化膜保护。 8、磷化膜的最大特点是能在钢铁的内表面及形状复杂的钢铁表面上获得保护膜。 9、膜层硬度和机械强度底,有一定的脆性。 钝化一般是指:为了提高镀锌层的防护性能和装饰性能,将镀件防入溶液中处理,使其表面形成一层化学稳定性较高的膜。经钝化处理后能提高镀锌层的防护性能和表面光泽。 氧化一般分为:铝、铝合金和钢铁零件的氧化,只是所能达到的目的和所使用的溶液不同 1。考虑壁厚的问题,厚度的差距过大会对填充带来影响——一般浇口部分的肉厚要大于零件的平均肉厚,目的是减少多铝液的压力损失。 7。再有就是注意选料了,是用ADC12还是A380等,要看具体的要求了——销往法国的铝压铸件,如果有FDA的要求,就不能用ADC-12,须用ADC-3T代替。 在模具方面,压铸模具一般是不允许靠破的。 再补充点 如果有字模具或雕刻内容。需要远离浇口,防止过早冲刷磨损。 对多出需要去毛边的零件,特别是内框型,需要加开一道五金冲裁模具冲毛边。 1。考虑壁厚的问题,厚度的差距过大会对填充带来影响 2。考虑脱模问题,这点在压铸实际中非常重要,现实中往往回出现这样的问题,这比注塑脱模讨厌多了,所以拔模斜度的设置和动定模脱模力的计算要注意些,一般拔模斜度为1到3度,通常考虑到脱模的顺利性,外拔模要比内拔模的斜度要小些,外拔模也就1度,而内拔模要2~3度左右 3。设计时考虑到模具设计的问题,如果有多个位置的抽心位,尽量的放两边,最好不要放在下位抽心,这样时间长了下抽心会容易出问题 4。有些压铸件外观可能会有特殊的要求,如喷油、喷粉等,这时就要时结构避开重要外观位置便于设置浇口溢流槽

隧道围岩及支护结构稳定性分析方法综述

隧道围岩及支护结构稳定性分析方法综述 伍华刚 (贵州省交通规划勘察设计研究院,贵州贵阳,550001) 摘 要:以隧道围岩与支护结构的相互关系为主要研究对象,以特长公路隧道围岩及支护结构稳定性分析方法为依托,对隧道掌子面所揭露围岩岩体、结构特征进行调查、记录,分析掌子面围岩等级,并与设计资料进行对比,对不同级别不同地质条件下的围岩与支护结构稳定性进行比较分析,总结围岩及支护结构稳定性分析的方法。 关键词:特长隧道;围岩;支护结构;稳定性分析中图分类号:U 452.1+2 文献标识码:A 文章编号:1004-6429(2010)04-0072-03 ●应用技术 收稿日期:2010-05-14 作者简介:伍华刚,男,1959年出生,1983年毕业于云南广播电视大学,工程师,550001,贵州省贵阳市云岩区中山东路69号山西科技SHANXI SCIENCE AND TECHNOLOGY 2010年第25卷第4期 随着深埋特长隧道的不断涌现,所遇到的问题也越来越多,现行的设计与施工规范已不能满足设计与施工要求,虽然国内外有关深埋特长隧道的研究成果不少,但由于深埋特长隧道地形、 地质条件复杂,设计制约因素多,并且常伴有断裂带、破碎带、 岩爆、突泥、涌水等地质灾害,给设计和施工带来了很大的盲目性。加上深埋特长隧道埋深大、隧道长、地质条件复杂,使地质勘察也不可能全面精确地探清每一段的具体情况,很多时候勘察结果与隧道施工中实际遇到的地质条件相差很远,漏掉的一些不良地质体给施工带来许多预想不到的困难。1 公路隧道围岩稳定性分析方法 隧道围岩的稳定性分析主要包括隧道的整体稳定性分析和局部块体的稳定性分析,分析方法大致可归纳为工程地质类比法、岩体结构分析法、岩体稳定性力学分析法和模拟试验法等,其中,模拟试验法包括物理模拟和数值模拟。1.1 工程地质类比法 根据拟建地下洞室的工程地质条件、岩体特性和监测资料,结合具有类似条件的已建工程,开展资料的综合分析和对比,从而判断工程区岩体的稳定性。由大量工程实例总结出来的各级围岩分类标准,如RQD 分类(Deer ,1969)、RMR 分类(Bieniawiski ,1973)、Q 系统分类(Barton ,1974)、Z 系统分类(谷德振,1979),以及我国的《工程岩体分级标准》(GB 50218—94)等,都是工程地质类比法在稳定性评价中的具体应用。这些围岩分类系统可以对不同类型围岩按定量地给出其围岩压力值及支护衬砌的形式和厚度,对于一般性工程隧道实现地下工程(结构)设计标准起到了重要的作用,也是地质工程工作者的基本方法之一。1.2 岩体结构分析法 在岩体结构及其特性研究的基础上,考虑工程力作用方向 以及结构面与开挖临空面之间的空间组合关系,借助于赤平极射投影分析法、实体比例投影分析法和块体坐标投影法进行图解分析,从而判断岩体的稳定性。1.3 力学分析法 从19世纪人类对松散地层(主要是土层)围岩稳定和围岩压力理论进行研究开始到现在,围岩压力理论主要经历了古典压力理论、散体压力理论及现在广泛应用的弹性力学理论、塑性力学理论。 实际工程中,隧道开挖后,由于卸荷作用使围岩应力进行重分布,并出现应力集中,如果围岩应力处处小于岩体弹性极限强度,这时围岩处于弹性状态。反之,围岩将部分进入塑性状态,但局部区域进入塑性状态并不意味着围岩将发生坍落或失稳。因而,研究围岩稳定就不能不考虑塑性问题,芬纳(Fenner )—塔罗勃(Talo-bre .J )和卡斯特奈(Kaster.H )等给出了围岩的弹塑性应力图形。1.4 数值计算方法 岩体不仅为一般材料,更重要的是本身就是一种复杂的地质结构体,它具有非均质、非连续、非线性以及复杂的加卸载条件和边界条件,这使得岩体力学的问题通常无法用解析法简单地求解,数值方法不仅能模拟岩体的复杂力学和结构特征,也可以方便地分析各种边值问题和施工过程,并对工程进行预测和预报,因此,数值分析方法是解决岩土体工程问题的有效工具之一。常用的数值方法有:有限元法(FEM )、有限差分法(FLAC ,FDM )、离散元法(DEM )反分析法、边界元法(BEM )、不连续变形分析法(DDA )、流形方法等,这些方法在地下洞室和边坡稳定等均有较多的应用,取得了较好的效果。1.5 模型试验 模型试验是隧道及地下工程研究中使用较多的一种方法,其理论基础是相似理论。模型试验具有直观、全面的优点,20世 纪80年代,国内许多学者作了大量的实验研究,谷兆琪教授等(1981)进行了层状砂岩地下洞室稳定性的研究,朱维中、冯光北等(1983,1984)研究了单排裂隙岩体模型的抗剪强度研究,杨淑 72··

‘壳盖’薄壁铝合金件加工工艺

“壳盖”薄壁铝合金件加工工艺分析 中国航空工业集团公司航宇救生装备有限公司(湖北襄阳441002) 袁开波 “壳盖”零件是一个薄壁的铝合金零件,其形状及尺寸如图1所示.零件的主要特点就是壁薄,由于是铝合金件,其强度差,加工时容易变形,要高效率加工合格的零件,加工过程中编制好工艺路线,做好准确的装夹与定位,就至关重要,同时要控制由于切削对零件产生的变形。 图1“壳盖” 注:未注圆角,凸R1.8mm,凹R1mm,未注壁厚0.8mm. 一、工艺分析 考虑到此零件的内、外形均为圆环形状,其主要的加工方法为数车工序完成,数车工序为分别加工内、外形2个步骤。这里就要考虑加工完第一工序后,在进行第二工序加工时的装夹与定位问题。既要能准确装夹与定位,又要使第二工序的加工操作方便。在经过多次的工艺路线分析及相配合的夹具结构设计之后,确定了先加工内形面,并在其端面上制出装夹定位的位置,然后进行外形面的加工。 二、工艺路线 在加工零件的内形面之后,“壳盖”需要安装在一种辅助夹具上,才能进行第二工序的加工,如图2所示。 (a)第一工序图(b) 第二工序简图

图2 “壳盖”工艺路线简图 1.第一工序的加工 “壳盖”在第一工序中要完成如图2(a)所示的加工内容,注意保持各个孔与M64×0.75螺孔的同轴度。由于“壳盖”壁薄,偏心更易使“壳盖”产生变形。 2. 第二工序的加工 如图2(b)所示,型腔口部的M64×0.75螺纹段位为装夹部分,用M64X0.75螺纹与辅助夹具进行定位与连接。其夹具的设计,如图2(b)所示。从图中可以看出,辅助夹具的设计,其型面尺寸与零件的内形面是一致的,零件扣在夹具上,并通过M64X0.75螺纹拧紧,以保证零件内形面与夹具相贴合,这样,在加工外形面时,零件不会产生变形。 3.安装在辅助夹具上“壳盖”切削时加紧状况的分析 零件在装夹后,车刀切削时,零件的状态是否会松动,可通过图3做一个装夹及切削的状况分析。 从图3(a)中,显示零件在装夹到夹具上时,是顺时针方向旋紧。从图3(b)中可以看出,当主轴旋转,车刀切削零件时。车刀作用到零件上切削力的方向是与车床的旋转方向相反的方向。即切削力也为顺时针方向,这就和零件装夹拧紧时力的方向一致。所以,在车刀切削零件时,零件不会松动,而且会贴的越紧密。 (a)“壳盖”装夹的旋转方向(b)车床主轴的旋转方向 图3 “壳盖”切削时的受力分析 通过上述零件加工的分析,若要保证零件加工后内、外形面的同轴度。就要确保零件在第二工序加工时,装夹后其轴线与车床旋转轴线保持一致。从辅助夹具的制作,到零件的装夹。可以看出,只要夹具制作完后,就不能松动夹具,此时装夹的零件和车床主轴的中心线才是完全一致的。也就是说,每加工一批次的零件,在零件加工到此工序时,就要配制一个夹具,这样才能保证零件加工后其内、外形面同轴度的要求。 三、控制加工参数来控制对零件产生的变形 1)合理的选择加工刀具控制变形。刀钝会使零件主切削抗力加大,零件轴向压力加大,造成零件变形。刀具切削刃太锋利,虽说有利于切削,但易加速刀具磨损,将零件拉向切削力的反方向,同样使零件变形。经实践粗加工时:刀具选用R形断屑槽,前角γo=20°~25° ,后角αo=6°~10° ;主偏角κr=91° ~93° ;负偏角κ'r=6° ~8° ;主要是减小刀具摩擦及振动。精加工时:前角γo=25°~30° ,后角ao=10°~12° ;主偏角κr=45°~90° ,负偏角κ'r=10°~15° ;主要是减小径向切削力,避免振动,并且加宽了主切削刃,从而减小了单位长度上的负荷,刀尖角大,散热快。刃倾角λs=5°~10° ,粗加工取小值,精加工取大值,用来弥补法向前角大而引起刀刃强度差的缺陷。

铝合金薄壁腔体零件加工工艺研究

铝合金薄壁腔体零件加工工艺研究 作者:周思吉唐昌维 来源:《电子世界》2013年第12期 【摘要】随着电子行业的发展,铝合金薄壁腔体零件应用日益广泛,该类零件具有重量轻、结构紧凑等优点,但该类零件一直存在加工周期长、加工成本高、加工精度难以控制等难点,原因是该类零件加工过程中金属去除量大、刚性低、强度弱,容易产生较大变形,加工后难以保证零件的加工精度和表面质量。本文从分析该类零件加工变形的原因入手,研究、探讨控制、减小铝合金薄壁腔体零件加工变形的工艺方法。 【关键词】铝合金薄壁腔体零件;铣削加工;加工精度;加工变形 1.引言 影响铝合金薄壁腔体零件的加工精度和表面质量的主要因素是该类零件加工过程中容易变形。解决铝合金薄壁腔体零件在加工过程中的变形问题,就能提高该类零件铣削加工的工作效率,提高零件的精度和质量,实现产品快速生产。 2.薄壁零件加工变形的原因 分析铝合金薄壁腔体零件的加工过程,该类零件一般由铝合金板整体加工而成,该类零件金属去除量大、刚性低,在加工过程中会因残余应力、装夹力、切削运动三方面因素引起变形。 2.1 残余应力 金属材料在形成过程中,金属晶体的排列不是理想状态的整齐排列,晶体的大小和形状不尽相同,存在原始的残余应力,随着时间缓慢释放,产生一定的形变。另外,金属切削过程中,切削的塑性变形和刀具与工件间的摩擦热,使已加工的表面和里层温差较大,产生较大的热应力,形成热应力塑性变形。 金属切削过程中产生的变形并不是单一的原因造成的,往往是几种原因组合作用的结构,而且这种组合作用在加工过程中不是一成不变的,随着加工进行的不断变化,究竟哪一种原因对变形的影响最大,很难进行判断,只能从引起变形的原因入手,采取相应的工艺方法,尽量减小加工变形。 2.2 装夹力 由于铝合金薄壁腔体零件的壁比较薄,无论采用台虎钳装夹还是卡盘装夹,都会产生横向或径向的装夹力,不可避免会产生装夹变形。装夹变形程度跟装夹力的大小有关,装夹力如果

钢结构稳定问题解析

钢结构稳定问题的综述 建筑与土木工程学院刘小伟学号:2111316139 摘要:总结了钢结构稳定问题的基本概念和类型,介绍了影响钢结构稳定的一些因素和稳定问题的计算方法、规范规定,并总结了钢结构稳定设计的设计原则和目前钢结构稳定问题研究中存在的问题特点。 关键词:钢结构稳定性原则类型 Abstract:Summarized the basic concept and type of stability problems of steel structure, introducing the standard calculation method.The influence of some factors and stability problems of steel structure stability of the regulation, and summarizing the design principle of stability design of steel structure and the present research of structure stability problems in steel. Keywords: Steel structure stability principle type 1、引言 随着我国钢铁工业的快速发展,又由于钢结构的诸多优点,所以这种被认为绿色环保型产品的钢结构,是建筑的发展方向。但由于钢比混凝土的抗压强度高20多倍,因此设计的承担相同受力功能的钢构件与混凝土构件相比,具有截面尺寸小、构件细长等特点,在对于受压、受弯等存在受压区的钢构件处理不当时,就很可能出现失稳现象。因此为了提高截面效率、充分发挥钢材的强度,钢结构一般做成

分析影响隧道围岩稳定性因素

分析影响隧道围岩稳定性因素 习小华 摘要:主要对影响隧道围岩稳定性的自然因素如岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水进行了详细的分析。 关键词:围岩稳定性;天然应力状态;地质构造 毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。 1 岩石性质及岩体的结构 围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。从围岩的完整性(围岩完整性可以用岩石质量指标RQD、节理组数J n、节理面粗糙程度J y、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SRF 八类因素进行定量分析) 角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩) 即围岩为完整或较完整,那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏,即使发生破坏,变形的量值也是较少的。这种情况下,围岩岩性对围岩的稳定性的影响是很微弱的,即一般是稳定的,可以不采取支护,能适应各种断面形状及尺寸的隧道。如果隧道围岩的整体性质差、强度低,节理裂隙发育或围岩破碎(如塑性围岩)即围岩为破碎、较破碎或极破碎,则围岩的二次应力会产生较大的塑性变形或破坏区域,同时节理裂隙间的岩层错动会使滑移变形增大,势必给围岩的稳定带来重大的影响,不利于隧道洞室稳定;软硬相间的岩体,由于其中软岩层强度低,有的因层间错动成为软弱围岩而对围岩的稳定性不利。 从岩体的结构角度,可将岩体结构划分为整体块状结构(整体结构和块状结构) 、层状结构(薄层状结构和厚层状结构) 、碎裂结构(构镶嵌结构和层状碎裂结构) 、散体结构(破碎结构和松散结构) 。松散结构及破碎结构岩体的稳定性最差;薄层状结构岩体次之;厚层状块体最好。对于脆性的厚层状和块状岩体,其强度主要受软弱结构面的分布特点和较弱夹层的物质成分所控制,结构面对围岩的影响,不仅取决于结构面的本身特征,还与结构面的组合关系及这种组合与临空面的交切关系密切相关。一般情况下,当结构面的倾角≤30°时,就会出现不利于围岩稳定的分离体,特别是当分离体的尺寸小于隧道洞跨径时,就有可能向洞内产生滑移,造成局部失稳;当倾角> 30°时,将不会出现不利于围岩稳定性的分离体。而软弱夹层对围岩稳定性的影响主要取决于它的性状和分布。一般认为软弱夹层的矿物成分、粗细颗粒含量、含水量、易溶盐和有机质等的含量是决定其性质的主要因素,对不同类型的软弱夹层,这些因素是不大相同的。由于软弱夹层的抗强度较低,故它不利与隧道围岩的稳定。 围岩岩体的变形和破坏的形式特点,不仅与岩体内的初始应力状态和隧道形状有关,而且还与围岩的岩性及岩体结构有关,但主要的是和围岩的岩性及结构有关(见表1) 。

结构稳定理论复习思考题

结构稳定理论复习思考题 1、平衡稳定性的三个基本准则是什么?根据这三个准则,求结构稳定临界荷载方法有哪些?求解临界荷载是在结 构原来的位图上求解还是在变形后位图上求解? 答:三个基本准则:静力准则、能量准则、动力准则。 求临界荷载方法:静力平衡法、能量方法、动力方法。 必须采用结构产生变形后的计算图形来建立平衡方程和其总势能表达式。P11 2、结构稳定问题有哪些类型? 答:稳定问题根据荷载-位移和荷载-变形曲线不同分为两类: 1)第一类稳定问题,具有平衡分枝点的稳定问题。 属于这类稳定问题的有:轴压杆的弯曲屈曲、轴压杆和压弯杆件的弯扭屈曲、在腹板平面内受荷的梁的侧扭屈曲以及在板平面内受轴压荷载和剪切荷载的薄板的弯曲屈曲等。 在临界荷载Pcr以前,属稳定平衡;在临界荷载Pcr以后,进入不平衡状态。 2)第二类稳定问题,无平衡分枝的稳定问题。 属于这类稳定问题的有:压弯杆件在弯矩作用平面内的稳定。 上升段是稳定的,下降段是不稳定的,转折点即不稳定平衡的临界状态,用极限荷载Pn表示。 3)跌越失稳 3、结构稳定问题与结构强度问题的有何区别? 答:1)强度问题,是指结构或单个构件在稳定平衡状态下由荷载所引起的最大应力(或内力)是否超过建筑材料的极限强度,因此是一个应力问题。 2)稳定问题,主要是要找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,因此,它是一个变形问题。 3)强度问题可以采用一阶或二阶分析结构内力,而稳定问题必然是二阶分析,其外荷载与变形间呈非线性关系,叠加原理不能应用。 4、理想轴压杆小挠度理论和大挠度理论有哪些不同?根据你的理解,理想轴压杆大挠度理论最适合用于分析夏志 斌教授《结构稳定理论》书中P29图1-5中哪个阶段的轴压杆的力学行为? 答:从P/P E-δ/l关系曲线分析不同点: 1)大挠度理论,在P/P E>1,时,与小挠度理论的差别是能得到相应于屈曲后强度的曲线; 2)小挠度理论的分枝荷载代表了由稳定平衡到不稳定平衡的分枝点,而大挠度理论的分枝荷载则是由直线稳定平衡状态到曲线稳定平衡状态的分枝点。 3)大挠度理论,荷载较临界荷载略有增加,就将导致较大的挠度,在挠度很小的范围内,小挠度理论代替大挠度理论完全可行。 4)在弹性工作阶段,一般都可采用小挠度理论。 AB段?B-C? 5、初弯曲、初偏心以及残余应力对压杆稳定承载力有哪些影响? 答:1)初始缺陷(几何缺陷、荷载缺陷)将降低柱的承载能力,缺陷越大,荷载降低得越多。受荷初期,挠度增长较慢,当P P E时,挠度显著增加。欧拉荷载是实际压杆承载力的一个上限。 2)初弯曲和初偏心两个缺陷对柱子稳定性产生的影响相似,可以用其中一个缺陷来模拟两个缺陷都存在的实际压杆。 3)残余应力降低比例极限,使柱子提前出线弹塑性屈曲,并降低了临界荷载或临界应力。 6、结构稳定计算方法中能量方法是精确方法吗?为什么能量方法得出的结果往往是近似的? 答:是精确方法。P69 1)变形连续体是由无数个介质点所组成,基于能量方法的近似解法用有限个自由度的体系来代替。 2)预先假定的位移函数与真是的位移函数存在一定的误差,带来计算的近似性。 7、结构稳定分析有限元法与结构静力分析有限元法有哪些区别? 答:(1)稳定问题有限元法中轴向力对单元刚度有影响,而静力问题有限元则忽略轴向力对刚度的影响;(2)求pcr 时,在稳定问题有限元法中,初应力对其有影响,而在静力问题有限元中不考虑。稳定问题有限元法中的单元刚度矩阵由两部分组成(1)普通受弯杆单元的刚度矩阵,与杆件截面特性相关,与轴力P无关,(2)轴向荷载对刚度的影响当轴力P为压力时,将减小杆件的刚度,当为拉力时,将增加杆件的刚度,它与截面的特性无关,称为初应力刚度或几何刚度矩阵。静力问题有限元中的单元刚度只由第一部分组成,不受轴向荷载的影响。

大型复杂薄壁铝合金铸件真空增压铸造特性研究_孙昌建

?? 在空中高速飞行气动载荷作用下,或在水中水压载荷作用下工作的承压舱体(如飞机、导弹、鱼雷或潜水器的密封舱体),通常受轴向和径向流体分布载荷的联合作用,且载荷大多随工作时间或运动状态而变化。因此,该复杂环境条件下的承压舱体结构件必须满足两项基本要求:高的耐压性与良好的密封性(不漏气或不渗水);同时追求最小的结构重量。在满足承载能力的前提下,为采用轻质高强度有色金属材料而获得重量轻的舱体,耐压舱壳体一般采用薄壁加筋增强结构。迄今,铝合金是薄壁耐压舱体的首选材料,其次是镁合金和钛合金[1-2]。 对那些形状复杂(曲线型面、变壁厚、多筋多凸台等)、大型、加工难度大,要求高承压能力的耐压结构件,从尽量减少毛坯切削加工量、缩短制造周期、降低成本等目的出发,国外都优先使用压力铸造、挤压铸造和熔模铸造等技术生产的精密铸件。如美国AGM-89B巡航导弹弹体采用9个大型整体铝合金铸件 代替44个机加工零件,节省工时75%、降低费用30%、减重10%等[3]。采用真空增压铸造技术实现铸件薄壁化浇注,可使铸件晶粒细化,致密度提升,组织及性能均得到明显改善[4]。目前真空增压铸造技术已成功应用于航空、航天、兵器、船舶类铝合金薄壁铸件的工程化生产,不仅获得十分优异的铸件冶金品质而且实现传统铸造技术难以企及的铸件合格率,真空增压铸造技术已经成为大型复杂薄壁铸件铸造的重要手段。笔者针对真空增压铸造技术进行了原理、充型性能和铸件性能的研究,着重分析了真空增压铸造提高大型复杂薄壁铝合金铸件致密度、针孔度级别和力学性能等,并将真空增压铸造件与其他不同工艺的铸件在致密度、针孔度级别和力学性能等进行对比分析。 1真空增压铸造技术原理及其特性 真空增压铸造技术是将“真空浇注”和“加压凝 收稿日期:2008-01-18。 作者简介:孙昌建( 1966-),男,四川宜宾人,高级工程师,研究方向为铝合金的铸造成型技术。E-mail:shudayu1980@163.com孙昌建,舒大禹,王元庆,苏志权,赵祖德 (中国兵器工业第五十九研究所,重庆400039) 摘要:论述了真空增压铸造技术原理,研究了真空增压铸造技术生产大型复杂薄壁铝合金铸件,结果表明,铸件充型 完整,无冷隔和浇不足等缺陷;该方法与传统的重力铸造和真空铸造相比,具有提高合金充型能力、改善铸件致密度 和针孔度级别的工艺特性和优点,铸件的强度提高20% ̄30%,伸长率高出近1倍。真空增压铸造技术适合于质量要求高、复杂程度要求高的铝合金铸件,尤其适合大型复杂薄壁铝合金铸件。 关键词:真空增压铸造技术;大型复杂薄壁铝合金铸件;致密度;针孔度中图分类号:TG249.2文献标识码:A文章编号:1001-4977(2008)05-0442-04 SUNChang-jian,SHUDa-yu,WANGYuan-qing,SUZhi-quan,ZHAOZu-de(No.59InstituteofChinaOrdnanceIndustry,Chongqing400039,China) Abstract:Theprincipleofvacuumpressurizingcastingtechniqueispresented,andthelarge-scale complicatedandthin-wallAlalloycomponentsaremanufacturedbythetechnique.Theresultsshowedthatthecomponentshaveperfectfillingeffectandnosuchdefectsascoldshotandmisrun,ect.Comparedwithtraditionalgravitycastingandvacuumcasting,vacuumpressurizingcastingtechniquecanincreasethefillingcapacityofthealloyandimprovethegradeofpinholedegreeandthedensityofcastings.Also,itcanraisestrengthofthecastingbyabout20%to30%andelongationpercentagebyaboutdouble.ThereforethetechniqueissuitableformanufacturingAlalloycastingswithhighqualityandhighcomplexityrequirements,especiallyforlarge-scalecomplicated&thin-walledAlalloycastings. Keywords:vacuumpressurizingcastingtechnique;large-scalecomplicated&thin-walledAl-alloy casting;density;degreeofpinhole大型复杂薄壁铝合金铸件真空增压铸造特性研究 VacuumPressurizingCastingTechniqueforLarge-Scale ComplicatedandThin-WallAl-AlloyComponents May2008Vol.57 No.5 铸 造FOUNDRY 442

第五节 壳体的稳定性分析

第五节 壳体的稳定性分析 3.5 壳体的稳定性分析 3.5.1 概述 3.5.2 外压薄壁圆柱壳弹性失稳分析 3.5.3 其他回转薄壳的临界压力 3.5.1 概述 1、外压容器举例 (1)真空操作容器、减压精馏塔的外壳 (2)用于加热或冷却的夹套容器的内层壳体 2、承受外压壳体失效形式: (1)强度不足而发生压缩屈服失效 (2)刚度不足而发生失稳破坏(讨论重点) 3、失稳现象: 定义: 承受外压载荷的壳体,当外压载荷增大到某一值时,壳体会突然失去原来的形状,被压扁或出现波纹,载荷卸去后,壳体不能恢复原状,这种现象称为外压壳体的屈曲(b u c k l i n g )或失稳(i n s t a b i l i t y )。 实质: 从一种平衡状态跃到另一种平衡状态;应力从压应力变为弯应力。 现象: 横断面由圆变为波浪形,见表2-5 4、失稳类型: (1)弹性失稳:t 与D 比很小的薄壁回转壳,失稳时,器壁的压缩应力通常低于材 料的比例极限,称为弹性失稳。 (2)弹塑性失稳(非弹性失稳):当回转壳体厚度增大时,壳体中的压应力超过材料 屈服点才发生失稳,这种失稳称为弹塑性失稳或非弹性失稳。 本节讨论:受周向均匀外压薄壁回转壳体的弹性失稳问题 二、临界压力 p a b c

1、临界压力 壳体失稳时所承受的相应压力,称为临界压力,用p c r 表示。 2、失稳现象 外载荷达到某一临界值,发生径向挠曲,并迅速增加,沿周向出现压扁或波纹。 见表2-5 3、影响p c r 的因素: 对于给定外直径D o 和厚度,t p c r 与圆柱壳端部约束之间距离和圆柱壳上两个刚性元件之间距离L 有关;p c r 随着壳体材料的弹性模量E 、泊松比μ的增大而增加;非弹性失稳的p c r 还与材料的屈服点有关。 注意: 外压容器失稳的根本原因是由于壳体刚度不足,并不是由于壳体存在椭圆度或材料不均匀所致。即椭圆度和材料不均匀对失稳的性质无影响,只影响使p c r ↓。 3.5.2 外压薄壁圆柱壳弹性失稳分析 目的:求cr p 、cr σ、cr L 理论: 理想圆柱壳小挠度理论 假设: ①圆柱壳厚度t 与半径D 相比是小量,位移w 与厚度t 相比是小量(t D ↓↓, w t ↓↓) ②失稳时圆柱壳体的应力仍处于弹性范围。 线性平衡方程和挠曲微分方程; 该理论的局限 (1)壳体失稳的本质是几何非线性的问题; (2)经历成型、焊接、焊后热处理的实际圆筒,存在各种初始缺陷,如几何形状偏 差、材料性能不均匀等; (3)受载不可能完全对称。 因此,小挠度线性分析会与实验结果不吻合。在工程中,在采用小挠度理论分析基础上,引进稳定性安全系数 m ,限定外压壳体安全运行的载荷。 外压圆筒分成三类: (1)长圆筒:L /D o 和D o /t 较大时,其中间部分将不受两端约束或刚性构件的支承 作用,壳体刚性较差,失稳时呈现两个波纹,n =2。 (2)短圆筒:L /D o 和D o /t 较小时,壳体两端的约束或刚性构件对圆柱壳的支持作 用较为明显,壳体刚性较大,失稳时呈现两个以上波纹,n >2。 (3)刚性圆筒:L /D o 和D o /t 很小时,壳体的刚性很大,此时圆柱壳体的失效形式 已经不是失稳,而是压缩强度破坏。 一、受均布周向外压的长圆筒的临界压力 思路:通过推导圆环临界压力,变换周向抗弯刚度,即可倒出长圆筒cr p 的: 1、圆环的挠曲微分方程(模型见2-39)

相关主题
文本预览
相关文档 最新文档