当前位置:文档之家› 产生甲烷的菌种分类

产生甲烷的菌种分类

产生甲烷的菌种分类
产生甲烷的菌种分类

甲烷嗜热菌属拉丁学名(Methanothermus Stetter,1982)直杆到微弯,宽度0.3~0.4μm,长度为1~3 μm。细胞壁含假胞壁酸及S-外层。不产芽孢。革兰氏染色阳性。有运动的迹象,尽管电镜下未看到鞭毛。极端严格厌氧。最适生长出现在83~88℃和pH6.5。自养生长,转化H2+CO2为CH4;不利用乙酸、甲酸、甲基胺和甲醇。氨可作为氮源,硫化物或元素硫可作为硫源。可能生活在高温含硫酸盐的地带。DNA的G+C mol%是33。模式种:炽热甲烷嗜热菌(Methanothermus fervidus)。

甲烷八叠球菌属

甲烷八叠球菌属拉丁学名(Methanosarcina Kluyver and van Niel,1936)不规则的球状聚集体,直径1~1000μm,单生或典型的细胞聚集体。典型的小聚集体为八叠状(“假八叠状”),除了那些分裂平面不是垂直的。有时聚集体为大的胞囊,具有一个共同的外壁而包裹单独的球状细胞。不产生芽孢,革兰氏染色可变。单个的球形细胞可能对去污剂裂解或高渗敏感。不运动。极端严格厌氧。最适NaCl浓度0.1~0.5 mol /L,中温菌的最适温度为30~40℃,嗜热菌的最适温度为50~55℃。通常不要求有机生长因子。能量代谢表现为甲基胺或甲醇歧化为CH4和CO2和NH3(当利用甲基胺时)。当生长于H2时,甲醇和甲基胺被还原为CH4。其他的代谢底物还有H2+CO2或乙酸,但从不利用甲酸。氨、甲基胺和N2作为惟一氮源,硫化物和元素硫可作为硫源。可在缺氧的海水沉积物、湖水沉积物或厌氧消化器中分离到。DNA的G+C mol%是36~43(Tm)。模式种:巴氏甲烷八叠球菌(Methanosarcina barkeri)。

甲烷球菌属

甲烷球菌属拉丁学名(Methanococcus Kluyer and vam Niel,1936)不规则球形,直径l~2μm。不产芽孢。革兰氏染色阴性。对去污剂裂解或高渗敏感。不运动。极端严格厌氧。最适NaCl浓度是0.1~0.8 mol/L,中温(最适温度35~40℃)、嗜热(最适温度65℃ )、或极端嗜热(最适温度85~91℃)。H2+CO2及通常甲酸盐是CH4产生的底物;不利用乙酸和甲基胺。氨、有时N2或丙氨酸作为氮源,硫化物或元素硫可作为硫源。可能生活在盐沼泽、海水及海湾环境中。DNA的G+Cmol%是29~34。模式种:万氏甲烷球菌(Methanococcus vannielii)。

甲烷螺菌属拉丁学名(Methanospirillum Ferry et al.,1974)对称弯曲的杆菌,并形成a-螺旋,宽度0.4~0.5μm,长7~10μm,单生或成链长度可达几百μm。细胞由鞘保被。不产芽孢。革兰氏染色阴性。运动,生有成簇的极生鞭毛。极端严格厌氧。最适生长温度35~40℃,最适pH 7~7.5。有些菌株要求半胱氨酸和乙酸,乙酸和维生素促进生长。能量来源于转化H2+CO2、甲酸或有时二元醇+CO2为CH4。不利用乙酸、甲基胺、甲醇和其他醇类。氨或N2作为惟一氮源,硫化物作为硫源。可在牛的瘤胃或厌氧消化器中分离到。DNA的G+C mol%是46.5~49.5。模式种(惟一种):亨氏甲烷螺菌(Methanospirllum hungatei)。

甲烷细菌

甲烷细菌,英文名:methane bacteria,是一类能够经过发酵产生可燃性气体甲烷的厌氧性细菌。已知产甲烷细菌约有10多种,主要有产甲烷杆菌、甲烷八叠球菌、产甲烷螺菌和瘤胃甲烷杆菌等。这类细菌常见于沼泽、池溏污泥中,在食草动物的盲肠、瘤胃中也有大量的产甲烷细菌,常随粪便排出,所以在沼气池中可用塘泥和牲畜粪便接种。我国农村不少地区已建起了许多小型沼气池,利用沼气做饭、照明,既解决了燃料困难,又减少了环境污染。

分类转化

分布在污泥、泥沼和哺乳动物消化道等的代谢产物为甲烷(甲烷发酵)的细菌。马氏甲烷球菌(Methanococcus)、甲烷甲烷八叠球菌(Me thano-sarcina)、反刍甲烷杆菌(Methanobacterium)等都是不生孢子的专性厌氧细菌。在核蛋白体RNA碱顺序、细胞壁成分及脂质种类方面与一般细菌有不同处。它们能按下式过程直接由氢还原二氧化碳生成甲烷:CO2+4H2→CH4+2H2O它们也能利用甲酸、甲醇和乙酸等。利用乙酸的反应过程是:CH3COOH→CH4+CO2。生成甲烷的反应系统可从菌体抽提液中获得,并已逐步查明酶系统的性质,表明有二、三种辅酶参与反应。

基本特性

1.是专性严格厌氧菌

甲烷细菌都是专性严格厌氧菌,对氧非常敏感,遇氧后会立即受到抑制,不能生长、繁殖,有的还会死亡。

2.生长繁殖特别缓慢

甲烷细菌生长很缓慢,在人工培养条件下需经过十几天甚至几十天才能长出菌落。据麦卡蒂(McCarty)介绍,有的甲烷细菌需要培养七八十天才能长出菌落,在自然条件下甚至更长。菌落也相当小,特别是甲烷八叠球菌菌落更小,如果不仔细观察很容易遗漏。菌落一般圆形、透明、边缘整齐,在荧光显微镜下发出强的荧光。甲烷细菌生长缓慢的原因,是它可利用的底物很少,只能利用很简单的物质,如CO2、H2、甲酸、乙酸和甲基胺等。这些简单物质必须由其它发酵性细菌,把复杂有机物分解后提供给甲烷细菌,所以甲烷细菌一定要等到其它细菌都大量生长后才能生长。同时甲烷细菌世代时间也长,有的细菌20分钟繁殖一代,甲烷细菌需几天乃至几十天才能繁殖一代。

3.都是原核生物

能形成甲烷的细菌都是原核生物,目前尚未发现真核生物能形成甲烷。甲烷细菌有球形、杆形、螺旋形,有的呈八叠球状,还有的能联成长链状。

4.培养分离比较困难

因为甲烷细菌要求严格厌氧条件,一般培养方法很难达到厌氧,培养分离往往失败。又因为甲烷细菌和伴生菌生活在一起,菌体大小形态都十分相似,在一般光学显微镜下不好判明。美国著名微生物学家——Hungate 50年代培养分离甲烷细菌获得成功。以后世界上有很多研究者对甲烷细菌进行了培养分离工作,并对Hungate分离方法进行了改良,能很容易地把甲烷细菌培养分离出来

储存功能

甲烷细菌在自然界中分布极为广泛,在与氧气隔绝的环境都有甲烷细菌生长,海底沉积物,河湖淤泥,沼泽地,水稻田以及人和动物的肠道,反刍动物瘤胃,甚至在植物体内都有甲烷细菌存在。

沼气发酵液中甲烷细菌的数量可用MPN法计数,测定接种的试管中有无甲烷存在,作为计数的数量指标。甲烷细菌数量与甲烷含量成正比,发酵装置运行越好,甲

烷细菌数量越多。1991年计数了东北制药总厂用UASB(上流式厌氧污泥床)处理制药废水消化液中甲烷细菌数量为4.2×105个·ml-1。

另一方面产甲烷细菌利用乙酸、氢和二氧化碳合成甲烷,也消耗了酸和二氧化碳,甲烷细菌及其伴生菌共同作用使pH稳定在一个适宜范围内,不会使发酵液中的pH 出现对沼气发酵不利的情况。但当发酵条件控制不好,如温度,进料负荷,原料中的C:N、pH等可能会出现酸化或液料过碱;前者较为多见,这样会严重影响甲烷细菌的活动,甚至使发酵中断。

自然界中的甲烷细菌在同物质的交换过程中可以保存电荷。在微弱电流的影响下,细菌释放出甲烷小气泡,在这些气泡中含有一定数量的电子。布鲁斯和他的同事们发现,如果把细菌的一层接到负极上,就会产生弱小电压,否则他们就被小甲烷气泡所遮掩住。

随着甲烷细菌的不断进化,它学会了依靠甲烷内的其他物质来储存电能。而且用这种方式储存的电能在放电时能效很高,一般能达到80%。与之相比,人类发明的所有电力储存装置都相形见绌,因为在人类制造的装置中,大部分能量或被用于克服阻力,或被消耗于燃烧次生电子的化学反应中(甲烷细菌能抑制电能的生物燃烧)。

甲烷细菌储电引领人类已经走向了电能储存的新道路。虽然比起现在的碳捕获与封存技术,这项技术不能算作一种与温室效应抗争的好方法,但它能很好地利用甲烷气体的排放,对保护环境也有一定的好处。更重要的是,它能够大量储存太阳能,风能,水能等可再生能源。

然而,现在这项技术还不够成熟,为了将新技术运用到商业目的,专家们还需要详细研究甲烷燃烧时二氧化碳排放的过程,因为这直接影响了细菌蓄电的能力,同时还需要了解二氧化碳转化为电能的换算方法,和最终能以甲烷细菌形式储存电能的细菌数量。只有对细菌有了足够的了解,才能研发出减少耗能的蓄电装置。

乳酸菌菌种的分离筛选方法

乳酸菌菌种的分离筛选方法乳酸细菌是一类能利用发酵糖产生大量乳酸的细菌通称。为兼性厌氧菌,杆状或球状,革兰氏阳性菌,无芽孢,不运动。营养要求高,需要提供丰富的肽类氨基酸维生素。在琼脂表面或内层形成较小的白色或淡黄色的菌落。 通常用作为有益微生物的菌种有乳酸乳杆菌、干酪乳杆菌、植物乳杆菌、嗜酸乳杆菌、粪肠球菌、乳酸片球菌、双歧杆菌、屎肠球菌、戊糖片球菌等。 乳杆菌常用MRS琼脂作半选择培养基。当乳杆菌仅是复杂区系中的部分菌类 时,SL培养基常用作为选择性培养基。对于芽孢乳杆菌常用GYP培养基,链球菌有TYC培养基、MS培养基。M17培养基被用作乳球菌的分离培养基。 嗜酸乳杆菌属于乳杆菌属的一个种。其特性为:杆菌,两端圆,不运动,无 鞭毛。粪肠球菌为革兰氏阳性,圆形或椭圆形。 乳酸片球菌细胞呈球状,直径0.6~1.0μm,在直角两个平面交替形成四联状,一般细胞成对生,单生者罕见,不成链状排列。革兰氏阳性,不运动,兼性厌氧。在MRS培养基上菌落小,呈白色。沿洋菜穿刺线的生长物呈丝状。 乳酸菌在一般琼脂培养基上形成微小菌落,不易观察,所以分离时先富集培养并选择合适的培养基。分离培养基一般添加西红柿、酵母膏、吐温-80等物质,也常常加入醋酸盐,因醋酸盐能抑制部分细菌生长,对乳酸菌无害。 培养基中添加碳酸钙,乳酸溶解培养基中的碳酸钙形成透明圈,作为分离鉴别的依据,通过对生成的乳酸量进行性能鉴定。 乳酸菌生长繁殖时需要多种氨基酸,维生素及微氧,一般菌落比较小。分离培养基一般可添加西红柿酵母膏油酸吐温等物质,均具有促进生长作用。也常常添加醋酸盐抑制有些细菌的生长,对乳酸菌无害。 一.筛选方法: 1.溶钙圈法: 利用一些产酸类细菌在含CaCO3的培养基上产生CaCO3溶解圈,从而筛选出这些产酸类细菌,可用于乳酸菌的筛选。 其中培养基中加入CaCO3的作用是:①鉴别能产生酸的细菌;②中和产生的酸,以维持培养基的PH。 筛选过程:样品预处理→梯度稀释至10-6→选择合适的稀释度涂布→37℃培养

产甲烷菌在厌氧消化中的应用研究进展_林代炎

L IN Dai 2yan 1 , L IN Xin 2jian 2 , YAN G Jing 1 , YE Mei 2feng 1 世纪 70年代中期 ,产甲烷菌只有 1个科 (甲烷杆 菌科) ,分 3个属、9个种。随着研究手段的发展 以及人们对产甲烷菌的关注 ,据杨秀山等 1991年 报道 ,美国奥斯冈 ( Orego n)产甲烷菌保藏中心 当时收藏的产甲烷菌有 215株分属于 3目、6科、 55种 ,可能是当时最完备的目录 [ 3 ]。从系统发育 来看 ,到目前为止 ,产甲烷菌分成 5个目 ,分别为 关系 ,望能为产甲烷菌在污水处理工程中发挥更大 1 产甲烷菌研究历史 RNA 的同源性进行分类取得了较为满意的结果 ; 福建农业学报 23 (1) :106~110 ,2008 Fu j i an J ou rnal of A g ricult u ral S ciences 文章编号 : 1008 - 0384 ( 2008) 01 - 0106 - 05 产甲烷菌在厌氧消化中的应用研究进展 林代炎1 ,林新坚2 ,杨 菁1 ,叶美锋1 (1.福建省农业科学院农业工程技术研究所 ,福建 福州 350003 ; 2.福建省农业科学院土壤肥料研究所 ,福建 福州 350013) 摘 要 :简述了产甲烷菌研究史 ,分析了厌氧消化领域研究进展以及产甲烷菌代谢机理和生理生化特征的关系。 关键词 :厌氧消化 ;产甲烷菌 ;厌氧反应器 中图分类号 : X 703 文献标识码 : A Advance in utilization of methanobacteria f or anaerobic digestion studies ( 1 . A ricult ural En gi neeri n g I nstit ute , Fuj i an A ca dem y of A g ricult u ral S ciences , Fuz hou , Fu j i an 350003 , Chi na; 2 . S oi l an d Ferti li z er I nstit ute , Fu j i an A ca dem y of A g ricult ural S ciences , Fuz hou , Fu j i an 350013 , Chi na) so analyzes t he relatio nship between t he research develop ment in anaerobic digestio n and t he metabolic mechanism and t he p hysiological and biochemical characteristics of met hanobacteria. Key words : anaerobic digestion ; met hanogens bacteria ; anaerobic reactor 随着人们认识到厌氧发酵技术在污水处理及生制 , 1950年 , Hungate 创造了无氧分离技术才使产 产沼气能源等方面的突出优势 ,对产甲烷菌在厌氧甲烷菌的研究得到了迅速的发展 [ 1 - 2 ]。由于产甲烷 消化中的研究也越来越重视。厌氧发酵是极为复杂菌是严格的厌氧菌 ,对其研究需要较高的技术手 的生物过程 ,在参与反应的众多微生物中 ,产甲烷段 ,据《伯杰细菌鉴定手册》第 8版记载 ,到 20 菌的优劣、密度以及它的生长环境条件是影响厌氧 消化效率和甲烷产量的重要因素 ,因此 ,对产甲烷 菌的代谢机理及生理生化特征 ,以及在厌氧消化过 程中为产甲烷菌创造有利环境条件方面的研究成为 该领域的重点。本文简述了产甲烷菌的研究历史 , 并分析了厌氧消化系统应用领域研究的快速发展与 产甲烷菌代谢机理、生理生化特征研究进展的密切 甲烷杆菌目 ( M et hanohacteri ales )、甲烷球菌目 作用提供参考。 s arci nales )、甲烷微菌目 ( M et hanom icrobi ales ) 和甲烷超高温菌目 ( M et hano p y rales ) [ 4 ] ,分离鉴 产甲烷菌的研究开始于 1899年 ,当时俄国的 定的产甲烷菌已有 200多种 [ 5 ]。 微生物学家奥姆良斯基将厌氧分解纤维素的微生物 在产甲烷菌分类方面 ,随着分子生物学的发 分为两类 ,一类是产氢的细菌 ,后来称为产氢、产 乙酸菌 ,另一类是产甲烷菌 ,后来称奥氏甲烷杆菌 ( M et hanobaci l l us omel aus ki i )。由于研究条件的限 1996年伊利诺伊大学完成了第 1个产甲烷菌 收稿日期 : 2007 - 07 - 26初稿 ; 2007 - 12 - 21修改稿 基金项目 :福建省环保专项基金 (1576) ;福建省财政专项 ( STIF - Y01)

产甲烷菌有何特点

产甲烷菌有何特点? 甲烷菌的特点是:一、生长非常缓慢,如甲烷八叠球菌在乙酸上生长时其倍增时间为1至2天,甲烷菌丝倍增时间为4至9天;二、严格厌氧,对氧气和氧化剂非常敏感,在有空气的条件下就不能生存或死亡;三、只能利用少数简单的化合物作为营养;四、它们要求在中性偏碱和适宜温度环境条件;五、代谢活动主要终产物是甲烷和二氧化碳为主要成分的沼气。 甲烷菌 1.是专性严格厌氧菌 甲烷细菌都是专性严格厌氧菌,对氧非常敏感,遇氧后会立即受到抑制,不能生长、繁殖,有的还会死亡。 2.生长繁殖特别缓慢 甲烷细菌生长很缓慢,在人工培养条件下需经过十几天甚至几十天才能长出菌落。据麦卡蒂(McCarty)介绍,有的甲烷细菌需要培养七八十天才能长出菌落,在自然条件下甚至更长。菌落也相当小,特别是甲烷八叠球菌菌落更小,如果不仔细观察很容易遗漏。菌落一般圆形、透明、边缘整齐,在荧光显微镜下发出强的荧光。甲烷细菌生长缓慢的原因,是它可利用的底物很少,只能利用很简单的物质,如CO2、H2、甲酸、乙酸和甲基胺等。这些简单物质必须由其它发酵性细菌,把复杂有机物分解后提供给甲烷细菌,所以甲烷细菌一定要等到其它细菌都大量生长后才能生长。同时甲烷细菌世代时间也长,有的细菌20分钟繁殖一代,甲烷细菌需几天乃至几十天才能繁殖一代。 3.都是原核生物 能形成甲烷的细菌都是原核生物,目前尚未发现真核生物能形成甲烷。甲烷细菌有球形、杆形、螺旋形,有的呈八叠球状,还有的能联成长链状。 4.培养分离比较困难 因为甲烷细菌要求严格厌氧条件,一般培养方法很难达到厌氧,培养分离往往失败。又因为甲烷细菌和伴生菌生活在一起,菌体大小形态都十分相似,在一般光学显微镜下不好判明。美国著名微生物学家——Hungate 50年代培养分离甲烷细菌获得成功。以后世界上有很多研究者对甲烷细菌进行了培养分离工作,并对Hungate分离方法进行了改良,能很容易地把甲烷细菌培养分离出来。 甲烷细菌在自然界中分布极为广泛,在与氧气隔绝的环境都有甲烷细菌生长,海底沉积物,河湖淤泥,沼泽地,水稻田以及人和动物的肠道,反刍动物瘤胃,甚至在植物体内都有甲烷细菌存在。 沼气发酵液中甲烷细菌的数量可用MPN法计数,测定接种的试管中有无甲烷存在,作为计数的数量指标。甲烷细菌数量与甲烷含量成正比,发酵装置运行越好,甲烷细菌数量越多。作者曾于1991年计数了东北制药总厂用UASB(上流式厌氧污泥床)处理制药废水消化液中甲烷细菌数量为4.2×105个·ml-1。 另一方面产甲烷细菌利用乙酸、氢和二氧化碳合成甲烷,也消耗了酸和二氧化碳,甲烷细菌及其伴生菌共同作用使pH稳定在一个适宜范围内,不会使发酵液中的pH出现对沼气发酵不利的情况。但当发酵条件控制不好,如温度,进料负荷,原料中的C:N、pH等可能会出现酸化或液料过碱;前者较为多见,这样会严重影响甲烷细菌的活动,甚至使发酵中断。 产甲烷作用

(新课标2020)高中化学 课后作业13 甲烷的性质 新人教版必修2.doc

课后作业(十三) [基础巩固] 一、甲烷的结构、存在和用途 1.在我国的南海、东海海底已发现天然气(含甲烷等)的水合物,它易燃烧,外形似冰,被称为“可燃冰”。“可燃冰”的开采,有助于解决人类面临的能源危机。下列说法正确的是( ) ①甲烷属于烃类②在相同条件下甲烷的密度大于空气 ③甲烷难溶于水④可燃冰是一种极具潜力的能源 A.①②③B.②③④ C.①③④D.①②④ [解析]甲烷是最简单的烃,难溶于水,因其相对分子质量为16,故相同条件下密度小于空气,甲烷燃烧放出较多的热量且产物为CO2和H2O,所以可燃冰是一种极具潜力的能源,因此C项正确。 [答案] C 2.能够证明甲烷分子空间结构为正四面体的事实是( ) A.甲烷的四个碳氢键的强度相等 B.甲烷的四个碳氢键的键长相等 C.甲烷的一氯代物只有一种 D.甲烷的二氯代物只有一种 [解析]甲烷无论是正四面体结构,还是正方形的平面结构,CH4中都含有4个相同的C—H,键的强度、键长均相等;且一氯代物均只有一种。所以A、B、C三项错误;CH2Cl2若是正方形的平面结构,则其结构应有两种,即 ,若是正四面体结构,则其结构只有一种;所以D项正确。 [答案] D 3.下列关于甲烷分子结构的说法正确的是( )

A .甲烷分子的电子式为 ,分子中各原子都达到8电子稳定结构 B .甲烷分子中的化学键全部为非极性键 C .CH 4分子比SiH 4分子稳定,说明碳元素的非金属性比硅元素的非金属性强 D .CH 3Cl 的四个价键的键长和强度相同,夹角相等 [解析] 甲烷分子中H 原子最外层只有2个电子,不是8电子稳定结构,A 项错误;甲烷分子中的化学键均为极性键,B 项错误;元素的非金属性越强,其简单氢化物越稳定,反之也成立,C 项正确;一氯甲烷中C —Cl 键与C —H 键的键长和强度不同,故四个键的键角也不完全相等,D 项错误。 [答案] C 二、甲烷的燃烧及相关计算 4.鉴别甲烷、一氧化碳和氢气等三种无色气体的方法是( ) A .通入溴水―→通入澄清石灰水 B .点燃―→罩上涂有澄清石灰水的烧杯 C .点燃―→罩上干冷烧杯―→罩上涂有澄清石灰水的烧杯 D .点燃―→罩上涂有澄清石灰水的烧杯―→通入溴水 [解析] 点燃,用干燥的烧杯可以检验出是否生成水,从而确定原气体是否含有氢元素;用涂有澄清石灰水的烧杯可检验出是否生成CO 2,从而确定原气体中是否含有碳元素。 [答案] C 5.将标准状况下11.2 L 甲烷和22.4 L 氧气混合点燃,恢复到原状况后,气体的体积为( ) A .11.2 L B .22.4 L C .33.6 L D .44.8 L [解析] CH 4+2O 2――→点燃 CO 2+2H 2O ,因标准状况下11.2 L 甲烷与22.4 L 氧气恰好完全反应生成11.2 L 的CO 2气体,此时H 2O 不是气体,故选A 。 [答案] A 三、取代反应的理解 6.下列化学反应中不属于取代反应的是( ) A .CH 2Cl 2+Br 2――→光照 CHBrCl 2+HBr

产甲烷菌的研究进展

产甲烷菌的研究进展 XXX 生物工程一班生命科学学院xxx大学150080 摘要:甲烷菌是一个古老的原生菌。随亨格特(Hungate)无氧分离技术发展以来,人们对甲烷菌的研究逐渐深入。从产甲烷菌生存环境分离、筛选出新的产甲烷菌种。20世纪90年代对甲烷菌的探讨、研究比较多,近10年的研究比较少。简述了产甲烷菌的发展历史及分类。产甲烷菌是重要的环境微生物,是古细菌的一种,在自然界的破素循环中起重要作用。迄今已有种产甲烷菌基因组测序完成。基因组信息使人们对产甲烷菌的细胞结构、进化、代谢及环境适应性有了更深的理解。 关键词:微生物,产甲烷菌,分类。 Research progress of methanogenic bacteria Zhengzongqiao The first class of Biotechnology, College of Life Science, Heilongjiang University, Harbin, 150080 Abstract: methanogens is an ancient native bacteria. With the Since Heng Gete (Hungate) anaerobic separation technology development, people gradually in-depth study of methanogens. Living environment separated from the methane-producing bacteria filter out new methane-producing bacteria. Of methanogens in the 1990s, research more, nearly 10 years of study is relatively small. The brief history of the development of the methanogenic bacteria and classification. Methane-producing bacteria is an important environmental microorganisms, is a kind of archaebacteria, play an important role in the hormone cycle of the nature of the broken. So far has been a kind of methane-producing bacteria genome sequencing is completed. Genomic information to make The Methanogens the cell structure, evolution, have a deeper understanding of metabolic and environmental adaptability. Keywords: microorganisms, methane-producing bacteria。 1.产甲烷菌的介绍 产甲烷菌是一类能够将无机或有机化合物厌氧发酵转化成甲烷和二氧化碳的古细菌,它们生活在各种自然环境下,甚至在一些极端环境中。产甲烷菌是厌氧发酵过程的最后一个成员,甲烷的生物合成是自然界碳素循环的关键链条。由于产甲烷菌在有机废弃物处理、沼气发酵、动物瘤胃中有机物分解利用等过程中的重要作用,同时甲烷是导致全球变暖的第二大温室气体,因此产甲烷菌和甲烷产生机理的研究备受关注。特别是近几年对产甲烷菌基因组的研究,使人们从全基因组的角度、进化的角度对甲烷生物的合成机理、甲烷菌的生活习性、结构特点等方面获得更深刻的理解。产甲烷菌的分类:Schnellen第一个从消化污泥中分离纯化得到。19 74年Bryant首次提出了产甲烷菌(M讼tha n昭甘n)一词,将其与以甲烷为能量来源的嗜甲烷菌(MethanotrDPh,)区分开来。到目前为止,分离鉴定的产甲烷菌已有2 00多种。它们存在于沼泽、湖泊、海洋沉积物及瘤胃动物的胃液等自然生态系统中,也存在于废水处理、堆肥和污泥消化等非自然的生态系统中。从分类学上讲,产甲烷菌属于古细菌的水生古细菌门(EUrya rchaeo-ta),

废水厌氧处理沼气产气量计算

废水厌氧处理沼气产气量计算原理 一、理论产气量的计算 1.根据废水有机物化学组成计算产气量 当废水中有机组分一定时,可以利用第一节中所介绍的化学经验方程式(15-1)计算产气量,对不含氮的有机物也可用以下巴斯维尔(Buswell和Mueller)通式计算: 【公式见下图】 2.根据COD与产气量关系计算 在标准状态下,1mol甲烷,相当于2mol(或64g)COD,则还原1gCOD相当于生成22.4/64=0.35L甲烷。 一般在厌氧条件下,每降解1kgCOD约产生2%~8%的厌氧污泥(即微生物对营养物质进行同化后残留的物质),而能量的传递效率是能量在沿食物链流动的过程中,逐级递减。若以营养级为单位,能量在相邻的两个营养级之间传递效率为10%~20%。微生物由于其生物形态结构简约,传递效率要稍高于多细胞生物为20%~30%,若以其传递效率25%计,则每1kgCOD产生2%~8%的厌氧污泥,则需要总物质的8%~32%物质用于其自身的同化作用,故1kgCOD中只有0.68~0.92kg的物质转化为甲烷,理论上在标准状态下,1mol甲烷,相当于2mol(或64g)COD,则还原1kgCOD相当于生成22.4/64=0.35m3甲烷。 沼气中甲烷的含量一般占总体积的50~70%,则理论上初步计算1kgCOD产生0.34~0.644Nm3的沼气。但在厌氧消化工艺中,实际产气率受物料的性质、工艺条件以及管理技术水平等多种因素的影响,在不同的场合,实际产气率与理论值会有不同程度的差异。 ①物料的性质:就厌氧分解等当量COD的不同有机物而言,脂类(类脂物)的 产气量最多,而且其中的甲烷含量也高;蛋白质所产生的沼气数量虽少,但甲烷含量高; 碳水化合物所产生的沼气量少,且甲烷含量也较低;从脂肪酸厌氧消化产气情况表明,随着碳键的增加,去除单位重量有机物的产气量增加,而去除单位重量COD的产气量则下降; ②②废水COD浓度:废水的COD浓度越低,单位有机物的甲烷产率越低,主要 原因是甲烷溶解于水中的量不同所致。因此,在实际工程中,高浓度有机废水的产气率

内蒙古典型草原植物功能型对土壤甲烷吸收的影响

植物生态学报 2011, 35 (3): 275–283 doi: 10.3724/SP.J.1258.2011.00275 Chinese Journal of Plant Ecology https://www.doczj.com/doc/f616753791.html, —————————————————— 收稿日期Received: 2010-05-31 接受日期Accepted: 2010-11-12 * E-mail: lw076@https://www.doczj.com/doc/f616753791.html, 内蒙古典型草原植物功能型对土壤甲烷吸收的影响 刘 伟1,2* 王继明3 王智平1 1 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093; 2中国科学院研究生院, 北京 100049; 3安徽师范大学生命科学学院, 安徽省 重要生物资源保护与利用研究重点实验室, 安徽芜湖 241000 摘 要 甲烷(CH 4)是仅次于CO 2的重要温室气体。内蒙古草原是欧亚温带草原的重要类型, 具有典型的生态地域代表性。该文以内蒙古温带典型草原为研究对象, 通过人工剔除植物种的方法来确定群落中的植物功能型, 并应用静态箱技术, 观测土壤CH 4的吸收, 以理解植物功能型对土壤CH 4吸收的影响。 结果表明: 1)土壤CH 4的吸收受温度和水分变化的影响, 具有明显的季节差异, 且与温度显著相关。2)在2008年和2009年所测的大部分月份中, 植物功能型的土壤CH 4吸收量之间没有显著差异; 然而在植物生长旺季(8月), 不同植物功能型的土壤CH 4吸收量之间存在显著差异, 多年生丛生禾草的土壤CH 4吸收量最小。3)处理中一、二年生植物、多年生杂类草的存在能够增加土壤CH 4的吸收量, 而处理中多年生根茎类禾草、多年生丛生禾草的存在对土壤CH 4吸收的影响不大。这可能是因为, 植物功能型影响土壤的微生物代谢和环境因子, 进而影响土壤CH 4吸收量。该试验说明, 在痕量气体层面上, 植物功能型组成在生态系统功能中具有重要作用, 特别是群落中的亚优势种和伴生种(一、二年生植物、多年生杂类草), 通过调控土壤微生物和环境因子, 对地-气的CH 4交换产生重要影响。 关键词 甲烷氧化, 草原生态系统, 温室气体, 植物群落, 锡林河流域 Plant functional type effects on methane uptake by soils in typical grasslands of Inner Mongolia LIU Wei 1,2*, WANG Ji-Ming 3, and WANG Zhi-Ping 1 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2Graduate Univer-sity of Chinese Academy of Sciences, Beijing 100049, China; and 3Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Re-sources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China Abstract Aims Methane (CH 4) is an important atmospheric trace gas contributing to global warming and atmospheric chemistry. Aerated soils are a biological sink for atmospheric CH 4. Our objectives were to quantify CH 4 uptake by soils in typical grasslands of Inner Mongolia and examine the effects of plant functional type on the uptake. Methods We used static chamber sampling and gas chromatography measurement to examine the effects of four plant functional types (PFTs) ― perennial rhizome forbs (PR), perennial bunchgrass (PB), perennial forb (PF) and annuals and biennials (AB) ― on CH 4 uptake by aerated soils. Important findings CH 4 uptake by soils showed seasonal change related to soil water content and temperature. Over most of observed periods in 2008 and 2009, there were no significant differences in soil CH 4 uptake rates among the various PFTs. During rapid plant growth in August, however, there were significant differences in the soil CH 4 uptake rates. The soil CH 4 uptake rates were lower with PBs. AB and PF increased the uptake of CH 4 by soils, while PR and PB had little influence. Soil physico-chemical factors such as temperature, water content and gas diffusion affect CH 4 uptake. Differences in CH 4 uptake rates by soils may be explained using these environ-mental factors affected by PFTs. With regard to trace gas, PFT has prominent effects on this ecosystem. Sub-dominant species and companion species (AB and PF), by regulating soil microbe and environmental factors, have important and irreplaceable roles on the uptake of CH 4 by soils. Key words CH 4 oxidation, grassland ecosystem, greenhouse gas, plant community, Xilin River Basin 甲烷(CH 4)是一种重要的大气痕量气体, 在全球变暖和大气化学循环中起着重要作用。在100年 时间尺度内, 单位质量的CH 4全球增温的潜力约是CO 2的25倍(IPCC, 2007)。大气CH 4的浓度取决于各

人教版必修2第3章第1节第1课时甲烷的性质作业

第1课时甲烷的性质 课后篇巩固提升 基础巩固 1.下列有关有机化合物的说法不正确的是( ) A.有机化合物都易燃烧 B.有机化合物中一定含碳元素 C.有机化合物的熔、沸点一般较低 ,如CCl4可做灭火剂。 ,科学家在海底发现了一种冰状物质——可燃冰,其有效成分为甲烷,下列说法正确的是( ) ①甲烷属于烃类②在相同条件下,甲烷的密度大于空气③甲烷难溶于水④可燃冰是一种极具潜力的能源 B.②③④ C.①③④ D.①②④ ,属于正四面体结构的是( ) https://www.doczj.com/doc/f616753791.html,l4 B.CHCl3 2 D.CH3Cl CCl4是正四面体,另外三种物质都只是四面体,但不是正四面体。 ( ) A.CH4C+2H2 B.2HI+Cl22HCl+I2 C.CH4+2O2CO2+2H2O 2CH3Cl+HCl 项属于分解反应;B项属于置换反应;C项属于氧化反应;D项属于取代反应,要从反应实质的 ( ) A.甲烷分子的立体构型是正四面体,所以,CH2Cl2有两种不同构型 B.甲烷可以与氯气发生取代反应,因此,可以使氯水褪色 C.甲烷能够燃烧,在一定条件下会发生爆炸,因此,是矿井安全的重要威胁之一 KMnO4溶液褪色 项,由于甲烷是正四面体结构,四个顶点中任意两个氢原子都是相邻关系,故CH2Cl2只有一种B项,CH4只能跟氯气在光照下反应,与氯水不反应。D项,CH4比较稳定,不能被酸性KMnO4溶液 3种无色气体的方法,是将它们( ) A.先后通入溴水和澄清石灰水 B.点燃后罩上涂有澄清石灰水的烧杯 C.点燃,先后罩上干燥的冷烧杯和涂有澄清石灰水的烧杯 ,通入溴水 4、CO和H2与溴水、澄清石灰水都不反应,A项不可选。CH4和CO燃烧都生成CO2,B、D项不 ,涂有澄清石灰水的烧杯可检验燃烧产物中是否有CO2生成。

BES与氯仿对产甲烷菌的抑制分析

1.3 实验装置 实验反应装置如图1 所示,主要是两个500 mL 的锥形瓶,反应器内温度采用培养箱自动控制,温度 为(37±1) ℃,气体采用排水法收集。 分析方法 TS 和VS:烘干法;pH 值:PHB-9901 精密 pH 计;COD:快速密闭催化消解法测定 [4];氨氮:滴定法;总 碱度:滴定法;VFA 组分和气体组分:气相色谱法。 TS 和VS:烘干法;pH 值:PHB-9901 精密pH 计;COD:快速密闭催化消解法测定[5];氨氮:滴定法; 总碱度:滴定法;VFA 组分和气体组分:气相色谱法。 】:[目的]研究污泥厌氧消化产挥发性脂肪酸(VFA)过程中的有机物碳流的转化机制,阐明乙酸累积机理。[方法]研究溴乙烷磺酸盐(BES)和氯仿(CHCl3)抑制模型下中间代谢产物和气体的累积,检测各产乙酸功能菌群数量,推断污泥产酸发酵过程中的有机物碳流方向和乙酸累积机理。[结果]BES模型乙酸浓度达27 mmol/L,fhs基因拷贝数比对照组高2-3倍,产氢产乙酸菌略有下降。CHCl3模型乙酸浓度达22 mmol/L,fhs基因拷贝数比BES组低一个数量级,产氢产乙酸菌下降明显。[结论]BES特异性较高,除产甲烷菌外对其他厌氧产酸细菌没有影响,乙酸浓度增加并且其主要来源于水解发酵产酸以及同型产乙酸过程。氯仿除抑制产甲烷菌外,对同型乙酸菌和产氢产乙酸菌也有强烈的抑制作用。

硫酸盐还原菌对餐厨垃圾厌氧发定向产乙酸的影响 研究 两种抑制产甲烷菌的方式对比:微生物学报,Acta Microbiologica Sinica,50(10):1327 -1333; 4 October 2010,《污泥厌氧消化产酸发酵过程中乙酸累积机制》 通过以上研究,得到结论如下: (1)两种抑制剂造成的污泥厌氧消化产酸模型均能造成乙酸的累积,其中 BES 模型中乙酸累积浓度达25 mmol/L,CHCl3模型中,乙酸累积达 22 mmol/L。(2)在 BES 产酸模型中,食氢产甲烷菌和食乙酸产甲烷菌被抑制,H2分压和乙酸浓度增加,产氢产乙酸菌活性被抑制。同时,H2的累积刺激了同型 产乙酸菌的活性。乙酸累积来自水解发酵产乙酸、同型产乙酸以及产氢产乙酸。 (3)在 CHCl3产酸模型中,产甲烷细菌受到抑制,H2分压上升,但同型产乙酸细菌和产氢产乙酸细菌也受到抑制。水解发酵产乙酸可能是乙酸的唯一来源。 CHCl3和 BES 造成了不同的抑制效应。由于 BES 是产甲烷细菌辅酶 M 的结构类似物,在适量浓度下,主要是抑制产甲烷细菌,而CHCl3是一种广谱性的微生物抑制剂,除抑制产甲烷细菌外,还可能会抑制包括产氢产乙酸细菌以及同型产乙酸细菌在内的其他微生物。因此推断,两种抑制剂造成的抑制模型是:BES 抑制产甲烷菌,造成氢气和二氧化碳以及乙酸累积,而氢气和二氧化碳的累积刺激了同型产乙酸细菌活性,消耗氢气和二氧化碳,最终的效应是只有乙酸累积,而氢气未能在体系中累积。CHCl3抑制模型中,由于 CHCl3同时也抑制了其他细菌,如同型产乙酸细菌和产氢产乙酸细菌,因此氢气未能被消耗从而在体系中累积。

菌种筛选方法 (2)

菌种筛选方法 在实际工作中,为了提高筛选效率,往往将筛选工作分为初筛和复筛两步进行。初筛的目的是删去明确不符合要求的大部分菌株,把生产性状类似的菌株尽量保留下来,使优良菌种不致于漏网。因此,初筛工作以量为主,测定的精确性还在其次。初筛的手段应尽可能快速、简单。复筛的目的是确认符合生产要求的菌株,所以,复筛步骤以质为主,应精确测定每个菌株的生产指标,测得的数据要能够反映将来的生产水平。 1 从菌体形态变异分析有时,有些菌体的形态变异与产量的变异存在着一定的相关性,这就能很容易地将变异菌株筛选出来。尽管相当多的突变菌株并不存在这种相关性,但是在筛选工作中应尽可能捕捉、利用这些直接的形态特征性变化。当然,这种鉴别方法只能用于初筛。有人曾统计过3,484个产维生素B2的阿舒假囊酵母(Eremoth ecium ashbyii)的变异菌落,发现高产菌株的菌落形态有以下特点:菌落直径呈中等大小(8-10毫米),凡过大或过小者均为低产菌株;色泽深黄色,凡浅黄或白色者皆属低产菌株。又如,在灰黄霉素产生菌荨麻青霉(Penicillium urticae)的育种中,曾发现菌落的棕红色变深者往往产量有所提高,而在赤霉素生产菌藤仓赤霉(Gibberell a fujikuroi)中,却发现菌落的紫色加深者产量反而下降。 2 平皿快速检测法平皿快速检测法是利用菌体在特定固体培养基平板上的生理生化反应,将肉眼观察不到的产量性状转化成可见的

"形态"变化。具体的有纸片培养显色法、变色圈法、透明圈法、生长圈法和抑制圈法等,见图。这些方法较粗放,一般只能定性或半定量用,常只用于初筛,但它们可以大大提高筛选的效率。它的缺点是由于培养平皿上种种条件与摇瓶培养,尤其是发酵罐深层液体培养时的条件有很大的差别,有时会造成两者的结果不一致。图平皿快速检测法示意图平皿快速检测法操作时应将培养的菌体充分分散,形成单菌落,以避免多菌落混杂一起,引起"形态"大小测定的偏差。 1) 纸片培养显色法将饱浸含某种指示剂的固体培养基的滤纸片搁于培养皿中,用牛津杯架空,下放小团浸有3%甘油的脱脂棉以保湿,将待筛选的菌悬液稀释后接种到滤纸上,保温培养形成分散的单菌落,菌落周围将会产生对应的颜色变化。从指示剂变色圈与菌落直径之比可以了解菌株的相对产量性状。指示剂可以是酸碱指示剂也可以是能与特定产物反应产生颜色的化合物。 2) 变色圈法将指示剂直接掺入固体培养基中,进行待筛选菌悬液的单菌落培养,或喷洒在已培养成分散单菌落的固体培养基表面,在菌落周围形成变色圈。如在含淀粉的平皿中涂布一定浓度的产淀粉酶菌株的菌悬液,使其呈单菌落,然后喷上稀碘液,发生显色反应。变色圈越大,说明菌落产酶的能力越强。而从变色圈的颜色又可粗略判断水解产物的情况。 3) 透明圈法在固体培养基中渗入溶解性差、可被特定菌利用的营养成分,造成浑浊、不透明的培养基背景。将待筛选在菌落周围就

浅析餐厨垃圾的处理方式及厌氧发酵产甲烷性能

浅析餐厨垃圾的处理方式及厌氧发酵产甲烷性能 摘要:介绍了餐厨垃圾的特性,综述了餐厨垃圾粉碎直排法、填埋法以及生物处理方法:蚯蚓堆肥、提取生物降解性塑料、固态发酵、生物发酵制氢、好氧堆肥、厌氧发酵等。针对餐厨垃圾厌氧发酵产甲烷过程,从工艺参数、工艺应用等方面阐述了国内外进展,并对餐厨垃圾厌氧发酵技术的规模化应用提出今后的研究方向。 关键字:餐厨垃圾处理方式厌氧发酵甲烷 0 前言 餐厨垃圾是指居民生活、食品加工、饮食服务等活动中产生的食物废料,是城市生活垃圾的重要组成部分,仅次于建筑垃圾,是第二大垃圾产生源。餐厨垃圾具有高含水率、高有机物含量,在高温条件下容易腐烂发臭,孽生蚊蝇、病菌,且不能满足垃圾焚烧发电的发热量要求(5000kJ/kg以上)。如果将其直接用作动物饲料,容易导致病菌进入人类食物链,对人体健康造成危害。因此,有关餐厨垃圾的合理利用和处理方式的研究已日益引起重视。 目前餐厨垃圾主要的处理处置方法包括粉碎直排、卫生填埋、高温好氧堆肥、固态发酵、生物处理机、厌氧发酵等,其中利用餐厨垃圾作为厌氧发酵技术的原料,既可以获得清洁能源,又能减少污染物排放,是目前国内外针对大规模餐厨垃圾处理利用的主要方向。

1 餐厨垃圾的处理处置现状 1.1 粉碎直排 由于厨房空间有限,因此就地减量处理是餐厨垃圾处理的基本立足点。目前一些国家普遍采用在厨房配置餐厨垃圾处理装置,将粉碎后的餐厨垃圾排人市政下水管网的方法。但餐厨垃圾粉碎直排容易产生污水和臭气,滋生病菌、蚊蝇和导致疾病传播,油污凝结成块会造成排水管堵塞,降低城市下水道的排水能力,高油脂含量等特性也增加了城市污水处理厂和垃圾填埋场负荷,同时也不可避免地产生二次污染。 1.2填埋 由于餐厨垃圾中有机物可生物降解组分含量高,产气速度快且产气量较大、稳定时间短,有利于垃圾填埋场地恢复使用,且操作简便,因此填埋是目前应用比较普遍的处理方法。但厌氧分解产生的沼气和渗沥液会造成二次污染,减少符合填埋条件的土地面积,同时造成餐厨垃圾营养物质的损失,因此一些国家已禁止未经处理的餐厨垃圾进入填埋场,如韩国于2005年起所有填埋场将不再接收餐厨垃圾。1.3好氧堆肥 堆肥是指在人工控制的条件下,利用微生物作用使有机固体废物稳定化的过程。堆肥能否成功的关键是微生物菌种的选择,堆肥物料C/N的调节,水分、温度、氧气与酸碱度的适当控制。餐厨垃圾有机物含量高,C/N较低、营养元素全面,非常适合用作堆肥原料。 餐厨垃圾堆肥的优点是处理方法简单、堆肥产品中能保留较多的

人教版必修2第3章 第1节第1课时甲烷作业

课时分层作业(十一) (建议用时:30分钟) [合格基础练] 1.下列化合物不是有机化合物的是( ) A.CH 4B.CHCl 3 C.CO 2D.CH 3 COOH [答案] C 2.在我国的南海、东海海底已发现天然气(含甲烷等)的水合物,它易燃烧,外形似冰,被称为“可燃冰”。“可燃冰”的开采,有助于解决人类面临的能源危机。下列说法正确的是( ) ①甲烷属于烃类②在相同条件下甲烷的密度大于空气 ③甲烷难溶于水④可燃冰是一种极具潜力的能源 A.①②③B.②③④ C.①③④D.①②④ C [甲烷是最简单的烃,难溶于水,因其相对分子质量为16,故相同条件下 密度小于空气,甲烷燃烧放出较多的热量且产物为CO 2和H 2 O,所以可燃冰是一种 极具潜力的能源,因此C正确。] 3.下列物质分子中,属于正四面体结构的是( ) A.CCl 4B.CHCl 3 C.CH 2Cl 2 D.CH 3 Cl [答案] A 4.取一支硬质大试管,通过排饱和食盐水的方法先后收集半试管甲烷和半试管氯气(如图),下列对于试管内发生的反应及现象的说法正确的是( ) A.此反应无光照也可发生 B.甲烷和Cl 2反应后的产物只有CH 3 Cl和HCl C.盛放饱和食盐水的水槽底部会有少量晶体析出

D.CH 4和Cl 2 完全反应后液面上升,液体充满试管 C [甲烷与Cl 2在光照条件下发生取代反应生成CH 3 Cl、CH 2 Cl 2 、CHCl 3 、CCl 4 和HCl,其中CH 2Cl 2 、CHCl 3 、CCl 4 是油状液体,CH 3 Cl是气体,故液体不会充满试 管,A、B、D三项错误。甲烷与Cl 2 反应后产物最多的是HCl,HCl溶于饱和食盐水会有少量NaCl晶体析出,C项正确。] 5.下列反应属于取代反应的是( ) A.C 2H 4 +3O 2 ――→ 点燃 2CO 2 +2H 2 O B.Zn+CuSO 4===ZnSO 4 +Cu C.CH 2Cl 2 +Cl 2 ――→ 光 CHCl 3 +HCl D.CH 2===CH 2 +Br 2 ―→ [答案] C 6.瓦斯爆炸是空气中含甲烷5%~15%(体积分数)时遇火所产生的,发生爆炸最剧烈时,甲烷在空气中的体积分数大约为 ( ) A.10.5% B.9.5% C.8% D.5% B [由CH 4+2O 2 ――→ 点燃 CO 2 +2H 2 O可知,瓦斯爆炸最剧烈时,CH 4 和O 2 的体积比 应为1∶2,因此CH 4与空气的体积比为1∶(2× 100 21 )= 21 200 ,那么它在空气中的体 积分数为21 200+21 ×100%≈9.5%。] 7.如图所示,U形管的左端被水和胶塞封闭,充有甲烷和氯气(体积比为1∶4)的混合气体,假定氯气在水中的溶解可以忽略不计。将封闭有甲烷和氯气的混合气体的装置放置在光亮的地方,让混合气体缓慢反应足够长的时间。 (1)假设甲烷与氯气充分反应,且只生成一种有机物,请写出该反应的化学方程式_________________________________________________________________

营养缺陷型菌株的筛选

营养缺陷型菌株的筛选 采用辐射,化学试剂等因素处理细菌,以提高其变异几率,关键步骤是进行营养缺陷型微生物的筛选工作,营养缺陷型是指通过诱变产生的,由于发生了丧失某酶合成能力的突变,因而只能在加有该酶合成产物的培养基中才能生长的突变株。营养缺陷型的筛选与鉴定涉及下列几种培养基:基本培养基(MM,符号为[-])是指仅能满足某微生物的野生型菌株生长所需的最低成分的合成培养基。完全培养基(CM,符号为[+])是指可满足某种微生物的一切营养缺陷型菌株的营养需要的天然或半合成培养基。补充培养基(SM,符号为[A]或[B]等)是指在基本培养基中添加某种营养物质以满足该营养物质缺陷型菌株生长需求的合成或半合成培养基。 营养缺陷型菌株不仅在生产中可直接作发酵生产核苷酸、氨基酸等中间产物的生产菌,而且在科学实验中也是研究代谢途径的好材料和研究杂交、转化、转导、原生质融合等遗传规律必不可少的遗传标记菌种。 营养缺陷型的筛选一般要经过诱变、淘汰野生型、检出和鉴定营养缺陷型四个环节。现分述如下: 第一步,诱变剂处理:与上述一般诱变处理相同。

第二步,淘汰野生型:在诱变后的存活个体中,营养缺陷型的比例一般较低。通过以下的抗生素法或菌丝过滤法就可淘汰为数众多的野生型菌株即浓缩了营养缺陷型。 抗生素法有青霉素法和制霉菌素法等数种。青霉素法适用于细菌,青霉素能抑制细菌细胞壁的生物合成,杀死正在繁殖的野生型细菌,但无法杀死正处于休止状态的营养缺陷型细菌。制霉菌素法则适合于真菌,制霉菌素可与真菌细胞膜上的甾醇作用,从而引起膜的损伤,也是只能杀死生长繁殖着的酵母菌或霉菌。在基本培养基中加入抗生素,野生型生长被杀死,营养缺陷型不能在基本培养基中生长而被保留下来。 菌丝过滤法适用于进行丝状生长的真菌和放线菌。其原理是:在基本培养基中,野生型菌株的孢子能发芽成菌丝,而营养缺陷型的孢子则不能。通过过滤就可除去大部分野生型,保留下营养缺陷型。 第三步,检出缺陷型:具体方法很多。用一个培养皿即可检出的,有夹层培养法和限量补充培养法;在不同培养皿上分别进行对照和检出的,有逐个检出法和影印接种法。可根据实验要求和实验室具体条件加以选用。现分别介绍如下:

相关主题
文本预览
相关文档 最新文档