当前位置:文档之家› LTE学习总结—定时器计数器

LTE学习总结—定时器计数器

LTE学习总结—定时器计数器
LTE学习总结—定时器计数器

LTE定时器计数器定时器在协议中介绍

常用定时器介绍

1、T300和N300(RRC连接建立定时器)

启动:UE在发送RRCConnectionRequest时启动此定时器。

关闭:定时器超时前,收到RRCConnectionSetup或者RRCConnectionReject后关闭此定时器。

定时器超时后,若RRCConnectionRequest消息的重发次数小于常量N300,则

重发RRCConnectionRequest,否则进入空闲模式。

取值范围:T300:MS100_T300(100毫秒), MS200_T300(200毫秒), MS300_T300(300毫秒), MS400_T300(400毫秒), MS600_T300(600毫

秒), MS1000_T300(1000毫秒), MS1500_T300(1500毫秒),

MS2000_T300(2000毫秒)

N300范围为0-7

建议值:T300:MS200_T300(200毫秒)

N300建议3

设置建议:T300的设置应结合UE,EUTRAN处理时延以及传播时延考虑,T300设置越大,UE等待时间越长,N300设置越大,RRC连接建立可能性越高,同

时用于RRC连接建立的时间也可能越长,有可能出现某个UE反复尝试接入

和发送连接建立请求,而对其他用户造成较强的干扰情况。

2、T301和N301(RRC连接重建定时器)

启动:UE在发送RRCConnectionReestabilshmentRequest时启动该定时器。

关闭:如果UE收到RRCConnectionReestablishment或者RRCConnectionReestablishmentReject或者被选择小区变成不适合小区,则

停止该定时器。

取值范围:T301:MS100_T300(100毫秒), MS200_T300(200毫秒), MS300_T300(300毫秒), MS400_T300(400毫秒), MS600_T300(600毫

秒), MS1000_T300(1000毫秒), MS1500_T300(1500毫秒),

MS2000_T300(2000毫秒)

N301范围为0-7

建议值:T301:MS200_T300(200毫秒)

N301建议3

设置建议:取值过大,则会导致RRC重新连接的时间过长,影响用户感知;取值过小则会影响接入成功率。

3、T302(RRC连接拒绝定时器)

启动:接收到RRCConnectionReject ,而此时正在执行RRC连接建立

关闭:进入RRC_CONNECTED,并且进行小区重选

取值范围:4000ms 6000ms 8000ms

建议值:8000ms

设置建议:该参数设置过大会造成UE RRC连接拒绝后限制时常过大,使本能够再次建立的RRC不能及时被建立,影响用户感知;

该参数设置过小会造成UE RRC连接拒绝后限制时常过小,短时间内RRC连接建

立次数和拒绝次数都会增加,影响KPI指标;

4、T304(切换等待计时器)

启动:当UE收到切换命令时,将启动定时器T304

关闭:如果切换成功,则终止T304;如果T304定时器超时,则说明切换失败,启动定时器T311,并且选择一个最好的有效小区。

取值范围:4000ms 6000ms 8000ms

建议值:8000ms

设置建议:参数设置过大,则会导致在无线环境较差区域长时间等待切换完成,资源没有及时释放。设置过小,则容易导致未及时收到切换完成信令,影响切换成

功率。

5、T310和N310(无线链路失效定时器)

启动:UE在检测到物理层故障时,启动该定时器。

关闭:在定时器超时前,如果UE检测到物理层故障恢复,或者触发切换流程,或者UE 发起连接重建流程,则停止该定时器。

定时器超时后,如果没有激活安全模式,UE进入RRC_IDLE态;否则,发起链

接重建流程。

取值范围:T310:MS0_T310(0毫秒), MS50_T310(50毫秒), MS100_T310(100秒),MS200_T310(200毫秒), MS500_T310(500毫秒),

MS1000_T310(1000毫秒), MS2000_T310(2000毫秒)

N310:n1(1), n2(2), n3(3), n4(4), n6(6), n8(8), n10(10), n20(20)

建议值:T310:MS200_T310(200毫秒)

N310:

续N311个同步指示后停止T310定时器。一旦T310超时,UE上报原因值

为RL FAILURE的RRCConnectionReestablishment消息通知eNB空中接

口下行失步。

T310设置的越大,UE察觉RL下行失步的时间就越长,此时间内相关资源无

法及时释放,也无法发起恢复操作或响应新的资源建立请求,影响用户的感

知。

T310设置的越小,UE察觉到RL偶而的闪断就越敏感,从而导致频繁对原本

可以迅速自我恢复的RL上报RRCConnectionReestablishment消息,造成

不必要的小区更新,增加了处理负荷。

6、T311(初始化RRC连接重建计时器)

启动:UE在发起RRC连接重建流程时启动该定时器

关闭:定时器超时前,如果UE选择了一个EUTRA小区或者异系统小区后,停止此定时器。定时器超时后,UE进入RRC_IDLE态。

取值范围:T311:MS1000_T311(1000毫秒), MS3000_T311(3000毫秒), MS5000_T311(5000毫秒), MS10000_T311(10000毫秒),

MS15000_T311(15000毫秒), MS20000_T311(20000毫秒),

MS30000_T311(30000毫秒)

N311:n1, n2, n3, n4, n5, n6, n8, n10

建议值:T311:MS10000_T311(10000毫秒)

N311:n5(5)

RRCConnectionReestablishment过程越滞后。

T311设置的越小,UE进行小区重选过程中所被允许的时间越短,且重选

到原小区的概率增加,RRCConnectionReestablishment过程越提前7、T320和N320(小区重选优先级定时器)

启动:当UE收到小区重选优先级信息时,则启动该定时器

关闭:当该定时器在运行时,则重选优先级信息有效;当该定时器到时时,则重选优先级信息无效;该参数是UE idle状态的移动控制参数。

取值范围:100, 200... 2000 by step of 200, 3000, 4000, 6000, 8000

建议值:1000MS

设置建议:该参数调大,则延长重选优先级信息有效的时长;调小,则减小了重选优先级信息有效的时长。

第5章习题解答

第5章思考题及习题5参考答案 一、填空 1.如果采用晶振的频率为3MHz,定时器/计数器T x(x=0,1)工作在方式0、1、2下,其方式0的最大定时时间为,方式1的最大定时时间为,方式2的最大定时时间为。 答:32.768ms,262.144ms,1024μs 2.定时器/计数器用作计数器模式时,外部输入的计数脉冲的最高频率为系统时钟频率的。 答:1/24 3.定时器/计数器用作定时器模式时,其计数脉冲由提供,定时时间与有关。 答:系统时钟信号12分频后,定时器初值 4.定时器/计数器T1测量某正单脉冲的宽度,采用方式可得到最大量程?若时钟频率为6MHz,求允许测量的最大脉冲宽度为。 答:方式1定时,131.072ms。 5. 定时器T2 有3种工作方式:、和,可通过对寄存器中的相关位进行软件设置来选择。 答:捕捉,重新装载(增计数或减计数),波特率发生器,T2CON 6. AT89S52单片机的晶振为6MHz,若利用定时器T1的方式1定时2ms,则(TH1)= ,(TL1)= 。 答:FCH,18H。 二、单选 1.定时器T0工作在方式3时,定时器T1有种工作方式。 A.1种 B.2种 C.3种D.4种 答:C 2. 定时器T0、T1工作于方式1时,其计数器为位。 A.8位 B.16位 C.14位 D.13位 答:B 3. 定时器T0、T1的GATE x=1时,其计数器是否计数的条件。

A. 仅取决于TR x状态 B. 仅取决于GATE位状态 C. 是由TR x和INT x两个条件来共同控制 D. 仅取决于INT x的状态 答:C 4. 定时器T2工作在自动重装载方式时,其计数器为位。 A.8位 B. 13位 C.14位 D. 16位 答:D 5. 要想测量INT0引脚上的正单脉冲的宽度,特殊功能寄存器TMOD的内容应为。 A.87H B. 09H C.80H D. 00H 答:B 三、判断对错 1.下列关于T0、T1的哪些说法是正确的。 A.特殊功能寄存器SCON,与定时器/计数器的控制无关。对 B.特殊功能寄存器TCON,与定时器/计数器的控制无关。错 C.特殊功能寄存器IE,与定时器/计数器的控制无关。错 D.特殊功能寄存器TMOD,与定时器/计数器的控制无关。错 2.定时器T0、T1对外部脉冲进行计数时,要求输入的计数脉冲的高电平或低电平的持 续时间不小于1个机器周期。特殊功能寄存器SCON与定时器/计数器的控制无关。错 3.定时器T0、T1对外部引脚上的脉冲进行计数时,要求输入的计数脉冲的高电平和低电平的持续时间均不小于2个机器周期。对 四、简答 1.定时器/计数器T1、T0的工作方式2有什么特点?适用于哪些应用场合? 答:方式2为初值自动装入的8位定时器/计数器,克服了在循环定时或循环计数应用时就存在用指令反复装入计数初值影响定时精度的问题。 2.TH x与TL x(x=0,1)是普通寄存器还是计数器?其内容可以随时用指令更改吗?更改后的新值是立即刷新还是等当前计数器计满后才能刷新? 答:THx与TLx(x = 0,1)是计数器,其内容可以随时用指令更改,但是更改后的新值要等当前计数器计满后才能刷新。 3.如果系统的晶振的频率为24MHz,定时器/计数器工作在方式0、1、2下,其最大定时时间各为多少? 答:晶振的频率为24MHz, 机器周期为0.5μs。

LTE蓝皮书学习总结

蓝皮书学习 第一章:概述 ●知识点 1、UpPTS:用于用户终端随机接入的初始同步,SYNC_UL,用于区分不同的UE; 2、信息流要经过调制,分为两个步骤,首先经信道话码扩频,然后利用扰码加扰; 3、信道化码:用于区分本小区内同一时隙的不同码道,扰码是由小区决定的; ●关键技术 1、时分双工 2、FDMA+TDMA+CDMA;动态信道分配(DCA)技术 3、智能天线技术 4、短码CDMA与低码片速率:联合检测,抗多址与多径干扰 5、完备的时隙结构:单个时隙完成信道估计与解调 6、优化空口过程:小区搜索,随机接入,同步,功控,调度与切换 7、系统同步机制: TD-LTE以OFDM和MIMO技术为基础: TD-LTE多址技术:使用OFDM代替CDMA TD-LTE天线技术:智能天线基础上引入MIMO技术 ●OFDM特点:----P22 1、低速并行传输 2、抗衰落和均衡 3、抗多径时延引起的码间干扰:引入循环前缀CP(Cyclic Prefix),只要CP时延间隔大于信道 时延扩展,就可以消除码间干扰。 4、多用户调度 5、基于DFT的实现:DFT(Discrete Fourier transform)离散傅里叶变换 ●时延要求

驻留态与激活态的直接转换时延小于100ms,激活态与睡眠态的直接转换时延小于50ms; 50MHz带宽的小区,能支持200个处于激活态的用户,对应更大带宽的小区,支持至少400个处于激活态的用户 对空口高层协议进行简化,下面为对比图:P35 在TD-LTE中,RRC的状态只有两个,空闲状态和RRC链接态。

第二章:LTE协议架构和标准体系 1、LTE系统架构和功能划分 LTE只有核心网ECP(图中MME/S-GW)和接入网E-RTUAN eNodeB之间接口是X2, eNodeB与MME/S-GW之间接口是S1

第五章定时器/计数器

第五章MCS-51定时器/计数器及其应用 5.1定时方法概述 在单片机的应用中,可供选择的定时方法主要有: 1.软件定时 软件定时是靠执行一个循环程序以进行时间延迟。软件定时的特点是时间较精确,且不需外加硬件电路。但软件定时要占用CPU的时间,增加CPU开销,因此软件定时的时间不宜太长。 当单片机时钟确定后,每条指令的指令周期是确定的,在指令表中用振荡周期表示出来了。因此,根据程序执行所用的总的振荡周期数和振荡频率,可以较准确的计算,程序执行完所用的时间。软件延时是实际经常采用的一种短时间定时方法。 例4-16 ORG 1000H TIME:MOV R1, #0FAH ;12个振荡周期 L1 :MOV R0, #0FFH ;12个振荡周期 W1 :DJNZ R0 , W1 ;24个振荡周期 DJNZ R1 , L1 ;24个振荡周期 NOP ;12个振荡周期 NOP ;12个振荡周期 RET ;24个振荡周期 计算延时时间: N=12+(12+24×255+24)×250+12+12+24 =1539060个振荡周期 如果?=6MHz T?=1/?=1/6μs Tt=N×T?=1539060×1/6μS=256510μS=0.25651S 调整R 0和R 1 中的参数,可改变延时时间,如果需要加长延时间,可以增加循环嵌入。 当延时时间较长、不便多占用CPU时间的情况下,一般采用定时器方法。

2.内部可编程定时器 这种定时方法是通过对系统时钟脉冲的计数来实现的。计数值通过程序设定,改变计数值,也就改变了定时时间,使用起来既灵活又方便。此外,由于采用计数方法实现定时,因此可编程定时器都兼有计数功能,可以对外来脉冲进行计数。 3.外部扩展专用定时器 对于时间较长的定时,常使用外部扩展专用定时器完成。这种方法定时全部由硬件电路完成,不占用CPU时间。例如:DALLAS 公司的DS1302低功耗时钟芯片.它可以对年月日时分秒计时,并且有闰年补偿功能,它可以很方便地和单片机接口. 5.2 51单片机内部的定时器/计数器 作为基本组成内容,8051单片机共有两个可编程的定时器/计数器,分别称定时 器/计数器0和定时器/计数器1。它们都是十六位加法计数结构,分别由TH 0和TL 及TH 1和TL 1 两个8位计数器组成,它们具有计数和定时两种工作方式以及四种工作模 式。两个特殊功能寄存器(定时器控制寄存器TCON和定时器方式寄存器TMOD)用于确定定时器/计数器的功能和操作方式。图5-1给出了定时器/计数器的结构框图, 它反映了单片机中微处理器、寄存器TCON和TMOD与定时器T 0、T 1 之间的关系。计数 器的输入脉冲源可以是外部脉冲源或系统时钟振荡器,计数器对这两个输入脉冲之一进行递增计数。 顾名思义,MCS-51的每个定时器/计数器都具有定时和计数两种功能。

LTE学习总结—LTE工参中字段详解

LTE工参中字段详解 目录 LTE工参中字段详解 (1) 1、LocalCellId(本地小区标识) (2) 2、CellName(小区名称) (2) 3、SectorId(扇区号) (3) 4、CsgInd(Csg 指示) (3) 5、CyclicPrefix(循环前缀长度) (3) 6、FreqBand(频带) (4) 7、EarfcnCfgInd(频点配置指示) (5) 8、Earfcn(频点) (5) 9、UlBandWidth(带宽) (6) 10、CellId(小区标识) (7) 11、PhyCellId(物理小区标识) (7) 12、AdditionalSpectrumEmission(物理小区标识附加频谱散射) (8) 13、FddTddInd(小区双工模式) (8) 14、SubframeAssignment(上下行子帧配比) (8) 15、SpecialSubframePatterns(特殊子帧配比) (9) 16、CellSpecificOffset(服务小区偏置) (9) 17、QoffsetFreq(服务小区同频频率偏置) (10) 18、RootSequenceIdx(根序列索引) (10)

19、HighSpeedFlag(高速小区指示) (11) 20、PreambleFmt(前导格式) (11) 21、CellRadius(小区半径) (12) 22、CustomizedBandWidthCfgInd(客户化带宽配置指示) (12) 23、CustomizedBandWidth(客户化实际带宽) (13) 24、EmergencyAreaIdCfgInd(紧急区域标识配置指示) (13) 25、UePowerMax(UE最大允许发射功率) (13) 1、LocalCellId(本地小区标识) 含义:该参数表示小区的本地标识,在本基站范围内唯一标识一个小区。 界面取值范围:0~17 单位:无 MML缺省值:无 建议值:无 2、CellName(小区名称) 含义:该参数表示小区名称。 界面取值范围:1~99个字符 单位:无 MML缺省值:无 建议值:无

LTE网络规划设计培训心得报告-学习培训心得体会.doc

LTE网络规划设计培训心得报告-学习培训 心得体会-好范文网 5月13日公司组织了一次LTE网络规划设计培训。首先,非常感谢公司领导给我们安排的这次非常难得的培训课程,经过两天LTE网络规划设计的培训,使我对LTE网络规划设计体系有了一个初步的了解与认识,下面是此次培训学习的主要心得与体会。 老师围绕着LTE中的关键技术OFDM和MIMO,讲演了LTE 的产生驱动,后续发展,现网应用等,让我们明确了后续工作的开展方向。 1、 做好对运营商不同网络协同发展工作的支撑

首先,在目前LTE仍处于实验网阶段,要先行做好CDMA、CDMA2000、LTE三网协同发展的网络规划设计工作,为电信运营商做好网络建设和网络优化工作提供帮助。 2、 工程建设理念要契合LTE组网需求 通过老师对LTE的各类技术要求、规范,让我们了解了LTE 网络给我们的设计工作内容带来的几项新变化,分别是移动应用宽带化、网络架构扁平化。这些变化将与我们现有的设计内容息息相关。

首先,移动应用宽带化对承载网提出了跨代需求,以前PTN 网络均采用1G总带宽组网方式,但随着LTE的到来,站点内PTN带宽需求达到10G、这就需要大规模升级PTN网络容量。 其次,网络架构扁平要求核心网与蜂窝站点直连,全IP化配置。对传输线路资源提出了新的需求。因此,需要在现有设计中合理规划好光缆线路资源。 培训学习虽然已经结束了,但我知道有更重的学习和工作任务在后面。思想在我们的头脑中,工作在我们的手中,坐而言,不如起而行! 路虽远,行则将至;事虽难,做则必成。在以后的工作中,我会不断努力,不断学习,为做一名优秀的设计人员而努力,为公司的发展做出自己的贡献。

TDD-LTE学习心得体会-LTE单验

LTE单验 LTE的单验只要分两种情况,一种是室外宏站的单验,另一种是室分系统基站的单验。两种不同情景下的单验,测试内容基本相似,但是在具体的操作上存在着各自的差异。 一、单站点验证准备工作 1、整理工参表:可从设计院或客户获得基站设计信息,如基站名、基站地址、经纬度、天线高度、方向角、下倾角(包括机械及电子下倾角)、天线类型、天线挂高、规划的小区数据(如eNodeB ID、Cell ID、PCI、邻区)等; 2、向客户或工程安装人员了解站点情况(联系人、上站条件如钥匙等、基站地址、环境)、天线安装情况; 3、测试设备的检查:测试前必须对所有测试设备进行检查,避免因为设备问题导致测试过程中出现故障和测试结果不准确,影响测试进度。检查的设备包括:车辆、电源、测试终端是否齐备、测试电脑、路测软件、USB连接数据线是否正常、GPS(含手持GPS)、USB Hub、SIM卡费用和权限、电源插座、指北针、纸质地图、记事本、坡度计(可选,用于测量天线机械倾角)。 4、询问后台技术人员,当天计划单验的站点及其邻站是否存在告警,确定符合测试的基站环境。 二、现场测试 (一)、室外宏站的单验 1、天面勘察:拍摄天线安装(天线标签)和360度环境的照片(从0度开始,每45度一张共8张),基站主覆盖方向照片,基站天线特写,基站整体特写,进入基站的入口特写,GPS位置。如果不方便测量下倾角,可通过目测估计获得。检查经纬度、天线方向角、天线下倾角、天线挂高是否与规划数据相符,检查覆盖方向是否有阻挡,以及与其它天线的隔离度。 2、配置数据验证:验证频点、PCI、TAC 是否与规划数据一致。 3、扇区接反切换验证:长呼下载测试,绕站cell1 →cell2 →cell3 →cell1做接反验证及切换验证。 4、定点测试(好点RSRP>=-85 dBm & SINR>=23 dB):接入测试,短呼10次验证接入性;FTP下载,做极好点和好点,各一次,速率稳定1分钟后截图(下载大于35M,峰值要达到70M);FTP上传,做极好点和好点,各一次,速率稳定1分钟后截图(上传大于6M,峰值达到7M);3个扇区分别做一遍。 5、测试LOG命名规范:Probe_20141030151419_钦州钦城区城西二路-HLH-2_极好点_下载,Probe_20141030152015_钦州钦城区城西二路-HLH-2_极好点_上传,Probe_20141030153102_钦州钦城区城西二路-HLH-2_attach; (二)、室分系统宏站的单验 1、定点测试(好点RSRP>=-85 dBm & SINR>=15 dB):FTP下载,速率稳定2分钟后截图(单流达到30M,双流达到60M);FTP上传,速率稳定2分钟后截图(上传大于6M);每个RRU分别做一遍。另外在每个基站小区内做一次CSFB测试,华为测试机作为被叫5次。 2、切换验证:在室分基站小区间,室内基站与室外宏站之间做切换,下载或者上传的业务下均可。

LTE学习总结定时器计数器

LTE定时器计数器定时器在协议中介绍

常用定时器介绍

1、T300和N300(RRC连接建立定时器) 启动:UE在发送RRCConnectionRequest时启动此定时器。 关闭:定时器超时前,收到RRCConnectionSetup或者RRCConnectionReject后关闭此定时器。 定时器超时后,若RRCConnectionRequest消息的重发次数小于常量N300,则重发RRCConnectionRequest,否则进入空闲模式。 取值范围:T300:MS100_T300(100毫秒), MS200_T300(200毫秒), MS300_T300(300毫秒), MS400_T300(400毫秒), MS600_T300(600毫秒), MS1000_T300(1000毫秒), MS1500_T300(1500毫秒), MS2000_T300(2000毫秒) N300范围为0-7 建议值:T300:MS200_T300(200毫秒) N300建议3 设置建议:T300的设置应结合UE,EUTRAN处理时延以及传播时延考虑,T300设置越大,UE 等待时间越长,N300设置越大,RRC连接建立可能性越高,同时用于RRC连接建立 的时间也可能越长,有可能出现某个UE反复尝试接入和发送连接建立请求,而对其 他用户造成较强的干扰情况。 2、T301和N301(RRC连接重建定时器) 启动:UE在发送RRCConnectionReestabilshmentRequest时启动该定时器。 关闭:如果UE收到RRCConnectionReestablishment或者RRCConnectionReestablishmentReject或者被选择小区变成不适合小区,则停止该定时 器。 取值范围:T301:MS100_T300(100毫秒), MS200_T300(200毫秒), MS300_T300(300毫秒),

TD-LTE实践总结

TD-LTE技术实践小结 1.实践内容简介(摘要); 原理课程:TD-LTE原理及关键技术 TD-LTE无线网络优化概述 TD-LTE高层信令 TD-LTE路侧作业 TD-LTE优化工具介绍 TD-LTE单站优化 TD-LTE簇优化 设备课程:EMB5116 TD-LTE基站产品介绍 TD-LTEOMC产品介绍 TD-LTE基站数据制作 TD-LTE基站设备开通 2.实践经历简介; 在这一个月的时间里,我们每天都挤着公交去上课,虽然有点挤但还是感觉和学校上课不同,心中充满好奇与欣喜。这个月来有三位老师给我们讲原理课和设备课,在这段时间里我对通信这一行业有了更深的认识,对TD-LTE技术也掌握了不少知识,TD-LTE三大关键技术:频分多址技术OFDMA/SC-FDMA;多天线技术MIMO;干扰抑制技术ICIC。路测中常用的工具以及软件,网络优化、帧结构、网络架构接口、基站板卡、网元布配等知识。还学习了怎样制作基站数据,规划小区进行网元布配,升级数据和基站设备开通等设备实践课知识。 3.关于实践的心得体会。 第一天上课是个女老师,上课讲得生动有趣,看着她好像也是刚毕业的学生吧,总是结合自己过去的一些经历讲给我们听。她给我们从通信这一领域的历史讲起,分析了现在通信所包含的行业以及每个行业应

该具备的一些通信技能。在这节课中,我了解到测试工程师这个职位挺适合女生,为我指明了以后得求职方向。 还有个男老师,上课认真负责,下课和同学们交谈,给我们介绍他的经历。上学期间他曾休学去外边实习,学到不少实践知识。从他自身经历我觉得以后掌握实际的技能是非常重要的,实践才能出真知。他主要负责讲的的是路测以及基站优化这块知识,在课上学到不少,而且在考试之前还给我们说了考试重点。 4.关于实践能力得到锻炼、提高的自我评价和原因分析; 设备课学习了如何进行网元布配,规划小区,增强了动手能力。实践设备开通、数据制作过程中,老师给我们指导书,在边讲解边演示的过程中指导我们。在配置过程中所填写的数据不能马虎,否则会产生错误导致生成数据有误。在刚开始不熟悉的情况下,我们按照指导书一步一步进行,最初产生了错误,但是在小组的共同协助下我们发现并改正了数据,最终数据制作和生成、升级都完成了。 5.实践对自己今后学习生活的影响及展望; 这次实践让我对通信有了更深刻的了解。对于TD-LTE技术的核心有了掌握和理解,我觉得以后如果从事通信这个领域,这些基本的知识是相当有用的。此外,如果去面试,可能在面试官的问题中会涉及这些,我觉得自己还是有信心回答出这些问题的,对我以后的求职是很有帮助的。通信是走在时代前沿的知识领域,在未来会有很大的发展前途,而随着时代的进步,通信技术会不断发展,从2G到3G、4G,我觉得这 次TD-LTE培训课还是不错的。 > 价值 我从此次社会实践掌握了基本的原理,老师自身经历给我的一些启发,对通信领域的更深层认识。在以后的生活学习中,结合实践经历不断完善自身以实现价值。实践单位和同事要求我们掌握基本的知识理论。 > 成绩 我在理论知识、设备数据操作等方面通过平时的认真听讲、做笔记、请教老师取得了成绩。对我以后的求职、职业定位、面试是很有帮助的。 > 不足

LTE学习小结

LTE学习小结 基础知识 WiMAX:World interoperability for Microwave Access 全球微波接入互操作 LTE:Long-Term Evolution (UMTS)的长期演进 EPC:Evolved Packet Core 演进的包核心(核心网) EPS:Evolved Packet System E-UTRAN:Evolved Universal Terrestrial Radio Access Network 演进型通用陆地无线接入网 SAE:System Architecture Evolution 体系架构演进 MME:Mobility Management Entity移动性管理实体 LTE 峰值速率:20Mhz系统带宽下DL 100Mbit/s ,UL 50 Mbit/s LTE 系统延迟:控制面从驻留(camped)状态类似于Idle到Active状态100ms以内 从睡眠(dormant)状态类似于Cell_PCH到Active状态50ms以内 用户面零负载和小IP包情况下用户单向延迟5ms以下 LTE容量:200 ~ 400 user/cell LTE系统带宽支持:1.4MHz、3.0 MHz、5 MHz、10 MHz、15 MHz、20 MHz LTE信道支持:TDD共享一条公共信道,DL、UL使用相同频率;FDD中DL、UL使用不同频率 LTE调制方式:OFDMA(Orthogonal Frequency Division Multiple Access)应用于LTE-DL SC-FDMA(Single-Carrier Frequency Division Multiple Access)应用于LTE-UL MIMO:Multiple-in Multiple out 多输入多输出 multiple antennas:多天线技术 IMS:IP Multimedia Subsystem IP多媒体子系统 SGW:Serving Gateway 服务网关 PGW:Packet Data Network Gateway 交换网关 CQI:Channel Quality Indicator信道质量指标 CP:Cyclic Prefix 循环前缀 RS:Reference Signal 参考信号,通常也称为导频信号 RSRP:(Reference Signal Received Power)主要用来衡量下行参考信号的功率 RSRQ:(Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量 RSSI:(Received Signal Strength Indicator)指的是手机接收到的总功率,包括有用信号、干扰和底噪SINR:(Signal-to-Interference plus Noise Ratio)也就是信号干扰噪声比 LTE的9种传输模式: 1. TM1,单天线端口传输:主要应用于单天线传输的场合 2. TM2,发送分集模式:适合于小区边缘信道情况比较复杂,干扰较大的情况,有时候也用于高 速的情况,分集能够提供分集增益 3. TM3,大延迟分集:合适于终端(UE)高速移动的情况 4. TM4,闭环空间复用:适合于信道条件较好的场合,用于提供高的数据率传输 5. TM5,MU-MIMO传输模式:主要用来提高小区的容量 6. TM6,Rank1的传输:主要适合于小区边缘的情况 7. TM7,Port5的单流Beamforming模式:主要也是小区边缘,能够有效对抗干扰 8. TM8,双流Beamforming模式:可以用于小区边缘也可以应用于其他场景 9. TM9, 传输模式9是LTE-A中新增加的一种模式,可以支持最大到8层的传输,主要为了提升数 据传输速率 测试流程(CDS & E6474) CDS:

LTE学习总结-速率问题定位(前台)

L T E学习总结-速率问题定 位(前台) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

速率不达标问题分析(前台) 测试中问题定位 测试时发现下载速率不达标需关注项: 1、R SRP(参考信号接收功率) 在LTE中表示接收信号强度,测试时一般要求达到-75dBm.如达不到需重新找点,则要求RSRP尽量大于-85dBm。找点时最好在天线主打方向无阻挡位置。 主要用来衡量下行参考信号的功率,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别。 2、S INR(信干噪比) 表示LTE中的信号质量,好点要求大于22。是对速率影响最大的因素。 若RSRP大于-85dBm而SINR不达标,则看邻区列表内邻区信息,看是否有较强邻区信号干扰,若有的话,可以通知后台闭塞邻区或本站其他小区后测试。

3、T ransmission传输模式 传输模式现在用的有TM2(发射分集)、TM3(开环空间复用)、TM7(单流波束赋形)、TM8(双流波束赋形)。一般测试时好点都为TM3.如果在TM2可能为无线环境不好,在TM7或TM8可能虽然RSRP和SINR 都好但不在天线主打方向(站下小区背后或小区副瓣方向)。

4、P DCCH UL\DL Grant Count(上\下调度次数) LTE每秒调度次数,由于调度周期为1MS,所以调度次数为每秒1000次,正常情况下单用户调度次数都要在900以上。 5、B LER(误码率) 正常情况下为10%一下,如果RSRP大于80dBm并且SINR大于22情况下BLER大于10%,则很有可能是外部干扰,可以让后台看一下底噪和上下行干扰。

第5章 定时器计数器2(1)

2、模式1 模式1(M1M0=01)除了使用了THn和TLn全部16位外,其它与模式0相同。 (1)计数工作方式 由于定时器/计数器以加1方式计数,假定计数值为X,则应装入定时器/计数器的初值为: 初值=216-计数值【216=初值+计数值】 所以方式1的计数值范围是:1~65536(216=65536),最大值为:65536 (2)定时工作方式 定时时间t的计算公式为:【t的时间单位为微秒(μs)】 计数值=216-初值 定时时间t=计数值×机器周期 =(216-初值)×(1/晶体振荡频率)×12 在模式1下的情况下,如果fosc=12MHz,最大定时时间为: t=(65536-初值)×(1/12)×12=65536-0=65.536ms 在模式1下的情况下,如果fosc=6MHz,最大定时时间为: t=(65536-初值)×(1/6)×12=(65536-0)×2=131.072 ms。 【例如】:若晶体振荡为12MHz,要定时2.5ms,计算初值。 要定时2.5ms,也可以用模式1。 2500=(216-初值)×(1/12)×12 初值=65536-2500=63036=32768+16384+8192+4096+1024+512+32+16+8+4=1111 0110 0011 1100 ――> THn =0xF6 和TLn=0x3C 在fosc=12MHz时,如果定时时间大于65.536ms,这时用一个定时/计数器直接处理不能实现,这时可用: 1、2个定时/计数器共同处理; 2、1个定时/计数器配合软件计数方式处理。 3、模式2 方式0和方式1的最大特点是计数溢出后,计数器为全0。因此在循环定时或循环计数应用时就存在用指令反复装入计数初值的问题。这不仅影响定时精度,也给程序设计带来麻烦。方式2就是针对此问题而设置的。 该方式可省去用户软件中重装初值的指令执行时间,简化定时初值的计算方法,可以相当精确地确定定时时间。 此模式下定时器寄存器作为可自动重装载的8位计数器(TLn),如下图所示。

LTE培训心得

lte全网架构 lte关键技术: ? ? ? ? ? 频域多址技术(ofdm/sc-fdma)高阶调制与amc(自适应调制与编码) mimo与beam forming(波束赋形) icic(小区间干扰协调) son(自组织网络) mimo系统自适应,就是根据无线环境变化(信道状态信息csi)来调整自己的行为(变 色龙行为)。对于mimo可调整的行为有编码方式、调制方式、层数目、预编码矩阵,要想正 确调整就需要用户端做出反馈(cqi、ri 、pmi),从而实现小区中不同ue根据自身所处位 置的信道质量分配最优的传输模式,提升td-lte小区容量;波束赋形传输模式提供赋形增益, 提升小区边缘用户性能。模式3和模式8中均含有单流发射,当信道质量快速恶化时,enb 可以快速切换到模式内发射分集或单流波束赋形模式。由于模式间自适应需要基于rrc层信 令,不可能频繁实施,只能半静态转换。因此lte在除tm1、2之外的其他mimo模式中均增 加了开环发送分集子模式(相当于tm2)。开环发送分集作为适用性最广的mimo技术,可以 对每种模式中的主要mimo技术提供补充。相对与tm2进行模式间转换,模式内的转换可以在 mac层内直接完成,可以实现ms(毫秒)级别的快速转换,更加灵活高效。每种模式中的开环 发送分集子模式,也可以作为向其他模式转换之前的“预备状态”。 ue要接入lte网络,必须经过小区搜索、获取小区系统信息、随机接入等过程。ue不仅 需要在开机时进行小区搜索,为了支持移动性,ue会不停地搜索邻居小区、取得同步并估计 该小区信号的接收质量,从而决定是否进行切换或小区重选。为了支持小区搜索,lte定义 了2个下行同步信号pss和sss。ue开机时并不知道系统带宽的大小,但它知道自己支持的 频带和带宽。为了使ue能够尽快检测到系统的频率和符号同步信息,无论系统带宽大小,pss 和sss都位于中心的72个子载波上。ue会在其支持的lte频率的中心频点附近去尝试接收 pss和sss,通过尝试接收pss和sss,ue可以得到如下信息:(1)得到了小区的pci;(2) 由于cell-specific rs及其时频位置与pci 是一一对应的,因此也就知道了该小区的下行 cell-specific rs及其时频位置;(3)10ms timing,即系统帧中子帧0所在的位置, 但此时还不知道系统帧号,需要进一步解码pbch;(4)小区是工作在fdd还是tdd模式下; (5)cp配置,是normal cp还是extended cp。 enb功能: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 无线资源管理,包括无线承载控制、接纳控制、连接移动性管理、上/下行动态资源分配 /调度等 ip头压缩与用户数据流加密 ue附着时的mme选择 提供用户面数据向到s-gw的路由寻呼消息和广播消息的调度与发送测量与测量报告 的配置。 寻呼消息分发,mme负责将寻呼消息按照一定的原则分发到相关的enb 安全控制 空闲状态的移动性管理 sae承载控制 非接入层(nas)信令的加密与完整性保护终止由于寻呼原因产生的用户平面数据包支 持由于ue移动性产生的用户平面切换用户数据包的过滤和检查用户ip分 mme功能: s-gw功能: p-sw功能: 控制面协议栈结构 ue lte-uu

LTE每天学习总结—TDD-LTE帧结构详解

LTE帧结构图解 帧结构总图: 1、同步信号(下行) 1-1、PSS(主同步信号) P-SCH (主同步信道):UE可根据P-SCH获得符号同步和半帧同步。PSS位于DwPTS 的第三个符号。占频域中心6个RB。

1-2、SSS(辅同步信号) S-SCH(辅同步信道):UE根据S-SCH最终获得帧同步,消除5ms模糊度。SSS位于5ms第一个子帧的最后一个符号。也占频域中心6个RB,72个子载波,

2、参考信号 2-2、下行 2-1-1、CRS(公共参考信号) 时域(端口0和1的CRS位于每个slot第1和倒数第3个符号,端口2和3位于每个slot 第2个符号) 频域(每隔6个子载波插入1个) 位置:分布于下行子帧全带宽上 作用:下行信道估计,调度下行资源,切换测量

2-1-2、DRS(专用参考信号) 位置:分布于用户所用PDSCH带宽上 作用:下行信道估计,调度下行资源,切换测量 2-2、上行 2-2-1、DMRS(解调参考信号) 在PUCCH、PUSCH上传输,用于PUCCH和PUSCH的相关解调,可能映射到以下几个位置: 1、PUSCH 每个slot(0.5ms) 一个RS,第四个OFDM symbol 2、PUCCH-ACK 每个slot中间三个OFDM symbol为RS 3、PUCCH-CQI 每个slot两个参考信号

2-2-2、SRS(探测参考信号) 可以在普通上行子帧上传输,也可以在UpPTS上传输,位于上行子帧的最后一个SC-FDMA符号,eNB配置UE在某个时频资源上发送sounding以及发送sounding的长度。、 Sounding作用: 上行信道估计,选择MCS和上行频率选择性调度 TDD系统中,估计上行信道矩阵H,用于下行波束赋形 Sounding周期: 由高层通过RRC 信令触发UE 发送SRS,包括一次性的SRS 和周期性SRS 两种方式 周期性SRS 支持2ms,5ms,10ms, 20ms, 40ms, 80ms, 160ms, 320ms 八种周期 TDD系统中,5ms最多发两次

LTE学习总结—LTE附着信令流程

附着流程 UE进行实际业务前的在网络中注册过程,是一个必要的过程,用户只有在附着成功后才可以接收来自网络的服务 流程图 1.RRC Connection Setup Request:UE——ENodeb 无线资源控制协议连接建立请求 2.RRC Connection Setup :ENodb——UE RRC连接设置

3.RRC Connection Setup Complete: UE——ENodeb RRC连接设置完成 4.Initial UE massage:ENodeb——MME 初始UE消息 5.DL NAS Transfer:MME——ENodeb 下行NAS 传输 6.DL Information Transfer:UE——ENodeb 下行消息传输 7.UL Information Transfer:ENodeb——UE 上行消息传输 8.UL NAS Transfer:ENodeb——MME 上行NAS传输 9. DL NAS Transfer:MME——Enodeb 下行NAS传输 10. DL Information Transfer : ENodeb——UE 下行消息传输 11. UL Information Transfer:UE——Enodeb 上行消息传输 12. UL NAS Transfer:ENodeb——MME 上行NAS传输 13. Initial Context Setup Request:MME——Enodeb 初始上下文设置请求 14. Security Mode Command: UE——Enodeb 安全模式命令 15. Security Mode Complete:ENodeb——UE 安全模式完成 16. UE Capability Enquiry:ENodeb——UE UE能力查询 17.UE Capability Information: UE——Enodeb

(完整版)第五章中断系统及定时计数器

第五章中断系统及定时/计数器参考答案 1、80C51有几个中断源?各中断标志是如何产生的?又是如何复位的?CPU 响应各中断时,其中断地址入口是多少? 答:80C51有5个中断源,具体的名称、产生方式、复位方式和中断入口地址如下: (1)INT0(P302), 外部中断0请求信号输入引脚。当CPU检测到P3.2引脚出现有效的中断信号时,中断标志IE0(TCON.1)置一,向CPU 申请中断,中断入口地址为0003H。可由IT0(TCON.0)选择其为低 电平有效还是下降沿有效。当IT0=0时,中断标志在CPU响应中断 时不能自动清零,只能撤除INT0引脚的低电平,IE0才清零;当ITO=1 时,由硬件自动清除IE0标志。 (2)INT1(P3.3), 外部中断1请求信号输入引脚。当CPU检测到P3.3引脚上出现有效的中断信号时,中断标志IE1(TCON.3)置一,向CPU 申请中断,入口地址为000BH。可由IT1(TCON.2)选择其为低电平 有效还是下降沿有效,中断标志复位清零与INTO类同。 (3)TF0(TCON.5), 片内定时/计数器T0溢出中断请求标志。当定时/计数器T0发生溢出时,置位TF0,并向CPU申请中断,入口地址为0013H。 CPU响应中断时,TF0自动清零。 (4)TF1(TCON.7), 片内定时/计数器T1溢出中断请求标志。当定时/计数器T1发生溢出时,置位TF1,并向CPU申请中断,入口地址为001 BH。CPU响应中断时,TF1自动清零。 (5)RI(SCON.0)或TI(SCON.1),串行口中断请求标志。当串行口收完一帧串行数据时置位RI或当串行口发送完一帧串行数据时置位TI, 向 CPU申请中断,入口地址为0023H。RI和TI必须由软件清除。 2、某系统有三个外部中断源1、2、3,当某一中断源变低电平时便要求CPU 处理,它们的优先处理次序由高到低为3、2、1,处理程序的入口地址分别为2000H、2100H、2200H,试编写主程序及中断服务程序(转至相应的入口即可)。 答:ORG 0000H LJMP BOOT ORG 0003H LJMP INT3 ORG 000BH LJMP INT2 ORG 0013H LJMP INT1 ORG 001BH RETI BOOT:ACALL INT0_0 ;中断启动程序 ACALL T0_0 ACALL INT1_0 SETB EA SJMP $

LTE实训报告

成绩 重庆邮电大学通信与信息工程学院移动通信综合实训报告 专业 班级 学号 姓名 实验时间: 重庆邮电大学通信与信息工程学院通信技术与网络实验中心制

一、实验题目 LTE无线侧综合实验 二、实验目的 1.熟悉LTE网络结构 2.了解和学习华为eNodeB设备DBS3900系统功能 3.掌握华为TDD-LTE的eNodeB数据配置方法 4.获得通信网络工程的实际应用技能 三、实验内容

数据脚本: MOD ENODEB: ENODEBID=101, NAME="cytx", ENBTYPE=DBS3900_LTE, LOCATION="cyyfl", PROTOCOL=CPRI; LST ENODEB:; ADD CNOPERATOR: CnOperatorId=1, CnOperatorName="cytx", CnOperatorType=CNOPERATOR_PRIMARY, Mcc="460", Mnc="02"; ADD CNOPERATORTA: TrackingAreaId=1, CnOperatorId=1, Tac=100; ADD BRD: CN=0, SRN=0, SN=6, BT=UMPT; ADD BRD: CN=0, SRN=0, SN=18, BT=UPEU; ADD BRD: CN=0, SRN=0, SN=19, BT=UPEU; ADD BRD: CN=0, SRN=0, SN=2, BT=LBBP, WM=TDD; ADD BRD: CN=0, SRN=0, SN=16, BT=FAN; DSP BRD:; ADD RRUCHAIN: RCN=0, TT=CHAIN, AT=LOCALPORT, HCN=0, HSRN=0, HSN=2, HPN=0, CR=9.8; ADD RRU: CN=0, SRN=60, SN=0, TP=TRUNK, RCN=0, PS=0, RT=MRRU, RN="xinke", ALMPROCSW=ON, ALMPROCTHRHLD=30, ALMTHRHLD=20, RS=TDL, RXNUM=1, TXNUM=1; ADD GPS: GN=0, CN=0, SRN=0, SN=6, CABLETYPE=COAXIAL, CABLE_LEN=20, MODE=GPS, PRI=4; SET CLKMODE: MODE=AUTO; SET CLKSYNCMODE: CLKSYNCMODE=TIME; ADD ETHPORT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, PN=0, PA=COPPER, MTU=1500, SPEED=100M, ARPPROXY=DISABLE, FC=CLOSE, FERAT=10, FERDT=8, DUPLEX=FULL; ADD DEVIP: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, PT=ETH, PN=0, IP="110.110.110.3", MASK="255.255.255.0"; ADD IPRT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, DSTIP="134.134.134.10", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="110.110.110.1", PREF=60, DESCRI="TO MME"; ADD IPRT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, DSTIP="135.135.135.10", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="110.110.110.1", PREF=60, DESCRI="TO SGW"; ADD IPRT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, DSTIP="172.100.100.16", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="110.110.110.1", PREF=60, DESCRI="TO OMC"; LST IPRT:; ADD S1SIGIP: CN=0, SRN=0, SN=6, S1SIGIPID="TO MME", LOCIP="110.110.110.3", LOCIPSECFLAG=DISABLE, SECLOCIP="0.0.0.0", SECLOCIPSECFLAG=DISABLE, LOCPORT=3000, RTOMIN=1000, RTOMAX=3000, RTOINIT=1000, RTOALPHA=12, RTOBETA=25, HBINTER=5000, MAXASSOCRETR=10, MAXPATHRETR=5, CHKSUMTX=DISABLE, CHKSUMRX=DISABLE, CHKSUMTYPE=CRC32, SWITCHBACKFLAG=ENABLE,

相关主题
文本预览
相关文档 最新文档