当前位置:文档之家› 电力变压器油位异常分析

电力变压器油位异常分析

电力变压器油位异常分析

177

机电技术应用

Application of Mechanics-electronics Technology

电力变压器油位异常分析

沈 辉,董武亮

(国网河南省电力公司检修公司,河南 郑州 450007)

摘 要:电力变压器的安全稳定运行对整个电力系统的安全至关重要。由于各种原因,变压器在运行中难免出现各种故障,变压器油位异常是导致变压器故障常见因素。变压器油具有绝缘、散热作和消弧作用,如果油位异常,将对变压器运行产生重要影响,文章对变压器油位异常的原因、影响及治理措施进行了一定分析,以减少电力变压器运行故障发生的概率。关键词:变压器;安全稳定;油位异常中图分类号:TM715 文献标志码:A 文章编号:1672-3872(2019)20-0177-01

——————————————作者简介: 沈辉(1969—),男,河南郑州人,工程师,研究方向:电

力系统自动化。

1 变压器油枕与油位检查

变压器油是天然石油中经过蒸馏、精炼而获得的一种矿物油,具有纯净稳定、粘度小、绝缘性好、冷却性好的液体天然碳氢化合物的混合物。变压器油的相对密度为0.895。凝固点低于-45℃,主要成分为环烷烃(约占80%),其他的为芳香烃和烷烃。在我国,变压器油有石蜡基油、环烷基油。石蜡基油产于大庆,环烷基油产于新疆克拉玛依。变压器油主要有绝缘、散热作和消弧作用。

为使变压器油箱在任何气温及运行状况下均充满油,而油位计有以下指针式和浮球式等类型。

1)指针式:指针油位计上面一般有-30℃、+20℃、+40℃三个正常油位线,根据这三个标志可以判断是否需要加油和放油;标上+40℃表示安装地点变压器在环境最高温度为+40℃时满载运行中油位的最高限额线,油位不得超过此线,如果在停止状态下油温为+20°,此时检查油位计的油面应不高于+20°的标志。-30℃表示环境为-30℃时空载变压器的最低油位线,不得低于此线,若油位过低,应加油。2)浮标式油位计工作原理是采用悬浮的原理,油位计里面有个浮标,当油面到浮标时则有一个标志,例如绿色,未到有另外一标志,例如红色。浮球式油位计随油位的变化,浮球上下变化。

2 变压器油位异常及处理

变压器油是天然石油中经过蒸馏、精炼而获得的一种矿物油,在变压器运行过程中,变压器油主要起绝缘、散热、消弧作用,变压器油位是否正常对于变压器的安全稳定运行至关重要。一般在变压器油枕的侧面安装油位计以监视变压器油位的变化。

3 油位异常的原因

变压器负荷突然变化、季节环境温度明显变化时,均会使油位升高或过低,属于正常现象。油位异常,通常分为以下三种情况:1)真实油位偏高或偏低。①检修时注油量偏高,随环境温度、主变负荷增长,或者因冷却器异常引起变压器油温度升高,造成油位偏高。②变压器漏油,因工作需要放油后未及时补油,或者变压器原来油位不高,遇有变压器负荷突然下降或外界环境温度明显降低时,均会使油位过低。2)

产生了假油位。①变压器呼吸器或油标管产生堵塞,油位计出现油位指示偏高、偏低及假油位情况。②薄膜保护式油枕在加油时未将空气排净[3]。3)油位计异常。

4 油位异常的影响

1)油位过高:随着变压器负荷增长,油温升高,油体积膨胀,造成油位持续上升造成喷油、压力释放动作。2)油位过低:油位过低会造成瓦斯保护动作,当严重缺油时,变压器铁芯和绕组会暴露在空气中,容易受潮降低绝缘能力,甚至可能造成绝缘击穿。

5 油位异常的处理

5.1 油位过高的处理

当变压器油位高出最高油位线时,应根据引起的原因,采用不同的方法进行处理。

1)过负荷或三相电流严重不平衡而使得某一相电流超过额定值引起的,应调整负荷。2)冷却器异常引起变压器油温度升高,油受热膨胀,造成油位上升,则应检查冷却器是否积灰堵塞,油管上、下阀门是否打开,风扇、潜油泵运转是否正常,油温是否合适等,及时处理使冷却器恢复正常运行。3)如果油位过高是变压器加油过多引起的,应放油至适当高度[4]。5.2 油位过低的处理

1)若油位低且未发现漏油现象,运维人员应汇报,尽快补入同型号的合格的变压器油。2)若是漏油使油位明显降低,应采取措施消除漏油,并立即加油,使油位恢复正常。3)若大量漏油,油位下降过多危及变压器安全运行时,应汇报调度申请停用该变压器。

6 结束语

变压器在电力系统中具有重要组成部分,充足的变压器油才可以保证变压器正常运行,一旦油位异常,容易引起变压器故障,通过以上分析,在电力变压器运行过程中,一旦发现油位异常,应及时查明异常原因,根据不同情况进行及时处理,以保障变压器的安全稳定运行。参考文献:

[1]王立.电力变压器在供电运行的过程中常见故障分析[J].电子制

作,2013(22):193.[2]张立达.变压器运行过程中常见故障分析及维护[J].石化技术,

2018,25(8):223+174.[3]王洋.变压器运行过程中的常见故障分析及维护探讨.生产质量,

2018(13):29-30.[4]李响,胡天彤.一流配电网全寿命周期评价体系研究,电力系统

保护与控制,2018(46):80-85.

(收稿日期:2019-8-12)

油浸电力变压器设计手册-沈阳变压器(1999) 6负载损耗计算

目录 1 概述SB-007.6 第 1 页 2 绕组导线电阻损耗(P R)计算SB-007.6 第 1 页 3 绕组附加损耗(P f)计算SB-007.6 第1页3.1 层式绕组的附加损耗系数(K f %)SB-007.6 第 1 页3.2 饼式绕组的附加损耗系数(K f %)SB-007.6 第 2 页3.3 导线中涡流损耗系数(K w %)计算SB-007.6 第 2 页 3.3.1 双绕组运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 2 页3.3.2 降压三绕组变压器联合运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 3 页 SB-007.6 第3 页3.3.3 升压三绕组(或高-低-高双绕组)变压器联合运行方式的最大纵向漏 磁通密度(B m)计算 3.3.4 双绕组运行方式的涡流损耗系数(K w %)简便计算SB-007.6 第4 页3.4 环流损耗系数(K C %)计算SB-007.6 第 4 页3. 4.1 连续式绕组的环流损耗系数(K C %)计算SB-007.6 第4 页3.4.2 载流单螺旋―242‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第5 页 SB-007.6 第5 页3.4.3 非载流(处在漏磁场中间)单螺旋―242‖换位的绕组环流损耗系数 (K C2 %)计算 3.4.4 载流双螺旋―交叉‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第6 页 SB-007.6 第7 页3.4.5 非载流(处在漏磁场中间)双螺旋―交叉‖ 换位的绕组环流损耗 系数(K C2 %)计算 4引线损耗(P y)计算SB-007.6 第7 页5杂散损耗(P ZS)计算SB-007.6 第8 页5.1小型变压器的杂散损耗(P Z S)计算SB-007.6 第8 页5.2中大型变压器的杂散损耗(P Z S)计算SB-007.6 第9 页5.3 特大型变压器的杂散损耗(P Z S)计算SB-007.6 第10 页

变压器油色谱分析报告

运行中变压器油色谱分析 异常与解决对策 王海军 (河北大唐国际王滩发电有限责任公司) 摘要:对运行变压器油中氢气含量超标出现的原因进行了详细分析,并提出了氢气含量超标的滤油工艺及防止二次污染的源头控制、过程控制及关键点控制。 关键词:变压器油;色谱分析;热油循环;二次污染 1前言 运行中的变压器油气相色谱分析,以检测变压器油中气体的组成和含量,是早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法。特征气体的出现与变压器运行中的实际状况及在处理中的工艺有关,处理工艺粗糙可能造成变压器油的二次污染。 本文根据实际运行变压器中出现氢气含量超标的具体情况,分析了产生气体的原因并提出了变压器热油循环的处理工艺,防止变压器油二次污染的要点。 2变压器油中氢气含量超标、二次污染实例 我公司#1高压厂用公用变压器(以下简称#1高公变)于2005年10月1日并网运行,在运行中,根据预防性试验规程对各变压器进行了油色谱跟踪分析,发现#1高公变的氢气值出现过含量超过注意值:H2≤150μL/ L ,具体测量数值见表一: 对#1高公变进行热油循环后的色谱分析中,虽然氢气含量达到标准但在油中又检测到痕量乙炔,见表二

再次热油循环后氢气、乙炔均在标准之内。 3#1高公变油中氢气超标及二次污染原因分析 当变压器油中氢气含量超过注意时,人们根据多年的运行经验及文献[1]中指出: (1)当变压器出现局部过热时,随着温度的升高,氢气(H2)和总烃气体明显增加,但乙炔(C2H2)含量极少。 (2)变压器内部出现放电故障也会出现氢气(H2)。局部放电(能量密度一般很低),产生的特征气体主要是氢气氢气(H2),其次是甲烷(CH4),并有少量乙炔(C2H2),但总烃值并不高;火花放电(是一种间歇性放电,其能量密度一般比局部放电高些,属低能量放电)时,乙炔(C2H2)明显增加,气体主要成分时氢气(H2)、乙炔(C2H2);电弧放电(高能放电)时,氢气(H2)大量产生,乙炔(C2H2)亦显著增多,其次是大量的乙烯、甲烷和乙烷。 对于文献[1]中的阐述具有很强的理论性,变压器油是由烷烃、环烷烃和芳香烃等组成[3]的结构复杂的液态烃类混合物。当变压器内发生放电现象,油中的烷烃、环烷烃和芳香烃等烃类混合物发生分解,不同能量的放电产生的特征气体并伴有其他气体产生,根据产生的特征气体可以判断变压器内部发生的具体故障。 三比值法[1]是利用气象色谱分析结果中五种特征气体的三个比值(C2H2/C2H4、CH4/H2、C2H4/C2H6)来判断变压器内部故障性质。根据三比值法的编码规则,三比值法计算结果见表三 从表中特征值0、1、0判定氢气超标的原因为高湿度引起孔穴中的放电,而引起高湿度的原因在变压器生产过程中绝缘材料干燥彻底的情况下只有变压器运行中水分的进入。 所以根据我厂#1高公变在安装、运行过程中的具体情况对变压器油中氢气含量超标、乙炔二次污染分析如下: (1)#1高公变在电建安装过程中曾出现过气体继电器伸缩节法栏处渗油情况,于2005年10月10日更换新伸缩节后,渗油情况解决。在气体继电器伸缩节渗油期间水分、空气从渗油处进入变压器内,导致高公变在运行过程中油中氢气含量超出注意值。2006年2月5日对高公变进行热油循环48小时后,再检测氢气含量为9.99μL/ L,氢气含量超标问题解决。 (2)而乙炔的产生是由于使用的滤油机在滤油之前未对滤油机内部用合格变压器油进行冲洗,而且之前滤油机滤过其他油质。带内部残油进行滤油后的色谱分析里又出现3.23μL/ L的乙炔。重新滤油后再次做色谱分析,油内氢气、乙炔含量合格:氢气4.57μL/ L,乙炔0.00μL/ L。

[全]变压器主保护定值整定计算

变压器主保护定值整定计算 以下差动保护采用二次谐波制动,以二圈变压器为例,所有计算均为向量和。 ①不平衡电流产生的原因和消除方法: a.由变压器两侧电流相位不同而产生的不平衡电流; (Y/Δ-11)Y.d11 接线方式——两侧电流的相位差30°。 消除方法:相位校正。 * 二次接线调整 变压器Y侧CT(二次侧):Δ形。Y.d11 变压器Δ侧CT(二次侧):Y形。Y.Y12 * 微机保护软件调整 b.由计算变比与实际变比不同而产生的不平衡电流; c.由两侧电流互感器型号不同而产生的不平衡电流;(CT变换误差) d.由变压器带负荷调整分接头而产生的不平衡电流;(一般取额定电压) e.暂态情况下的不平衡电流; 当变压器电压突然增加的情况下(如:空载投入,区外短路切除后).

会产生很大的励磁涌流.电流可达2-3 In,其波形具有以下特点 * 有很大的直流分量.(80%基波) * 有很大的谐波分量,尤以二次谐波为主.(20%基波) * 波形间出现间断.(削去负波后) 可采用二次谐波制动,间断角闭锁,波形对称原理 f.并列运行的变压器,一台运行,当令一台变压器空投时会产生和应涌流 所谓“和应涌流”就是在一台变压器空载合闸时,不仅合闸变压器有励磁涌流产生,而且在与之并联运行的变压器中也出现涌流现象,后者就称为“和应涌流”。其波形特点与励磁涌流差不多。 4、主变保护整定计算 (1)计算变压器两侧额定一次电流

—该侧CT变比。 注意:Kjx只与变压器本身有关,而与保护装置的CT接线形式无关。传统的差动保护装置中,变压器Y形绕组侧的CT多采用△接线,新的微机型差动保护装置中,变压器Y绕组侧的CT可以采用Y接线,微机型差动保护在装置内部实现了CT的△接线,因此在保护定值计算时可完全等同于外部△接线。 对于Y/△-11接线方式:Ia`=Ia - Ib,Ib`= Ib - Ic, Ic `= Ic –Ia 对于Y/△-1接线方式:Ia`=Ia - Ic,Ib`= Ib - Ia, Ic `= Ic - Ib (3)计算平衡系数 设变压器两侧的平衡系数分别为和,则: ①降压变压器:选取高压侧(主电源侧)为基本侧,平衡系数为 Kh=1 Kl=Inh`/Inl` ②升压变压器:选取低压侧(主电源侧)为基本侧,平衡系数为

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算 1 2 3 4 5 侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足 0.1

I n 为变压器的二次额定电流, K rel 为可靠系数,K rel =1.3—1.5; f i(n)为电流互感器在额定电流下的比值误差。f i(n)=±0.03(10P ),f i(n)=±0.01(5P ) ΔU 为变压器分接头调节引起的误差(相对额定电压); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3) I res.0(4) a I Δm 2=0.05; b 、 式中的符号与三圈变压器一样。 最大制动系数为: K res.max =res unb.max rel I I K Ires 为差动的制动电流,它与差动保护原理、制动回路的接线方式有关,对对于两圈变压器I res = I s.max 。 比率制动系数:

K= res.max res.0res.max op.0res.max /I I -1/I I -K 一般取K=0.5。 (5)、灵敏度的计算 在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流I s.min ,同时计算相应的制动电流I res ;在动作特性曲线上查出相应的动作电流I op ;则灵敏系数K sen 为: K sen = op I I 要求K sen ≥(6)(7 式中:I K I e (81、低电压的整定和灵敏度系数校验 躲过电动机自起动时的电压整定: 当低电压继电器由变压器低压侧电压互感器供电时, U op=(0.5~0.6)U n 当低电压继电器由变压器高压侧电压互感器供电时, U op=0.7U n 灵敏系数校验

浅谈电炉变压器设计

龙源期刊网 https://www.doczj.com/doc/f611066722.html, 浅谈电炉变压器设计 作者:邵月吕丽 来源:《企业技术开发·下旬刊》2013年第05期 摘要:随着市场的发展,近几年来,电炉变压器的需求量不断增大。文章结合锦州锦开 电器集团电炉变压器生产经验,对电炉变压器设计进行分析。 关键词:电炉变压器;串联变压器;调压;8字形绕组 中图分类号:TM42 文献标识码:A 文章编号:1006-8937(2013)15-0107-02 电炉变压器属于特种变压器,特种变压器是在电力变压器的基础上发展起来的,具有特殊用途的变压器。它的种类有很多,主要包括电弧炉、矿热炉、电石炉变压器等。在电力、冶金、矿山、石油、化工等都有广泛的应用。在市场竞争极其激烈的情况下,我厂生产的电炉变压器如HTSSPZ-22 000/110、HKDSPZ-10 000/35电炉变压器通过机械工业变压器产品质量检 测中心检验,具备国内同类产品先进水平,在市场中占有一席之地,受到新老客户的信赖。下面笔者将对我厂生产的电炉变压器做一简单的介绍。 1 电炉变压器技术特点 近几年来,我厂生产的电炉变压器中,矿热炉变压器居多。矿热炉是一种耗电量很大的电炉,属于电阻电弧炉。其电弧很小,以炉料电阻发热为主,且电炉电阻变化不大,工作电流平稳。根据矿热炉的特点,矿热炉变压器的一次侧不需要接电抗器,而且变压器的阻抗电压比较低,要长期承受110%的额定电流连续运行,及调压级数较多,输出的级差很小,前几级为恒容输出,后几级为恒流输出。小容量的变压器均做成三相的,20 000 kVA以上的多为3只单相矿热炉变压器组成三相组。这是由于三相矿热炉变压器的大电流短网在长度上各相有很大差异,使三相阻抗严重不平衡,造成功率转移和各相的电流和功率不均衡现象。但是采用3只单相电炉变压器可以围绕电炉对称分布,可以缩短短网的长度,使三相阻抗趋于平衡,从而减少电能损耗,增加电炉运行的功率因数,改善电炉电气特性。虽然其总造价高于三相20%~30%,但当需要设置备用变压器时,备用一台单相变压器比备用一台三相变压器要经济。因为单相变压器的体积和重量较三相变压器小,有利于运输和安装。 1.1 调压方式 电炉变压器的特点就是二次电压低、电流大、匝数少,所以无法在二次设置调压分接头来进行恒磁通调压(电力变压器就是采用恒磁通调压)。为了调节电炉变压器的二次电压,一般采用变磁通调压、串联变压器调压、和自耦调压器调压。因为它调压联结方式也有线性调、正反调、粗细调,与电力完全相同,就不再赘述。

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

变压器保护的整定计算讲课稿

变压器保护的整定计 算

电力变压器的保护配置与整定计算 重点:掌握变压器保护的配置原则和差动保护的整定计算,理解三绕组变压器后备保护及过负荷保护配置 难点:变压器差动保护的整定计算 能力培养要求:基本能对变压器的保护进行整定计算方法。 学时:6学时 2.1 电力变压器保护配置的原则 一、变压器的故障类型与特征 变压器的故障可分为油箱内故障和油箱外故障两类,油箱内故障主要包括绕组的相间短路、匝间短路、接地短路,以及铁芯烧毁等。变压器油箱内的故障十分危险,由于油箱内充满了变压器油,故障后强大的短路电流使变压器油急剧的分解气化,可能产生大量的可燃性瓦斯气体,很容易引起油箱爆炸。油箱外故障主要是套管和引出线上发生的相间短路和接地短路。 电力变压器不正常的运行状态主要有外部相间短路、接地短路引起的相间过电流和零序过电流,负荷超过其额定容量引起的过负荷、油箱漏油引起的油面降低,以及过电压、过励磁等。 二、变压器保护配置的基本原则 1、瓦斯保护:

800KVA及以上的油浸式变压器和400KVA以上的车间内油浸式变压器,均应装设瓦斯保护。瓦斯保护用来反应变压器油箱内部的短路故障以及油面降低,其中重瓦斯保护动作于跳开变压器各电源侧断路器,轻瓦斯保护动作于发出信号。 2、纵差保护或电流速断保护: 6300KVA及以上并列运行的变压器,10000KVA及以上单独运行的变压器,发电厂厂用或工业企业中自用6300KVA及以上重要的变压器,应装设纵差保护。其他电力变压器,应装设电流速断保护,其过电流保护的动作时限应大于0.5S。对于2000KVA以上的变压器,当电流速断保护灵敏度不能满足要求时,也应装设纵差保护。纵差保护用于反应电力变压器绕组、套管及引出线发生的短路故障,其保护动作于跳开变压器各电源侧断路器并发相应信号。 3、相间短路的后备保护: 相间短路的后备保护用于反应外部相间短路引起的变压器过电流,同时作为瓦斯保护和纵差保护(或电流速断保护)的后备保护,其动作时限按电流保护的阶梯形原则来整定,延时动作于跳开变压器各电源侧断路器,并发相应信号。一般采用过流保护、复合电压起动过电流保护或负序电流单相低电压保护等。 4、接地短路的零序保护: 对于中性点直接接地系统中的变压器,应装设零序保护,零序保护用于反应变压器高压侧(或中压侧),以及外部元件的接地短路。 5、过负荷保护:

电力变压器继电保护设计

电力变压器继电保护设计 Final revision on November 26, 2020

课程设计报告书 题目:电力变压器继电保护设计 院(系)电气工程学院_______ 专业电气工程及其自动化____ 学生姓名冉金周__________ 学生学号 57_______ 指导教师张祥军蔡琴______ 课程名称电力系统继电保护课程设计 课程学分 2____________ 起始日期

课程设计任务书 一、目的任务 电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术

资料的能力。本次课程设计主要以中型企业变电所主变压器为对象,主要完成继电保护概述、主变压器继电保护方案确定、短路电流计算、继电保护装置整定计算、各种继电器选择、绘图等设计和计算任务。为以后深入学习相关专业课、进行毕业设计和从事实际工作奠定基础。 二、设计内容 1、主要内容 (1)熟悉设计任务书,相关设计规程,分析原始资料,借阅参考资料。 (2)继电保护概述,主变压器继电保护方案确定。 (3)各继电保护原理图设计,短路电流计算。 (4)继电保护装置整定计算。 (5)各种继电器选择。 (6)撰写设计报告,绘图等。

2、原始数据 某变电所电气主接线如图1所示,已知两台变压器均为三绕组、油浸式、 强迫风冷、分级绝缘,其参数如下:S N =;电压为110±4×2.5%/ ±2×2.5%/11 kV;接线为Y N /y/d 11 (Y /y/Δ-12-11);短路电压U HM (%) =,U HL (%)=17,U ML (%)=6。两台变压器同时运行,110kV侧的中性点只有一台 接地,若只有一台运行,则运行变压器中性点必须接地,其余参数如图1。 3、设计任务 结合系统主接线图,要考虑两条长的110kV高压线路既可以并联运行也可以单独运行。针对某一主变压器的继电保护进行设计,即变压器主保护按一台变压器单独运行为保护的计算方式。变压器的后备保护(定时限过电流电流)作为线路的远后备保护。 图1 主接线图 注: 学号尾号为1、2、3的同学,用图中S kmax =1010MVA,S kmin =510 MVA进行计 算; 学号尾号为4、5、6的同学,用图中S kmax =1100MVA,S kmin =520 MVA进行计 算; 学号尾号为7、8、9、0的同学,用图中S kmax =1110MVA,S kmin =550 MVA进行 计算。 三、时间、地点安排

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

变压器油分析报告

洛阳阳光热电有限公司变压器油检验报告 样品状态运行油采样日 期 2009年08月18 日 样品名称#25变压器油分析日 期 2009年08月19 日 分析项目水分、介质损耗因数、击穿电压、 色谱 报告日 期 2009年08月21 日 采样地点#1主变依据标准 外状 水溶性酸(pH值) 酸值,mgKOH/g 闪点(闭口),℃ 水分,mg/L 10.5 GB/T7600 界面张力(25℃),mN/m 介质损耗因数(90℃)0.093 击穿电压,kV 52 体积电阻率(90℃) Ω·cm 油中溶解气体组分含量 色谱分析 如下 破乳化时间 备注 色谱:甲烷:17.90 乙烯:1.65 乙烷:2.58 乙炔:0.00 氢 气:174.32 一氧化碳:1437.09 二氧化碳:5178.93 总烃:22.13 分析意见:氢含量超过注意值! 建议缩短周期,跟踪分析! 其他结果合格。 审核试验张颖、罗燕贞、王静

洛阳阳光热电有限公司变压器油检验报告 样品状态运行油采样日期2009年08月18 日 样品名称#25变压器油分析日期2009年08月19 日 分析项目介质损耗因数、击穿电压、 色谱 报告日期 2009年08月21 日 采样地点#1高厂变依据标准外状 水溶性酸(pH 值) 酸值, mgKOH/g 闪点(闭 口),℃ 水分,mg/L 界面张力 (25℃), mN/m 介质损耗因 数(90℃) 0.069 击穿电压,kV 54 体积电阻率 (90℃) Ω·cm 油中溶解气 体组分含量 色谱分析 如下 破乳化时间 备注色谱:甲烷:10.88 乙烯:1.71 乙烷:2.32 乙炔:0.00 氢气:62.79 一氧化碳:811.07 二氧化碳:2915.03 总烃:14.91 分析意见:含量未发现异常! 其他结果合格。 审核试验张颖、罗燕贞、王静

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

变压器保护 定值计算 算法

电力变压器保护--低电压起动的带时限过电流保护整定计算(1) 保护装置的动作电流(应躲过变压器额定电流) 输入参数: 参数名I1rT 参数值36.4 单位 A 描述变压器高压侧额定电流 参数名Kh 参数值 1.15 单位 描述继电器返回系数 参数名Kjx 参数值 1 单位 描述接线系数 参数名Kk 参数值 1.3 单位 描述可靠系数 参数名nl 参数值20 单位 描述电流互感器变比 计算公式及结果: Idz.j=Kk*Kjx*(I1rT/(Kh*nl)) =1.3*1*(36.4/(1.15*20)) =2.057391 (2) 保护装置动作电压 输入参数: 参数名Kh 参数值 1.15 单位

描述继电器返回系数 参数名Kk 参数值 1.3 单位 描述可靠系数 参数名Umin 参数值18.2 单位V 描述运行中可能出现的最低工作电压 参数名ny 参数值20 单位 描述电压互感器变比 计算公式及结果: Udz.j=Umin/(Kk*Kh*ny) =18.2/(1.3*1.15*20) =0.608696 (3) 保护装置一次动作电流 输入参数: 参数名Kjx 参数值 1 单位 描述接线系数 参数名nl 参数值20 单位 描述电流互感器变比 计算公式及结果: Idz=Idz.j*nl/Kjx =2.057391*20/1 =41.147826 (4)保护装置的灵敏系数(电流部分)与过电流保护相同

输入参数: 参数名I2k2.min 参数值659 单位 A 描述最小运行方式变压器低压侧两相短路,流过高压侧稳态电流 计算公式及结果: Klm=I2k2.min/Idz =659/41.147826 =16.015427 (5) 保护装置的灵敏系数(电压部分) 输入参数: 参数名Ush.max 参数值20 单位V 描述保护安装处的最大剩余电压 参数名ny 参数值20 单位 描述电压互感器变比 计算公式及结果: Klm=Udz.j*ny/Ush.max =0.608696*20/20 =0.608696 保护装置动作时限与过电流保护相同 电力变压器保护--低压侧单相接地保护(用高压侧三相式过电流保护)整定计算(1) 保护装置的动作电流和动作时限与过电流保护相同 输入参数: 参数名I1rT

变压器保护定值计算书

脱硫变保护定值计算书 批准: 审核: 初审: 计算:

脱硫73B 、74B 保护采用南京东大金智电气有限公司生产的WDZ-400系列综合保护。 一、脱硫变73B 保护定值计算书 1.脱硫变73B 基本参数 1.1额定容量:Se=2500KV A 1.2额定电压:Ue=6300/400V 1.3额定电流:Ie=229.1/3608.4A 1.4阻抗电压:Ud=6.17% 1.5连接组别:DYn11 1.6高压侧CT 变比:300/5 1.7低压侧CT 变比:5000/1 1.8低压侧零序CT 变比:5000/5 2、脱硫变73B 保护定值计算 2.1、WDZ -440EX 低压变压器综合保护测控装置定值计算 1)高压侧速断保护定值: 73B 折算至100MV A 的阻抗为:3X = 5 .2100 10017.6?=2.468 a :变压器低压母线三相短路电流max .)3(K I 计算: 由#2厂高变供电时短路电流最大,故: max .)3(K I = 03334.0468.272527.029410.09160+++=0.03334 2.774669160 +=3262A b :变压器高压侧出口三相短路电流计算: max .)3(K I = 0.0333472527.029410.09160++=34 .09160 =26941A c :变压器低压母线单相接地短路电流计算: K I )(1= ∑ ∑+?0123X X I bs =468.292.808291603???+=27.82827480 =987A 高压侧短路保护定值整定原则;

a :按躲过低压母线三相短路电流计算: op I =rel K max .)3(K I =1.3×3262=4240.6A b :按躲过励磁涌流计算: op I =K TN K =12×229.1=2749.2A c :高压侧短路保护二次动作电流计算。一次动作电流取4240.6A ,则二次动作电流为: op I =4240.6/60=70.67A ,取71A 。 灵敏度检验:变压器高压侧入口短路时灵敏度为: ) (2sen K =0.866× 60 7126941 ?=6.32>2,满足要求。: 高压侧短路保护时间op t ,取装置最低值0.04S 。 2)高压侧过流保护定值: 按躲过最大负荷电流整定,Idz = a f K n K Ifh K max . a :对并列运行变压器,应考虑切除一台时所出现的过负荷 max .Ifh =1*-n Ie n =1 21 .229*2-=458.2A Idz = a f K n K Ifh K max .=60*9.02 .458*2.1=10.2A 灵敏度检验:按低压母线上发生两相短路时产生的最小短路电流来校验 K lm =op I I ) 2(min = 5.173.460 2.10)468.227725.09160 866.0≥=??+?( 式中 )2(op I ------低压母线两相短路电流。 满足要求。 高压侧过流保护时间:1S 3)高压侧过负荷保护定值: 高压侧定时限过负荷保护定值: a :按躲过变压器额定电流整定:

电力变压器的继电保护整定值计算

电力变压器的继电保护整定值计算 一.电力变压器的继电保护配置 注1:①当带时限的过电流保护不能满足灵敏性要求时,应采用低电压闭锁的 带时限的过电流保护。 ②当利用高压侧过电流保护及低压侧出线断路器保护不能满足灵敏性要求时,应装 设变压器中性线上的零序过电流保护。

③低压电压为230/400V的变压器,当低压侧出线断路器带有过负荷保护时,可不装 设专用的过负荷保护。 ④密闭油浸变压器装设压力保护。 ⑤干式变压器均应装设温度保护。 注2:电力变压器配置保护的说明 (1)配置保护变压器内部各种故障的瓦斯保护,其中轻瓦斯保护瞬时动作发出信号,重瓦斯保护瞬时动作发出跳闸脉冲跳开所连断路器。 (2)配置保护变压器绕组和引线多相短路故障及绕组匝间短路故障的纵联差动保护或者电流速断保护,瞬时动作跳开所连断路器。 (3)配置保护变压器外部相间短路故障引起的过电流保护或复合电压启动过电流保护。 (4)配置防止变压器长时间的过负荷保护,一般带时限动作发出信号。 (5)配置防止变压器温度升高或冷却系统故障的保护,一般根据变压器标准规定,动作后发出信号或作用于跳闸。 (6)对于110kV级以上中性点直接接地的电网,要根据变压器中性点接地运行的具体情况和变压器的绝缘情况装设零序电流保护或零序电压保护,一般带时限动作 作用于跳闸。 注3:过流保护和速断保护的作用及范围 ①过流保护:可作为本线路的主保护或后备保护以及相邻线路的后备 保护。它是按照躲过最大负荷电流整定,动作时限按阶段原则选择。 ②速断保护:分为无时限和带时限两种。 a.无时限电流速断保护装置是按照故障电流整定的,线路有故障时,它能瞬时动作, 其保护范围不能超出本线路末端,因此只能保护线路的一部分。 b.带时限电流速断保护装置,当线路采用无时限保护没有保护范围时,为使线路全长 都能得到快速保护,常常采用略带时限的电流速断与下级无时限电流速断保护相配 合,其保护范围不仅包括整个线路,而且深入相邻线路的第一级保护区,但不保护 整个相邻线路,其动作时限比相邻线路的无时限速断保护大一个时间级。 二.电力变压器的继电保护整定值计算 ■计算公式中所涉及到的符号说明 在继电保护整定计算中,一般要考虑电力系统的最大与最小运行方式。 最大运行方式—是指在被保护对象末端短路时,系统等值阻抗最小,通过保护装置的 短路电流为最大的运行方式。 最小运行方式—是指在上述同样短路情况下,系统等值阻抗最大,通过保护装置的 短路电流为最小的运行方式。

电力变压器设计分析

所需输入数据 一般数据 1.制造商 2.变压器类型(例如:移动式、变电站用、整流器用等)3.数据来源:测试数据或规格参数 3.a.频率 4.自耦变压器:是或不是 5.空载损耗 6.负载损耗kW值以及在标准接线端和中间抽头处的基准温度7.阻抗在额定功率MV A基本接点和抽头位置处的阻抗8.铁芯与线圈总重量 9.额定容量每个绕组的MV A值 10.冷却方式 11.针对每一种额定容量及冷却方式,给出: a)顶层变压器油的温升 b)各绕组引起的温升 c)绕组的平均温升 12.绕组数目以及在铁芯上的位置 13.每个绕组的BIL(绝缘基本冲击耐压水平) 14.每个绕组的额定电压 15.每个绕组的连接形式:星型或三角型 16.每个绕组单相的电阻 17.每个绕组并联的电路数 18.有无低温冷却方式:有或没有 如果有:用在哪个绕组上? 最大抽头电压 最小抽头电压 该绕组的抽头数 接线位置数 连接方式 19.有无“无负载”抽头:有或没有 如果有:在哪个绕组上? 最大抽头电压 最小抽头电压 该绕组的抽头数

所需输入数据(续) 铁芯数据 20.截面积:毛截面与净截面 21.铁芯:a) 共有多少条 b) 每条的宽度 c) 每条的叠数 d) 芯体的周长或直径 22.通量密度 23.窗口尺寸:高度及宽度 23.a.窗口中心线的位置 24.接缝方式:全斜角接缝或半斜角接缝 25.材料:钢材等级及钢片厚度 25.a.在基准通量密度下的瓦/公斤数: 空隙数据 26.间隙:铁芯与绕组导线之间的空隙 27.间隙:绕组与绕组之间(绕组的导线与导线之间)的空隙28.间隙:相与相之间(导线与导线之间)的空隙 29.每个绕组的留空系数[1] 30.每个绕组的填充和抽头空间[2](沿高度的方向) 31.每个绕组的边缘距离 a)导线至线圈边缘 b)导线至铁芯箍圈 31a.每个绕组的高度: 径向: 轴向: 32.每个绕组的线槽: 径向:数量及尺寸[3] 轴向:数量及尺寸[4]

变压器保护整定计算培训(DOC)

变压器保护 一、变压器可能发生的故障和异常情况 (一)变压器的内部故障:指变压器油箱里面发生的各种故障。 (1)主要故障类型: 各相绕组之间的相间短路 油箱内部故障单相绕组部分线匝之间的匝间短路 单相绕组或引出线通过外壳发生的单相接地故障 (2)内部故障的危害:因为短路电流产生的高温电弧不仅会烧毁绕 组绝缘和铁芯,而且会使绝缘材料和变压器油受热分解而产生大量气体,有可能使变压器外壳局部变形破裂,甚至发生油箱爆炸事故。因此,当变压器内部发生严重故障时,必须迅速将变压器切除。 (二)变压器的外部故障:系指油箱外部绝缘套管及其引出线上发生的各种故障。 (1)主要故障类型: 引出线之间发生的相间短路 油箱外部故障 绝缘套管闪络或破碎而发生的单相接地(通过外壳)短路 (三)变压器的异常情况:由于外部短路或过负荷而引起的过电流、油箱漏油而造成的油面降低、变压器中性点电压升高、由于外加电压过高或频率降低引起的过励磁等。 二、变压器保护的配置 (一)瓦斯保护:防御变压器油箱内各种短路故障和油面降低

重瓦斯跳闸 轻瓦斯信号 (二)差动保护或电流速断保护:防御变压器绕组和引出线的多相短路、大接地电流系统侧绕组和引出线的单相接地短路及绕组匝间短路 (三)相间短路的后备保护:防御变压器外部相间短路并作为瓦斯保护和差动保护(或电流速断保护)的后备。 (四)零序电流保护:防御大接地电流系统中变压器外部接地短路。 (五)过负荷保护:防御变压器对称过负荷 (六)过励磁保护:防御变压器过励磁 三、变压器纵差动保护 (一)变压器纵差动保护的作用及保护范围 变压器纵差动保护作为变压器的主保护,其保护区是构成差动保护的各侧电流互感器之间所包围的部分。包括变压器本身、电流互感器与变压器之间的引出线。 (二)变压器纵联差动保护的原理

电力变压器设计原则

电力变压器设计原则 1.铁心设计 1.1铁心空载损耗计算:P 0=k p ?p 0?G W 其中:k p ——铁心损耗工艺系数,见表2; p 0——电工钢带单位损耗(查材料曲线),W/kg ; G ——铁心重量,kg 。 1.2铁心空载电流计算 空载电流计算中一般忽略有功部分。 (1)三相容量≤6300 kV A 时: 1230()10t f N G G G k q S n q I S ++??+??= ? % 其中:G 1、G 2、G 3——分别为心柱重量、铁轭重量、角重,kg ; k ——铁心转角部分励磁电流增加系数,全斜接缝k=4; q f ——铁心单位磁化容量(查材料曲线),V A/ kg ; S ——心柱净截面积,cm 2; S N ——变压器额定容量,k V A ; n ——铁心接缝总数,三相三柱结构n=8; q j ——接缝磁化容量,V A/ cm 2,根据B m 按表1进行计算。

(2)三相容量>6300 kV A :010i t N k G q I S ??= ? % k i ——空载电流工艺系数,见表2; G ——铁心重量,kg ; q t ——铁心单位磁化容量(查材料曲线),V A/ kg ; S N ——变压器额定容量,k V A 。 表2 铁心性能计算系数(全斜接缝) 注(1)等轭表示铁心主轭与旁轭的截面相等。 1.3铁心圆与纸筒之间的间隙见表3 表3 铁心圆与纸筒间隙 1.4铁心直径与撑条数量关系见表4 表4 铁心直径与撑条数量关系 续表4 铁心直径与撑条数量关系

1.5铁心直径与夹件绝缘厚度关系见表5 2.绝缘结构 2.1 10kV级变压器 2.1.1纵绝缘结构 (1)高压绕组(LI75 AC35) 1)饼式结构 导线匝绝缘0.45,绕组不直接绕在纸筒上,所有线段均垫内径垫条1.0mm;各线饼轴向油道宽度见表15;分接段位于绕组中部。 中断点油道 4.0mm,分接段之间(包括分接段与正常段之间)油道2.0mm,正常段之间0.5mm纸圈。整个绕组增加9.0mm调整油道。 2)层式结构 层式绝缘:首层加强0.08×2,第2层与末层加强0.08×1。当绕组不直接绕在纸筒上时,所有线段均垫内径垫条1.0mm。 (2)低压绕组(AC5) 当绕组不直接绕在纸筒上时,所有线段垫内径垫条 1.0mm,所有线段之间垫0.5mm纸圈。。 当高压绕组为饼式结构时,对应高压分接段处应注意安匝平衡。 2.1.2主绝缘结构 (1)铁心圆与纸筒之间的间隙见表3;低压绕组内纸筒厚2.0mm。当

相关主题
文本预览
相关文档 最新文档