当前位置:文档之家› The relation between AGN hard X-ray emission and mid-infrared continuum from ISO spectra Sc

The relation between AGN hard X-ray emission and mid-infrared continuum from ISO spectra Sc

The relation between AGN hard X-ray emission and mid-infrared continuum from ISO spectra Sc
The relation between AGN hard X-ray emission and mid-infrared continuum from ISO spectra Sc

a r X i v :a s t r o -p h /0402082v 1 3 F e

b 2004

Astronomy &Astrophysics manuscript no.ms0838February 2,2008

(DOI:will be inserted by hand later)

The relation between AGN hard X-ray emission and mid-infrared continuum from ISO spectra:Scatter and uni?cation aspects ?

D.Lutz 1,R.Maiolino 2,H.W.W.Spoon 3,and A.F.M.Moorwood 4

1

Max-Planck-Institut f¨u r extraterrestrische Physik,Postfach 1312,85741Garching,Germany e-mail:lutz@mpe.mpg.de

2

Osservatorio Astro?sico di Arcetri,Largo E.Fermi 5,50125Firenze,Italy e-mail:maiolino@arcetri.astro.it

3

Cornell University,Dept.of Astronomy,219Space Science Building,Ithaca,NY 14853-6801,USA e-mail:spoon@https://www.doczj.com/doc/f07085049.html,

4

European Southern Observatory,Karl-Schwarzschild-Str.2,85748Garching,Germany e-mail:amoor@https://www.doczj.com/doc/f07085049.html,

Received 10/12/2003;accepted 26/01/2004

Abstract.We use mid-infrared spectral decomposition to separate the 6μm mid-infrared AGN continuum from the host emission in the ISO low resolution spectra of 71active galaxies and compare the results to observed and intrinsic 2-10keV hard X-ray ?uxes from the literature.We ?nd a correlation between mid-infrared luminosity and absorption corrected hard X-ray luminosity,but the scatter is about an order of magnitude,signi?cantly larger than previously found with smaller statistics.Main contributors to this scatter are likely variations in the geometry of absorbing dust,and AGN variability in combination with non-simultaneous observations.There is no signi?cant di?erence between Type 1and Type 2objects in the average ratio of mid-infrared and hard X-ray emission,a result which is not consistent with the most simple version of a uni?ed scheme in which an optically and geometrically thick torus dominates the mid-infrared AGN continuum.Most probably,signi?cant non-torus contributions to the AGN mid-IR continuum are masking the expected di?erence between the two types of AGN.Key words.Galaxies:active,Galaxies:Seyfert,Infrared:galaxies,X-rays:galaxies

1.Introduction

The mid-infrared and hard X-rays are two of the regions of the electromagnetic spectrum that are of particular in-terest for the study of active galactic nuclei (AGN).Hard X-rays,unless extremely obscured in fully Compton-thick objects,can provide a direct view to the central engine,and are often believed to be a reasonable isotropic mea-sure of the bolometric luminosity of the AGN.The nu-clear infrared continuum in Seyferts,in contrast,is due to AGN emission reprocessed by dust,either in the putative torus or on somewhat larger scales,e.g.inside the Narrow Line Region.The observed mid-infrared emission is thus a function not only of the AGN luminosity but also of the distribution of the obscuring matter and of the viewing direction of the observer.In the most simple form this is due to the covering factor and distance of the obscuring

2 D.Lutz et al.:Mid-infrared and hard X-ray emission in AGN

the very powerful AGN.One way to address this di?culty is high spatial resolution imaging from groundbased tele-scopes,e.g.in the L-and M-bands(e.g.Alonso-Herrero et al.2001)or the N-band(e.g.Maiolino et al.1995;Krabbe et al.2001).This method produces reliable results in cases of good surface brightness contrast between AGN and host,but can face ambiguities in cases where the AGN is surrounded by intense star formation on scales similar to the spatial resolution used,in particular if the observa-tions are di?raction limited by a moderate size telescope (e.g.NGC6240,NGC4945;Krabbe et al.2001).

We use the alternative approach of isolating the AGN mid-infrared continuum spectrally,making use of the size-able database of low resolution mid-infrared spectra of AGN that are a legacy of the Infrared Space Observatory ISO.Low resolution spectra of galaxies can be decomposed into three components(Laurent et al.2000):A component dominated by the aromatic‘PAH’features arising in pho-todissociation regions or the di?use interstellar medium of the host,an H II region very small grain continuum rising steeply towards wavelengths beyond10μm,and for active galaxies a typically?atter thermal AGN dust continuum. Starlight is unimportant except for quiescent objects like ellipticals or nearby spirals with weak central star for-mation or AGN activity.The three components may also be obscured,with the additional complication of ice fea-tures(Spoon et al.2002).A full spectral decomposition accounting for all these e?ects can be attempted in cases of good signal-to-noise ratio and full wavelength cover-age(e.g.Tran et al.2001,Spoon et al.2003).Since most of our data are for the restricted ISOPHOT range(5.8to 11.8μm)that limits the accuracy of separating silicate ab-sorption and PAH emission,and since some spectra are of limited S/N,we follow a more straightforward approach.

In the range covered by the ISOPHOT spectra,the AGN emission is most easily isolated shortwards of the complex of aromatic emission features(Laurent et al. 2000).We determine a continuum at6μm rest wave-length,and eliminate non-AGN emission that will in many cases be present in the fairly large beam.This is done by subtracting a star formation template scaled with the strength of the aromatic‘PAH’features arising in the host or in circumnuclear star formation.This method does not require to spatially resolve the AGN from the contaminat-ing star formation,and will face its limits only when trying to identify a weak AGN in the presence of strong star for-mation or a stellar continuum that can be detectable for the most nearby galaxies.Our sample of71AGN is then used to quantify the relation of mid-infrared and X-ray emission at signi?cantly better statistics than previously possible.

2.Data

We have included in our sample those Seyferts or Quasars with low resolution spectra in the ISO archive for which hard X-ray observations were available in the literature. Since our main goal is a comparison of thermal infrared emission with hard X-rays we have excluded objects be-lieved to have a signi?cant synchrotron contribution in the

mid-infrared(e.g.Cen A,3C273).Of the Ultraluminous Infrared Galaxies for which a signi?cant number of ISO spectra is available,we have restricted ourselves to a num-

ber of the brightest objects with clear and undisputed AGN contribution.

2.1.Infrared Spectroscopy

Most of the spectra are from a rereduction of chopped

ISOPHOT-S spectra of galactic nuclei in the ISO archive (Spoon et al.2004,in preparation).The reduction was

done using PIA1version9.0.1.Steps in the data reduc-tion included:1)deglitching on ramp level.2)subdivision of ramps in four sections of32non destructive read-outs.

3)ramp?tting to derive signals.4)masking of bad signals by eye-inspection.5)kappa sigma and min/max clipping on remaining signal distribution.6)determination of av-

erage signal per chopper plateau.7)masking or correction of bad plateaux by eye-inspection.8)background subtrac-

tion by subtracting o?-source from on-source plateaux.9)?nally,?ux calibration,using the signal dependent spec-tral response function.The absolute calibration is accurate

to within20%.The ISOPHOT-S aperture is24′′×24′′and in many cases includes noticeable host emission.A few spectra are based on di?erent reductions.Circinus

and NGC1068were observed in staring mode,and for NGC4945the ramp division of step2)used only two sec-tions.Mrk1014was reduced with the earlier PIA7.2and scaled to the PIA9.0.1?ux scale.For NGC1808we have used an ISOCAM-CVF spectrum(Laurent et al.2000and https://www.doczj.com/doc/f07085049.html,munication).

We derive the6μm AGN continuum by a decompo-

sition over a range from5.5μm rest wavelength(or the minimum rest wavelength covered)to6.85μm.With the exception of the6.2μm PAH feature(also associated with a continuum-like‘plateau’),this region is relatively free of spectral structures or strong emission lines.Absorption features from ice(6μm)and hydrocarbons(6.8μm)are found in highly obscured objects but are mostly unde-tected in our AGN sample(see Spoon et al.2002).We can thus?t the spectrum by the superposition of a star forma-tion component dominated by the6.2μm PAH feature and a simple linear approximation for the AGN continuum. For the star formation component,we use the SWS spec-trum of M82(Sturm et al.2000),rebinned to the exact sampling of the individual low resolution spectra.Fig.1 illustrates this using the example of NGC7469which is well known to host both a powerful Type1AGN and a strong circumnuclear star forming ring(e.g.,Mazzarella et al.1994,Genzel et al.1995).The correction for‘contin-uum’associated with the aromatic emission is relatively modest in this object,but more than half in some Seyferts in our sample.The results of the?t procedure are a6μm

D.Lutz et al.:Mid-infrared and hard X-ray emission in AGN

3

Fig.1.Illustration of the decomposition used to isolate the AGN continuum.Top panel:ISOPHOT-S spectrum of the mixed AGN/starburst galaxy NGC 7469,showing strong PAH emission as well as an elevated continuum.Bottom panel:Cutout of the region around the 6.2μm PAH feature.Top continuous line =observed spectrum.Top dotted line =?t by the sum of the rebinned SWS M82PAH spectrum and a linear AGN continuum.Bottom dotted line =?tted AGN continuum.Bottom continuous line =di?erence of observed spectrum and ?tted PAH component.The thick vertical line indicates the AGN 6μm continuum,obtained by evaluating the ?tted continuum at that wavelength.An additional correction is applied to this value to account for di?erences between M 82and an average starburst.

continuum as illustrated in Fig.1and an average ?ux den-sity of the PAH component over the rest wavelength range 6.1to 6.35μm,both including a 1+z correction so that the rest frame spectrum νf νmatches the observed frame one.The SWS spectrum of M 82is technically well suited for this decomposition but represents just a single ob-ject that may be not fully representative for star form-ing objects in general,given a certain dispersion in relative importance of ‘PDR’and ‘HII’components in the sense of the model of Laurent et al.(2000).We have thus applied the decomposition also to a number of bona ?de star forming galaxies (NGC 23,NGC 232,NGC 520,IC 342,NGC 3256,M 83,NGC 5653,NGC 6090,NGC 6946,NGC 7252,NGC 7552),excluding starbursts

with clear evidence for an additional minor AGN (e.g.NGC 3690,Della Ceca et al.2002).Indeed,M 82is found to have relatively low 6μm continuum compared to most of these objects.Averaging over all these star forming ob-jects including M82we ?nd a mean residual 6μm contin-uum which is 0.096times the average 6.1to 6.35μm PAH ?ux density,with a dispersion of 0.085.We consider both this average value and the dispersion in our analysis of AGN.The 6μm AGN continua listed in Table 1are the values obtained after subtracting from the direct ?t result 0.096times the average 6.1to 6.35μm PAH ?ux density.Error estimates for the 6μm continuum are the quadratic sum of two components.The ?rst is a measurement error based on individual pixel noise derived from the disper-sion in the di?erence of observation and ?t.The second is 0.085times the average 6.1to 6.35μm PAH ?ux den-sity,thus considering the dispersion in the properties of the comparison star forming galaxies.Either component is found to dominate for part of the AGN sample,de-pending on S/N and the relative importance of the PAHs.Limits quoted in Table 1are 3σlimits based on these con-siderations.

We ascribe the 6μm continuum derived in this way to an AGN.This is not strictly correct in all cases,as very in-tense star forming environments outside of the parameter range covered by our comparison objects also can produce a stronger continuum with relatively weak PAH at these wavelengths.This is true,for example,for the obscured re-gion in SBS 0335-052(Thuan et al.1999),the mid-infrared peak in the Antennae (Mirabel et al.1998),and likely the circumnuclear region of Arp 220(Spoon et al.2003).We consider this of minor importance,however,for our sam-ple which does not include star forming dwarfs,and only some of the best established AGN among the ULIRGs.In some of the weaker AGN in nearby galaxies,pho-tospheric emission from the central old stellar population may contribute signi?cantly to the measured 6μm con-tinuum.The 6μm stellar continuum can be extrapolated from the stellar K-band continuum.From four ellipticals without PAH emission (NGC 3379,NGC 4374,NGC 2300,NGC 4649;Lu et al.2003,Xilouris et al.2003,S.Madden https://www.doczj.com/doc/f07085049.html,m.)we estimate a scaling S 6μm ~0.19×S 2.2μm .We cannot directly apply this extrapolation to our sam-ple objects,since it applies only to the stellar K-band,and decompositions of the K-band continuum inside our aperture into stellar and AGN are usually not available.We have veri?ed,however,that the conclusions reached in Sect.3are robust to stellar continuum contributions.For this purpose,we have repeated as an extreme assumption our analysis after subtracting directly from the 6μm con-tinuum obtained in the spectral decomposition 0.19times the total K-band continuum in an ISOPHOT-S aperture,which can be extrapolated with modest uncertainty from 2MASS data accessible in NED.The results given in Table 2did not change signi?cantly.We did not adopt these val-ues,however,since they imply a systematic overcorrection for the many AGN dominated objects.Instead,we mark

4 D.Lutz et al.:Mid-infrared and hard X-ray emission in

AGN

Fig.2.Distance distribution for the objects in our sam-

ple,separated by Type1(1to1.5)and2(1.8to2)

Seyferts.Light shading identi?es those Seyfert2’s where

no absorption correction to the AGN hard X-ray emis-

sion was possible.We adopted distances derived assuming

H0=75,q0=0.5except for M51(8.4Mpc),M81(3.63Mpc)

and Circinus(4Mpc).

in

Table1the few cases where a strong stellar contribution

to our measured6μm continuum is likely.

We do not attempt a correction of the mid-infrared

?uxes for foreground extinction.Published extinction val-

ues for those objects refer to di?erent tracers,and their

applicability to the region dominating the mid-infrared

?ux is uncertain.Since the extinction at6μm is1/20or

less of the visual extinction,typical A V values from op-

tical studies are irrelevant in any case.In the discussion

of individual objects in the Appendix,we also mention

NGC6240and NGC4945where obscuration of the mid-

infrared AGN continuum is likely signi?cant.

2.2.X-ray emission

We have compiled the X-ray?uxes in the2-10keV range

from various literature sources using data from di?erent

satellites(e.g.ASCA,BeppoSAX,Chandra,XMM).For

Seyfert2s for which the absorbing column density N H

could be measured(most cases),the authors generally pro-

vide reliable measurements of the instrinsic,absorption-

corrected hard X-ray?ux.The intrinsic X-ray?ux cannot

Fig.3.Observed hard X-ray?uxes vs.6μm AGN contin-

uum for the sample galaxies.Diamonds indicate Type1

Seyferts(including objects classi?ed as types1,1.2,1.5),

asterisks indicate Type2Seyferts(including objects clas-

si?ed as types1.8,1.9,2).Thin horizontal lines,in most

cases smaller than the symbols,indicate the1σuncer-

tainty of the6μm detections.

be recovered when only a lower limit to N H is inferred;

this is the case for totally Compton thick nuclei with

N H>1025cm?2,which are absorbed at all energies,or for

mildly Compton thick nuclei with N H>1024cm?2which

are lacking data at E>10keV,i.e.for which any transmit-

ted?ux at high energy cannot be probed.For Seyfert1

galaxies without published X-ray column we have assumed

that observed and intrinsic?ux can be safely adopted to be

equal because of typically low absorbing columns.Figure2

shows the distance distributions both for the full sample

and for the subsample with absorption corrected X-ray

?uxes.

3.Results

The observed mid-infrared and hard X-ray?uxes are

listed in Table1and summarized in Fig.3.The diagram

shows the expected separation between Type1and Type

2Seyferts,hard X-ray emission in the latter often be-

ing strongly absorbed.More interesting is the comparison

with absorption corrected X-ray?uxes shown in Fig.4.A

correlation between hard X-rays and infrared continuum

is indicated in this diagram but with considerable scat-

ter that is not due to observational error in the mid-IR

spectra.There is no o?set between Type1and2objects

any more.Fig.5compares mid-infrared and X-ray lumi-

nosities.Hard X-ray and mid-infrared luminosity correlate

over four orders of magnitude in luminosity,the ratio of

the two shows no clear trend with luminosity.The data

D.Lutz et al.:Mid-infrared and hard X-ray emission in AGN5 Table1.Infrared and hard X-ray?uxes for our sample.The6μm?ux refers to the AGN continuum exclusively and is derived from ISO low resolution spectra as described in the text.Hard X-ray data have been taken from the references listed.

Mrk3346582Sy1.80.03570.00540.80??5Polletta96

Mrk3357730Sy10.1508<0.03020.96 4.00.96Gondoin02 NGC345931Sy2<0.08040.1810<0.39??Polletta96

I Zw118342Sy10.1859<0.03250.68 3.00.68Reeves00 Fairall914095Sy10.1386<0.0188 1.53 2.3 1.53Gondoin01a NGC526A5725Sy1.90.1114<0.0182 1.80200.0 1.93Landi01

Mrk3595215Sy10.04320.03180.74 4.80.74OBrien01

Mrk101448900Sy10.0218<0.0222 1.24? 1.244Boller02

Mrk5907910Sy10.11320.0232 1.97? 1.974Malizia99 NGC10681148Sy211.2195 1.24910.35>1e5?5Matt97

4U0241+6113200Sy10.2673<0.0269 3.57150.0 3.82Malizia97 NGC10971275Sy1<0.30870.85320.17 6.00.17Iyomoto96 NGC11448648Sy2<0.0135<0.0119<11.00??Polletta96 NGC13651636Sy1.8<0.5582 1.20060.664000.0 2.31Risaliti00 NGC1386868Sy20.1684<0.03490.02??5Maiolino98 Mrk61810658Sy130.0179<0.02870.70 3.00.70Rao92

04385-08284527Sy20.2205<0.0119 1.80??5Polletta96 NGC16674547Sy21<0.05420.13600.003>1e4??5Bassani99 NGC18081000Sy21<0.5108 1.99830.09320.00.11Bassani99

Ark1209682Sy10.11060.0215 3.58? 3.584Nandra94 05189-252412760Sy20.21140.04160.36800.00.95Severgnini01 MCG8-11-116141Sy1.50.1890<0.0207 5.66<2.0 5.66Perola00

Mrk34050Sy20.0931<0.01770.65 1.1e4 4.08Cappi99

Mrk65536Sy1.50.1424<0.0183 1.201000.0 2.00Immler03

PG0804+76130000Sy10.0778<0.01030.88<40.00.88George00

M81-34Sy1.830.3835<0.0278 1.509.4 1.50Bassani99 NGC32271157Sy1.50.15180.08620.75650.00.76Gondoin03a UGC61008778Sy2<0.01860.0249<1.14??Polletta96 NGC35162649Sy1.50.2111<0.0635 4.41 4.0 4.41Guainazzi01 NGC37832550Sy10.2346<0.02108.50300.08.50Blustin02 NGC39821109Sy2<0.05920.1316<0.42??Polletta96 NGC4051725Sy1.50.2014<0.0768 1.60<1.0 1.60Reynolds97 NGC4151995Sy1.50.9175<0.04559.00300.09.00Yang01

Mrk7663876Sy1.50.14150.0354 3.0080.0 3.00Matt00

NGC43882524Sy20.12980.1213 1.204300.0 4.30Bassani99 NGC45073538Sy20.19540.0625 2.102900.07.03Bassani99 NGC45791519Sy1.930.0966<0.03560.44240.00.44Bassani99 NGC45932698Sy10.1836<0.0271 3.71 2.0 3.79Perola02

NGC4945560Sy22<0.9092 2.32300.54 4.0e419.00Guainazzi00 NGC5033875Sy1.930.06910.15880.55290.00.55Bassani99

M51463Sy230.08800.12670.03 5.6e4 1.28Fukazawa01 NGC52731089Sy1.90.0216<0.0190<1.17??Polletta96

Mrk27311132Sy20.07250.06170.064900.00.35Bassani99

IC4329A4813Sy10.4723<0.025016.4042.016.80Gondoin01b Mrk46314904Sy20.2518<0.03040.041600.00.09Bassani99 Circinus439Sy2 4.6688 4.7199 1.40 3.6e440.00Matt99

NGC55061853Sy1.90.66070.06658.38340.010.80Bassani99

IC43974419Sy2<0.02280.0587 2.23??5Polletta96 NGC55485149Sy1.50.13020.0267 4.3051.0 4.30Reynolds97 NGC56431199Sy20.06100.09260.13>1e5?5Maiolino98 NGC56747474Sy1.9<0.02550.05620.84200.0 1.28Bassani99

Mrk84110852Sy1.50.05950.0190 1.00? 1.004Reynolds97

6 D.Lutz et al.:Mid-infrared and hard X-ray emission in AGN

Table1.continued

NGC59292492Sy230.0171<0.0273<0.79??Polletta96 15307+3252277700Sy20.0073<0.0023<0.007??Ogasaka97 PG1613+65838700Sy10.0394<0.02060.69 3.00.69Lawson97 NGC62407339Sy20.06980.20930.19 2.2e414.0Vignati99 Mrk50716758Sy20.00940.01410.0534.00.05Bassani99 H1821+64389038Sy10.0972<0.0114 2.34<1.8 2.34Reeves00 ESO141-G5510793Sy10.0862<0.0238 2.65 5.5 2.65Gondoin03b 19254-724518500Sy20.0786<0.05930.02>1e4?5Braito03 Mrk50910312Sy10.12260.0345 5.66<1.0 5.66Perola00 PKS2048-573402Sy20.25810.0153 1.202400.0 3.00Bassani99 PG2130+09918630Sy10.0860<0.02270.53<19.00.53Lawson97 NGC72131792Sy1.530.14700.0181 3.66? 3.664Malizia99 NGC73141422Sy1.90.0442<0.0384 3.56120.0 4.05Bassani99 Ark5647400Sy10.06520.0134 2.0010.0 2.00Turner01 NGC74694892Sy10.17880.3873 2.90<0.4 2.90Reynolds97 23060+050552200Sy20.0963<0.03010.15900.00.25Brandt97 NGC75821575Sy20.18270.6378 1.551200.0 2.72Bassani99 NGC76748713Sy20.15410.05940.05>1e5?5Bassani99 NGC76795138Sy1<0.08270.32090.60 5.00.60DellaCeca01

D.Lutz et al.:Mid-infrared and hard X-ray emission in AGN

7

Fig.6.Histograms showing for the two Seyfert types the logarithm of the ratio between intrinsic hard X-ray ?ux and 6μm AGN continuum.Dark shadings indicates ob-jects with upper limits for the 6μm continuum,i.e.lower limits for the ratio shown.

the exception of the outlier NGC 6240the ratio of intrinsic hard-X and mid-IR emission varies by just a factor of 3-4.This was probably a fortuitious e?ect of the small sample including ~10times less objects than the present study.Given the many factors of AGN spectral energy distribu-tion and geometry relating the hard X-ray ?ux and the dust reradiation of AGN emission in the mid-infrared,the larger scatter is not surprising.Another signi?cant contri-bution to the spread is likely due to AGN variability.The X-ray and infrared measurements summarized in Table 1were usually taken several years apart.Even in case of simultaneous observations,short term variability of the central engine may contribute to the scatter because of di?erent time response and time averaging e?ects for the X-rays and for the larger scale dust.

3.2.No signi?cant di?erence between Seyfert 1and

Seyfert 2types

A surprising result given the reasonable statistics of the present sample is the failure to detect the di?erence be-tween Type 1and Type 2Seyferts that is predicted by the most straightforward versions of uni?ed models.The median log(F(2-10keV)/νF ν(6μm))is -0.41for Type 1ob-

jects and -0.63for Type 2.This would not change strongly replacing the few lower limits by detections (Fig.6).The key point is not the small di?erence found,which might even be reduced slighlty if some of the Sy2limits were replaced by detections or with full correction for stellar continuum,it is the failure to detect a strong and sig-ni?cant di?erence in the opposite direction.If the mid-infrared continuum in Seyfert 2s is suppressed by a factor of ~8(Clavel et al.2000),the hard X/IR ratio should be higher by the same factor compared to Seyfert 1s.While our targets are from a heterogeneous set of ISO observing programs,they do not represent a preselection by mid-IR ?ux which may a?ect such a comparison.The main ob-serving programs involved did not invoke such a selection.A major part,e.g.,is formed by objects from the CfA sample (Huchra &Burg 1992).Also,for example,most AGN from the hard X-ray selected sample of Piccinotti et al.(1982)are included.As discussed by Maiolino &Rieke (1995),samples like the CfA one may be biased against obscured objects and thus not reproduce the real fractions of Seyfert types.Our analysis normalizing to intrinsic X-rays should be robust to such e?ects as long as reaching lower but still signi?cant numbers of obscured systems.

In uni?ed schemes (e.g.Antonucci et al.1993),the di?erence between Seyfert types is due to e?ects of view-ing intrinsically similar objects from di?erent directions,because an anisotropic distribution of absorbing material (e.g.the ‘torus’)absorbs,scatters,and reprocesses the direct AGN light.In the most simple version,a central very small source (also emitting the X-rays)illuminates a torus-like geometrically and optically thick dusty struc-ture.Radiative transfer models of the emission from a geometrically and optically thick torus (e.g.Pier et al.1992,Efstathiou &Rowan-Robinson 1995,Granato et al.1997,Nenkova et al.2002)predict a strong anisotropy of the mid-infrared emission.The uni?ed model in this case clearly predicts for Seyfert 2galaxies a higher ratio of absorption corrected X-ray emission and mid-infrared continuum.

In a simple uni?ed scheme invoking a torus,the ratio of intrinsic hard X-ray to observed mid-IR emission will increase from a fully face-on to a fully edge-on view.The di?erence between Type 1s and Type 2s could hence be masked if the Type 2s in the sample were preferentially objects with still relatively low obscuring columns,likely seen at intermediate angles.While we had to exclude fully Compton-thick Sy2s from the comparison because of the impossibility to derive an absorption corrected X-ray ?ux,they form well below half of the Sy2sample (5of 38,more could be among the 11Type 2objects where the absorbing column is undetermined or only a limit to the 2-10keV ?ux available).Abandoning for a moment the normalization to X-rays,we have compared the average ratio of 6μm AGN continuum to 6.2μm PAH feature for the Seyfert 2’s with-out intrinsic X-ray ?ux in our sample and the ones where an intrinsic ?ux could be derived.Both using the measure-ments/limits in Table 1and using the raw measurements,the median AGN continuum to PAH ratio is only insignif-

8 D.Lutz et al.:Mid-infrared and hard X-ray emission in

AGN

Fig.7.Ratio of intrinsic hard X-ray?ux and6μm AGN

continuum,plotted as a function of X-ray absorbing col-

umn.

icantly(~20%)smaller for the16Type2objects without

intrinsic X-ray?ux.With all caveats of normalizing to the

PAHs rather than to intrinsic X-rays,this tentatively in-

dicates that in a complete Sy2sample including the fully

Compton-thick objects the mid-infrared AGN continuum

will not be much lower.

More insight can be obtained from plotting the ratio of

X-ray and

mid-infrared emission versus the X-ray absorb-

ing column(Fig.7).Column densities above1023cm?2

are well populated but do not show the upturn in the

hard X/Mid-IR ratio expected at high columns in the sim-

ple uni?ed scheme.In a naive foreground screen the op-

tical depth at6μm exceeds one already below1023cm?2.

Radiative transfer in di?erent more realistic‘torus’geome-

tries(see the large range in the models cited above)will

predict di?erent magnitudes of this e?ect and place it at

di?erent column densities.For example,a strong and fairly

sharp upturn at N H~6×1023cm?2is expected for the

best?tting tapered disk model5e of Efstathiou&Rowan-

Robinson(1995).Placing predictions of future torus mod-

els on a fully empirical diagram like Fig.7should provide

a valuable test of such models that does not make direct

assumptions on viewing angles.Observationally,popula-

tion of the columns around and above1024cm?2will be

important to characterize the e?ect of missing the most

absorbed objects in a sample like ours.

One possibility why we fail to observe the expected

signature of a torus is that much of the mid-infrared emis-

sion is from a more extended region emitting isotropi-

cally,and overwhelming a possible anisotropic emission.

Observations have shown this to be the case for the10μm

emission of NGC1068where at least two thirds of the

emission comes from an extended region overlapping the

Fig.8.Distribution of luminosities of the 6.2μm PAH

emission feature.Dark shading indicates upper limits.

Narrow Line Region(e.g.,Cameron et al.1993,Bock et al.

1998)rather than a compact parsec-scale torus.A similar

result(at least27%extended emission)has recently been

found for NGC4151(Radomski et al.2003).High reso-

lution observations and mid-infrared interferometry with

large telescopes should be able to test in the near future

whether the same applies to other Seyferts.This scenario

of(mostly)larger scale and isotropic AGN continuum at

?rst glance contradicts the results of Clavel et al.(2000),

however,who?nd in their large aperture ISOPHOT-S

data a~8times lower AGN continuum to host PAH ratio

in Seyfert2s compared to Seyfert1s.They ascribed this to

orientation e?ects in a uni?ed scenario,of a magnitude sig-

ni?cantly larger than suggested earlier by Heckman(1995)

and Maiolino et al.(1995).Much of their result could be

an AGN luminosity e?ect rather than an orientation ef-

fect,though.Some of the relevant diagnostics are shown

in Figs.8to10and Table2for our sample which has a

signi?cant overlap with the Clavel et al.(2000)sample.

The distributions of PAH luminosities for the two types

are consistent(Fig.8),but the caveat that only upper

limits to the6.2μm PAH are available for many of the

strong continuum Sy1s has to be noted.This result means

there are no obvious di?erences in the host properties as

probed by the PAH emission,although some di?erences

(as suggested e.g.by Maiolino et al.1995)might be hidden

by the many PAH upper limits,or by sample and phys-

D.Lutz et al.:Mid-infrared and hard X-ray emission in AGN9 Table2.Properties of the Type1and Type2objects.The numbers quoted refer to the combination of detections and limits(see Figs.6to10for the fraction of limits which is highest among the Sy1PAH luminosities).Distances refer to the full sample,all others to the part with extinction corrected hard X-ray data(32Type1,23Type2)

log(Distance)[Mpc] 2.000.50 1.680.61

log(6.2μm PAH luminosity)[erg s?1](41.88)(0.85)41.500.99

log(AGN continuum luminosityνLν(6μm))[erg s?1]43.880.8443.20 1.00

log(Extinction corrected2-10keV luminosity)[erg s?1]43.390.9942.64 1.07

log(F(2-10keV)/μFν(6μm))-0.410.40-0.630.69

10 D.Lutz et al.:Mid-infrared and hard X-ray emission in AGN

profound implications on estimates of the energy budget of obscured X-ray sources.Similar arguments apply to scat-ter induced by intrinsic variations of the AGN spectral en-ergy distributions between the hard X-rays and the wider spectral range that is heating dust.Finally,the strategy of our comparison relies on the assumption of isotropic X-ray emission(once considering the absorption correc-tions).If X-rays were emitted anisotropically and if there were alignment between the structures causing this X-ray anisotropy and a torus absorbing/emitting anisotropically in the mid-IR,the expected di?erence in the ratio of hard X and mid-IR emission could cancel largely.

Our results suggest that local,mostly moderate lu-minosity,Seyferts do not show the behaviour expected if their mid-infrared emission were dominated by a compact, anisotropically emitting torus.This adds to evidence that the most simple version of a uni?ed scheme,in which all AGN at all luminosities are governed by such a structure, is not applicable.Recent deep X-ray and mid-IR surveys indicate signi?cant di?erences in the evolution of high lu-minosity Type1and lower luminosity Type2populations that cannot be reconciled with a single type of obscuring structure in AGN of all luminosities and redshifts(e.g. Franceschini et al.2002).

4.Conclusions

We have used spectral decomposition of a large sample of ISO spectra of AGNs to isolate the AGN6μm con-tinua.We compare these mid-infrared continua to intrin-sic hard X-ray?uxes from the literature,assumed to be a fair isotropic measure of AGN luminosity.Due to this nor-malization,our comparison can test AGN properties and uni?cation aspects without the level of sensitivity to selec-tion biases(e.g.luminosities,ratio of Type1and Type2 objects in the sample)that is found in comparisons of ab-solute quantitities or of normalizations to non-AGN quan-titities.The main results are:

(1)Mid-infrared and intrinsic X-ray?uxes correlate, but with signi?cant scatter.Ratios vary by more than an order of magnitude,the dispersion in the log is0.4for Seyfert1and0.69for Seyfert2galaxies.Main contributors to this spread likely include variations in the AGN spectral energy distribution and geometry of obscuring dust,as well as the e?ects of AGN variability.

(2)There is no signi?cant di?erence between Type 2and Type1in the average ratio of X-ray and mid-infrared continuum,in contrast to expectations from uni-?ed scenarios invoking an optically and geometrically thick torus emitting anistropically in the mid-IR.Most likely,this is due to a large contribution from extended dust components emitting more isotropically.This will dilute anisotropic emission that,however,may still be present at lower levels.

Acknowledgements.We thank Sue Madden for information on the mid-IR properties of elliptical galaxies,the referee for help-ful comments and Eckhard Sturm for discussions.We acknowl-edge support for the ISO spectrometer data center at MPE by DLR(50QI0202).

Appendix A:Notes on selected objects

NGC1808is believed to host both a strong spatially ex-tended starburst(e.g.Krabbe et al.1994)and possibly a weak and likely fading AGN(e.g.Bassani et al.1999), although the X-ray luminosity is low enough to overlap the regime of(also variable)non-AGN Ultraluminous X-ray Sources(ULX).Such objects are found at non-nuclear positions in other starbursting objects(Fabbiano et al. 2003).Because of the combination of strong star forma-tion and weak AGN,the limit on AGN continuum is far o?the correlation between mid-IR and X-rays.

NGC1667is likely another example of a fading‘fossil’AGN(Bassani et al.1999),introducing additional uncer-tainty on the AGN contribution at di?erent wavelengths. For example,if the AGN is turning o?the apparently high N H may be an artifact of the re?ected component remain-ing visible longer.

NGC4945.The6μm continuum is high compared to the average starburst,but not at the level of a signi?cant de-tection of the AGN continuum given the scatter in star-burst properties.The mid-IR weakness and correspond-ing location in our diagrams is certainly in part due to the foreground extinction which is high even in the mid-infrared in this system(Spoon et al.2000).A high reso-lution mid-IR image,if possible outside the silicate band, is needed to break the ambiguity of both this result and the low resolution mid-IR imaging of Krabbe et al.(2001), and reach a mid-IR detection of the AGN.

NGC6240is one of the sources deviating most from the correlation,in the sense of high X-ray and low mid-IR. This could include a contribution of adopting a high es-timate for the intrinsic X-ray emission(cf.also the lower estimate of Ikebe et al.2000),and the likely noticeable ob-scuration of the6μm continuum in this object.See Lutz et al.(2003)for a full discussion of the mid-infrared prop-erties.

Mrk463has a very strong mid-IR AGN continuum but the relatively lowest absorption corrected hard X-ray emis-sion compared to the average relation.The X-ray column may be underestimated.

References

Alonso-Herrero,A.,Quillen,A.C.,Simpson,C.,Efstathiou,A., Ward,M.J.2001,AJ,121,1369

Antonucci,R.1993,ARA&A,31,473

Bassani,L.,Dadina,M.,Maiolino,R.,et al.1999,ApJS,121, 473

Blustin,A.J.,Branduardi-Raymont,G.,Behar,E.,et al.2002, A&A,392,453

Bock,J.J.,Marsh,K.A.,Ressler,M.E.,Werner,M.W.1998, ApJ,504,L5

Boller,T.,Gallo,L.C.,Lutz,D.,Sturm,E.2002,MNRAS,336, 1143

Braito,V.et al.2003,A&A,398,107

D.Lutz et al.:Mid-infrared and hard X-ray emission in AGN11

Brandt,W.N.,Fabian, A.C.,Takahashi,K.,et al.1997, MNRAS,290,617

Cameron,M.,Storey,J.W.V.,Rotaciuc,V.,et al.1993,ApJ, 419,136

Cappi,M.et al.1999,A&A,344,857

Clavel,J.,Schulz,B.,Altieri,B.,et al.2000,A&A,357,839 Della Ceca,R.,Pellegrini,S.,Bassani,L.,et al.2001,A&A, 375,781

Della Ceca,R.,Ballo,L.,Tavecchio,F.,et al.2002,ApJ,581, L9

Efstathiou,A.,Rowan-Robinson,M.1995,MNRAS,273,649 Fabbiano,G.,Zezas,A.,King,A.R.,et al.2003,ApJ,584,L5 Franceschini,A.,Braito,V.,Fadda,D.2002,A&A,335,L51 Fukazawa,Y.,Iyomoto,N.,Kubota, A.,Matsumoto,Y., Makishima,K.2001,A&A,374,73

Genzel,R.,Weitzel,L.,Tacconi-Garman,L.E.,Blietz,M., Cameron,M.,Krabbe,A.,Lutz,D.1995,ApJ,444,129 George,I.M.,Turner,T.J.,et al.2000,ApJ,531,52 Gondoin,P.,Lumb,D.,Siddiqui,H.,Guainazzi,M.,Schartel, N.2001a,A&A,373,805

Gondoin,P.,Barr,P.,Lumb,D.,et al.2001b,A&A,378,806 Gondoin,P.,Orr,A.,Lumb,D.,Santos-Lleo,M.2002,A&A, 388,74

Gondoin,P.,Orr,A.,Lumb,D.,Siddiqui,H.2003a,A&A,397, 883

Gondoin,P.,Orr,A.,&Lumb,D.2003b,A&A,398,967 Granato,G.L.,Danese,L.,Franceschini,A.1997,ApJ,486, 147

Guainazzi,M.,Matt,G.,Brandt,W.N.,et al.2000,A&A, 356,463

Guainazzi,M.,Marshall,W.,Parmar,A.N.2001,MNRAS, 323,75

Heckman,T.M.1995,ApJ,446,101

Huchra J.,Burg R.,1992,ApJ,393,90

Ikebe,Y.,Leighly,K.,Tanaka,Y.,et al.2000,MNRAS,316, 433

Immler,S.,Brandt,W.N.,Vignali,C.,et al.2003,AJ,126, 153

Iyomoto,N.,Makishima,K.,Fukazawa,Y.,et al.1996,PASJ, 48,231

Krabbe,A.,Sternberg,A.,Genzel,R.1994,ApJ,425,72 Krabbe,A.,B¨o ker,T.,Maiolino,R.2001,ApJ,557,626 Landi,R.et al.2001,A&A,379,46

Laurent,O.,Mirabel,I.F.,Charmandaris,V.,et al.2000,A&A, 359,887

Lawson,A.J.,Turner,M.J.L.1997,MNRAS,288,920 Lu,N.,Helou,G.,Werner,M.W.,et al.2003,ApJ,588,199 Lutz,D.,Sturm,E.,Genzel,R.,et al.2003,A&A,409,867 Maiolino,R.,Ruiz,M.,Rieke,G.H.,Keller,L.D.1995,ApJ, 446,561

Maiolino,R.,Rieke,G.H.1995,ApJ,454,95

Maiolino,R.,Salvati,M.,Bassani,L.,et al.1998,A&A,338, 781

Malizia, A.,Bassani,L.,Stephen,J. B.,Malaguti,G.,& Palumbo,G.G.C.1997,ApJS,113,311

Malizia,A.,Bassani,L.,Zhang,S.N.,et al.1999,ApJ,519, 637

Matt,G.et al.1997,A&A,325,L13

Matt,G.et al.1999,A&A,341,L39

Matt,G.,Perola,G.C.,Fiore,F.,Guainazzi,M.,Nicastro,F., Piro,L.2000,A&A,363,863

Mazzarella,J.,Voit,G.M.,Soifer, B.T.,Matthews,K., Graham,J.R.,Armus,L.,Shupe,D.L.1994,AJ,107,1274Mirabel,I.F.,Vigroux,L.,Charmandaris,V.,et al.1998,A&A, 333,L1

Nandra,K.Pounds,K.A.1994,MNRAS,268,405 Nenkova,M.,Ivezi′c,Z.,Elitzur,M.2002,ApJ,570,L9 Perola,G.C.et al.2000,A&A,358,117

Perola,G.C.,Matt,G.,Cappi,M.,et al.2002,A&A,389,802 Piccinotti,G.,Mushotzky,R.F.,Boldt,E.A.,et al.1982,ApJ, 253,485

Pier,E.A.,Krolik,J.H.1992,ApJ,401,99

Polletta,M.,Bassani,L.,Malaguti,G.,Palumbo,G.G.C., Caroli,E.1996,ApJS,106,399

O’Brien,P.T.,et al.2001,MNRAS,327,L37

Ogasaka,Y.,Inoue,H.,Brandt,W.N.,et al.1997,PASJ,49, 179

Radomski,J.T.,Pi?n a,R.K.,Packham,C.,et al.2003,ApJ, 587,117

Rao,A.R.,Singh,K.P.,Vahia,M.N.1992,MNRAS,255,197 Reeves,J.N.,Turner,M.J.L.2000,MNRAS,316,234 Reynolds,C.S.1997,MNRAS,286,513

Risaliti,G.,Maiolino,R.,&Bassani,L.2000,A&A,356,33 Severgnini,P.,Risaliti,G.,Marconi,A.,Maiolino,R.,Salvati, M.2001,A&A,368,44

Spinoglio,L.,Malkan,M.A.,Rush,B.,Carrasco,L.,Recillas-Cruz,E.1995,ApJ,453,616

Spoon,H.W.W.,Koornneef,J.,Moorwood,A.F.M.,Lutz,D., Tielens,A.G.G.M.2000,A&A,357,898

Spoon,H.W.W.,Keane,J.V.,Tielens,A.G.G.M.,et al.2002, A&A,385,1022

Spoon,H.W.W.,et al.2003,A&A,in press(astro-ph/0310721) Sturm,E.,Lutz,D.,Tran,D.,et al.2000,A&A,358,481 Thuan,T.X.,Sauvage,M.,Madden,S.1999,ApJ,516,783 Tran,Q.D.,Lutz,D.,Genzel,R.,et al.2001,ApJ,552,527 Turner,T.J.,Romano,P.,George,I.M.,et al.2001,ApJ,561, 131

Vignati,P.et al.1999,A&A,349,L57

Xilouris, E.M.,Madden,S.C.,Galliano, F.,Vigroux,L., Sauvage,M.2003,A&A,in press(astro-ph/0312029) Yang,Y.,Wilson,A.S.,Ferruit,P.2001,ApJ,563,124

从劳厄发现晶体X射线衍射谈

从劳厄发现晶体X射线衍射谈起 摘要:文章从劳厄发现晶体X射线衍射的前因后果谈起。劳厄的这个发现产生了两个新学科,即X射线谱学和X射线晶体学。文中还回顾了布拉格父子对这两个新学科所作的重大贡献,并阐述了X射线晶体学的深远影响。 今年是劳厄(von Lane M)发现晶体X射线衍射九秩之年。 从1895年伦琴(R0ntgen W C)发现X射线到1926年薛定愕(Schrodinger)奠定量子力学基础的30多年是现代物理学诞生和成长的重要时期。在此期间的众多重大发现中,1912年劳厄的发现发挥了极为及时而又十分深远的影响,是很值得我们通过回顾和展望来纪念它的。 我们先来了解一下劳厄发现的前因后果。1912年劳厄发现晶体X射线衍射时是在德国慕尼黑大学理论物理学教授索未菲(Sommerfeld)手下执教。除理论物理教授索未菲外,在这个大学中还有发现X射线的物理学教授伦琴和著名的晶体学家格罗特(Groth)。当时,劳厄对光的干涉作用特别感兴趣,索末菲则在考虑X射线的本质和产生的机制问题,而格罗特是晶体学权威之一,并著书Chemische KristallograPhic (化学晶体学)数卷。身在这样的学府中,劳厄当时通过耳闻目睹也就对 晶体中原子是按三维点阵排布以及X射线可能是波长很短的电磁波这样的想法不会感到陌生或难于接受了。而且看来正当而立之年的他是很想在光的干涉作用上做点文章的。真可谓机遇不负有心人了。这时,索末菲的博士生埃瓦尔德(Ewald P P)来请教劳厄,谈到他正在研究关于光波通过晶体中按三维点阵排布的原子会产生什么效应。这对劳厄有所触发并想到:如果波长短得比晶体中原子间距离更短时又当怎样?而X射线可能正是这样的射线。他意识到,说不定晶体正是能衍射X射线的三维光栅呢。现在劳厄需要考虑的大事是做实验来证实这个想法。当时索末菲正好有个助教弗里德里希(Friedrich W) ,他曾从伦琴教授那里取得博士学位。 他主动要去进行这样的实验。经过几次失败后,他终于取得了晶体的第一个衍射图「(见图1)」。晶体是五水合硫酸铜(CuSO4·5H2O)。 劳厄的发现经过进一步的工作很快取得了一箭双雕的效果:既明确了X射线的本质,测定了波长,开创了X射线谱学,又使测定晶体结构的前景在望,从而将观察晶体外形所得结论经过三维点阵理论发展到230个空间群理论的晶体学,提升为X射线晶体学。这个发现产生的两个新学科,几乎立即给出了一系列在科学中有重大影响的结果。英国的布拉格父子(Bragg W H和Bragg W L)在奠定这两个新学科的基础中起了非常卓越的作用。他们使工作的重心从德国转到英国。将三个劳厄方程(衍射条件)压缩成一个布拉格方程(定律)的小布拉格曾把重心转移的原因归之于老布拉格设计的用起来得心应手的电离分光计”。既然晶体是X射线的衍射光栅,那么,为了测定X射线的波长,光栅的间距当如何得出?1897年巴洛(Barlow W)预测过最简单的晶体结构型式,其中有氯化钠所属的型式。根据当时已知的NaCI的化学式量(58.46)和阿伏伽德罗常数(6.064×1023)以及晶体密度(2.163g/cm2),可以推算出氯化钠晶体(10)原子面的间距d=2.814×10-8cm。 布拉格父子的工作是有些分工的:老布拉格用他的电离分光计侧重搞谱学,很快发现X射线谱中含有连续谱和波长取决于对阴极材料的特征谱线。此后,测定晶体结构主要依靠特征射线。同时还观察到同一跃迁系特征射线的频率是随对阴极材料在元素周期系中的排序递增的,这种频率的排序给出了原子序数。这是对化学中总结出来的元素周期律作出的呼应。小布拉格的工作是沿着X射线晶体学的方向发展的。他一生中从氯化钠和金刚石一直测到蛋白质的晶体结构。从1913年起,他在两年中一连测定了氯化钠、金刚石、硫化锌、黄铁矿、荧石和方解石等的晶体结构。这一批最早测定的晶体结构虽然极为简单,但很有代表性,而且都足以让化学和矿物学界观感一新。同时为测定参数较多和结构比较复杂的晶体结构也进行了理论和技术方面的准备。X射线晶体学能不断采用新技术和解决周相问题的新方法,使结构测定的对象

锂离子电池研究现状

锂硫电池的研究现状 近年来,随着不可再生资源的逐渐减少,清洁能源的利用逐渐得到重视,而电池作为储能装置也受到越来越多的考验。锂硫电池与传统的锂离子电池相比,优势主要在于硫的高比容量,单质硫的理论比容量为1600mAh/g ,理论比能量2600Wh/kg。并且硫是一种廉价且无毒的原材料。而与此同时,硫作为锂电池的正极材料也存在着诸多问题[1]: 1、单质硫以及最终放电产物都是绝缘的,如果与正极中掺入的导电物质结合不好,就会导致活性物质不能参与反应而失效; 2、单质硫在反应过程中会生成长链的聚硫化物离子S n2-,这种离子容易溶解在电解液中,并与锂负极反应,产生“穿梭效应”,引起自放电并使库伦效率降低; 3、在每次放电过程结束之后,都会有一些Li2S2/Li2S沉淀在正极上,并且这些不溶物随着循环次数的增加,在正极表面发生团聚,并且正极结构也会发生变化,导致这部分活性物质不能参与电化学反应而失效,并且使电池的内阻增加; 4、硫正极随充放电的进行会产生约22%的体积变化,从而导致电池物理结构破坏而失效。 针对硫作为正极材料的种种弊端,研究者们分别采用了多种方法予以解决,其中将硫与碳材料复合的研究较多。针对几种典型方法,分别举例介绍如下:一、石墨烯-硫复合材料 Wang等人采用石墨烯包覆硫颗粒的方法制作复合材料电极[2]。如图1所示,他们首先采用化学方法制备了硫单质,并利用一种特殊的表面活性剂Triton X-100在硫颗粒的表面修饰了一些PEG高分子,然后再用导电炭黑和石墨烯的分散液对硫颗粒进行包覆。这种方法的优点在于:首先,石墨烯和导电炭黑具有优异的导电性能,可以克服硫以及硫反应产物绝缘的问题;第二,导电炭黑、石墨烯和PEG高分子对硫颗粒进行了包覆,可以解决硫在电解液中溶出的问题;第三,PEG高分子具有一定的弹性,可以在一定程度上缓解体积变化带来的影响。 二、碳纳米管-硫复合材料 Zheng等人用AAO做模板制备了碳纳米管阵列[3],随后将硫加热使其浸入到碳纳米管中间,然后将AAO模板去掉,得到碳纳米管-硫复合材料,如图2所示。这种方法的优点在于碳纳米管的比表面积大,有利于硫化锂的沉积。并且长径比较大,可以较好地将硫限制在管内,防止其溶解在电解液中。碳纳米管的导电性好管壁又很薄,有利于离子导通和电子传输。同时,因为制备过程中先沉积硫,后去除模板,这样有利于使硫沉积到碳管内,减少硫在管外的残留,从而防止这部分硫的溶解。

(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望 周俊飞 (衢州学院化学与材料工程学院浙江衢州324000) 摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。薄膜型 全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离 子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高 安全性锂二次电池。作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特 征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要 科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。 关键词:储能;全固态锂离子电池;固体电解质;界面调控 1 全固态锂电池概述 全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。同时,具有隔膜作用的电解质层的力学性能的下降将引起电池内部发生短路,从面使电池失效[14-15]。无机固体电解质材料具有机械强度高,不含易燃、易挥发成分,不存在漏夜,抗温度性能好等特点;同时,无机材料处理容易实现大规模制备以满足大尺寸电池的需要,还可以制备成薄膜,易于将锂电池小型化,而且由无机材料组装的薄膜无机固体电解质锂电池具有超长的储存寿命和循环性能,是各类微型电子产品电源的最佳选择[10]。采用有机电解液的传统锂离子电池,因过度充电、内部短路等异常时电解液发热,有自燃甚至爆炸的危险(图3)。从图 3 可以清楚地看到,当电池因为受热或短路情况下导致温度升高后,传统的锰酸锂或钴酸锂液体电解质锂离子电池存在膨胀起火的危险,而基于纯无机材料的全固态锂电池未发生此类事故。这体现了无机全固态锂电池在安全性方面的独特优势。以固体电解质替代有机液体电解液的全固态锂电池,在解决传统锂离子电池能量密度偏低和使用寿命偏短这两个关键问题的同时,有望彻底解决电池的安全性问题,符合未来大容量新型化学储能技术发展的方向。正是被全固态锂电池作为电源所表现出来的优点所吸引,近年来国际上对全固态锂电池的开发和研究逐渐开始活跃[10-12] 2 全固态锂电池储能应用研究进展 在社会发展需求和潜在市场需求的推动下,基于新概念、新材料和新技术的化学储能新体系不断涌现,化学储能技术正向安全可靠、长寿命、大规模、低成本、无污染的方向发展。目前已开发的化学储能装置,包括各种二次电池(如镍氢电池、锂离子电池等)、超级电容器、可再生燃料电池(RFC:电解水制氢-储氢-燃料电池发电)、钠硫电池、液流储能电池等。综合各种因素,考虑用于大规模化学储能的主要是锂二次电池、钠硫电池及液流电池,而其中大容量储能用锂二次电池更具推广前景。。 全固态锂电池、锂硫电池、锂空气电池或锂金属电池等后锂离子充电电池的先导性研究在世界各地积极地进行着,计划在2020 年前后开始商业推广。在众多后锂离子充电电池中,包括日本丰田汽车、韩国三星电子和德国KOLIBRI 电池公司对全固态锂电池都表现出特别的兴趣。图 4 为未来二十年大容量锂电池的发展路径,从图 4 可以看出,全固态电

全固态3D薄膜锂离子电池的研究进展

全固态3D薄膜锂离子电池的研究进展 作者:邓亚锋钱怡崔艳华刘效疆来源:本站浏览数:289 发布时间:2013-8-8 16:28:16 0 引言 全固态薄膜锂离子电池主要由正/负极薄膜、电解质和集流器薄膜组成.整个电池厚约10 μm,可设计成任意形状和大小集成在IC电路中,是便携式电子设备、微电子机械系统(MEMS)以及微型国防技术装备(如微型智能武器)的理想能源。全固态平面薄膜电池(图1)受限于几何结构,能量和功率密度难以满足快速发展的MEMS、微型医疗器械、无线通信、传感器等领域对微电源的要求。全固态三维薄膜锂离子电池(简称3D锂电池)通过独特的构架设计(图2),增大单位立足面积内电极活性物质负载量,并缩短锂离子扩散半径,提高了电池的容量和充放电速率。是解决未来微电子器件能量需求的一种有效方式,引起了人们的极大关注。 1 不同构架的全固态3D薄膜锂电池 1.1 叉指碳柱3D电池 叉指碳柱3D电池由加利福尼亚大学Wang小组于2004年首次提出(图3),在Si/SiO2衬底上涂覆感光胶,光刻得到图形,再经过高温热解及后处理,即制得正/负极叉指状碳柱3D电池。叉指碳柱既可以直接作为电极,又可以作为集流器,在其表面沉积各种电化学活性物质。2008年,Min等研究了在叉指碳柱上电镀十二烷基苯磺酸盐掺杂聚吡咯(PPYDBS)导电聚合物薄膜的方法。结果表明,覆盖约10 μm厚PPYDBS的叉指阴极(C-PPYDBS),电极电位从碳电极的3.2 V提高到了3.7 V(相对于Li/Li+),但自放电较为严重,电池的放电容量远小于充电电容。 为改善叉指碳柱电极性能,Teixidor等制备出包覆中间相碳微球的叉指碳柱(C-MCMB),有效提高了电极不可逆容量,但可逆容量仍较低。Chen等在叉指碳柱上包覆碳纳米管(CNT/C-MEMS)使单位立足面积电容达到8.3 F/cm2,充放电循环性能得到显著提高。 叉指碳柱电极成本低、热力学和化学稳定性好、易制成各种形貌、能包覆不同的活性材料(图4),光刻-热解工艺较为成熟,适合工业化生产。但是,叉指结构放电不均匀、漏电流较大、碳柱在锂离子嵌入和脱出过程中易变形破损,这些问题需进一步研究解决。 1.2 微通道衬底3D电池 1998年,以色列特拉维夫大学的Peled小组首次报道了微通道衬底3D 电池(3D-MCP);在Si片或玻璃上蚀刻出均匀分布、直径为15~50 μm的微通

全固态薄膜锂离子二次电池的研究进展

论 著8 全固态薄膜锂离子二次电池的研究进展 耿利群任岳*朱仁江陈涛 (重庆师范大学物理与电子工程学院,重庆 400047) 摘 要:本文综述了全固态薄膜锂离子二次电池的研究进展,主要阐述了薄膜锂电池的结构设计以及正极、负极和固体电解质材料研究现状,并对其今后的发展趋势及研发热点进行了展望。 关键词:全固态薄膜锂离子二次电池;固体电解质;电池结构 DOI:10.3969/j.issn.1671-6396.2013.01.004 1 引言 随着电子信息工业和微型加工技术快速发展,对其所需的微型能源则提出了特殊微型化的要求。其中全固态薄膜锂离子二次电池因其高的能量密度、强的安全性、长的循环寿命、宽的工作电压和重量轻等优点,成为微电池系统需求的最佳选择[1]。本文主要介绍了全固态薄膜锂离子二次电池的关键性薄膜材料及电池结构的研究现状,并对其的开发应用及研究前景作了分析。 2 全固态薄膜锂离子二次电池结构的研究 薄膜电池结构的设计,对整个电池性能将产生直接的影响;同样对提高电池的能量密度、循环寿命和锂离子的传输速率也起到至关重要的作用。所以优化薄膜电池结构的设计,则是对构造高性能薄膜锂离子电池做到了强有力的支撑。 1993年美国橡树岭国家实验室(ORNL)Bates等[2]研制出了一种经典的薄膜锂离子电池叠层结构(见图1)。在衬底上先沉积两层阴阳极电流收集极薄膜,而后依次沉积阴极、固体电解质和阳极薄膜,最后在薄膜电池外表面上涂一层保护层,以此来防止阳极上金属锂和空气中的一些物质发生化学反应。 图1 薄膜锂离子电池结构剖面示意图 Baba等[3]研发出另一种典型的薄膜锂离子电池结构(见图2)。其较图1薄膜锂电池结构设计更为简单,制作更为容易。在不锈钢衬底上依次沉积各层薄膜电池材料,而在图示中有两个引线端子则是为了便于薄膜电池的连接使用。这种结构设计很好地提高了整个电池的有效面积,进而也极大地改善了薄膜电池的性能。 Nakazawa等[4]利用直流溅射和射频溅射的方法,研制出一种“直立型”全固态薄膜锂离子电池结构(见图3)。该研究小组利用该薄膜电池结构设计,成功制备出有效面积更大的全固态薄膜锂离子电池,这样也使得薄膜电池的能量密度和循环寿命等电化学性能得到大幅度提升。 图2 全固态薄膜锂离子电池结构剖面示意图 图3 “直立型”全固态薄膜锂离子电池剖面示意图 Hart等[5]设计了柱状电极交替排列的微型锂电池结构(见图4)。并对几种不同的正极、负极排列方式进行了相关的研究计算,得出了此薄膜电池的结构能够大大提升薄膜电池本身的能量密度。然而Eftekhari[6]则研制出了一种3-D微型锂电池结构的LiMn2O4电极,与以往微型锂电池结构的LiMn2O4电极在电池容量方面得到了提升。 图4 3-D微电池柱状结构示意图 [正极(灰色) 、负极(白色)交替排列分布]

晶体X射线衍射实验报告全解

晶体X射线衍射实验报告全解

中南大学 X射线衍射实验报告 材料科学与工程学院材料学专业1305班班级 姓名学号0603130500 同组者无 黄继武实验日期2015 年12 月05 日指导教 师 评分分评阅人评阅日 期 一、实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 二、实验原理

1 衍射仪的工作原理 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: 2dsinθ=nλ 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 2 物相定性分析原理 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF文件 3) 从PDF文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF文件中检索出全部物相 3 物相定量分析原理 X射线定量相分析的理论基础是物质参与衍射的体积活重量与其所产生的衍射强度成正比。 当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相时,多晶物质所产生的均匀衍射环上单位长度的积分强度为: 式中R为衍射仪圆半径,V o为单胞体积,F为结构因子,P为多重性因子,M为温度因子,μ为线吸收系数。 三、仪器与材料 1)仪器:18KW转靶X射线衍射仪 2)数据处理软件:数据采集与处理终端与数据分析软件MDI Jade 6 3)实验材料:CaCO3+CaSO4、Fe2O3+Fe3O4

薄膜锂电池

能源材料课程业 ——薄膜锂电池的研究进展 院系:材料科学与工程学院 专业:金属材料与成型加工 班级:2012级金属材成1班 学号:20120800828 姓名:吴贵军

薄膜锂电池的研究进展 摘要:微电子机械系统(MEMS)和超大规模集成电路(VLSI)技术的发展对能源的微型化、集成化提出了越来越高的要求.全固态薄膜锂电池因其良好的集成兼容性和电化学性能成为MEMS和VLSI能源微型化、集成化的最佳选择.简单介绍了薄膜锂电池的构造,举例说明了薄膜锂电池的工作原理.从阴极膜、固体电解质膜、阳极膜三个方面概述了近年来薄膜锂电池关键材料的研究进展.阴极膜方面LiCoO2依旧是研究的热点,此外对LiNiO2、LiMn2O4、LiNixCo1-xO2、V2O5也有较多的研究;固体电解质膜方面以对LiPON膜的研究为主;阳极膜方面以对锂金属替代物的研究为主,比如锡的氮化物、氧化物以及非晶硅膜,研究多集中在循环效能的提高.在薄膜锂电池结构方面,三维结构将是今后研究的一个重要方向.。 关键词:薄膜锂电池;微系统;薄膜:微电子机械系统随着电子集成技术的飞速发展,SO C (System on chi p) 成为 现实,电子产品在不断地小型化、微型化。以整合集成电路及机械系统,如各种传感器于同一块晶片上的技术,即微机电技术,受到了普遍重视。微小型飞行器、微小型机器人和微小型航天器等都在源源不断地出现和进一步地改进。这些微型系统的功能强大,必然对其能源系统提出了微型化的

要求。当电池系统被微型化,电池底面积小于10 m m2、功率在微瓦级以下时,被称为微电池。微电池的制备通常是将传统的电池微型化、薄膜化。目前,用于微电池的体系有:锌镍电池、锂电池、太阳能电池、燃料电池、温差电池和核电池。锂电池是目前具有较高比能量的实用电池体系,因此人们对薄膜化的锂电池投入了大量的研究。 优点: (1)成本低,根据Photon 的预测,预计到2012 年下降到2.08 美元/w;预计薄膜电池的平均价格能够从2.65 美元/w 降至1.11 美元/w,与晶体硅相比优势明显;而相关薄膜电池制造商的预测更加乐观,EPV 估计到2011 年,薄膜组件的成本将大大低于1 美元/w;Oerlikon 更估计2011 年GW 级别的电站其组件成本将降低于0.7 美元/w,这主要是由转化率提高和规模化带来的。 (2)弱光性好 (3)适合与建筑结合的光伏发电组件(BIPV),不锈钢和聚合物衬底的柔性薄膜太阳能电池适用于建筑屋顶等,根据需要制作成不同的透光率,代替玻璃幕墙。 缺点: (1)效率低,单晶硅太阳能电池,单体效率为14%-17%(AMO),而柔性基体非晶硅太阳电池组件(约1000平方厘米)的效率为 10-12%,还存在一定差距。

时间计算题汇总

地理时间计算部分专题练习 1、9月10日在全球所占的围共跨经度90°,则时间为:( ) A. 10日2时 B. 11日2时 C. 10日12时 D. 11日12时 3、时间为2008年3月1日的2点,此时与处于同一日期的地区围约占全球的:( ) A. 一半 B. 三分之一 C. 四分之一 D. 五分之一 4、图中两条虚线,一条是晨昏线,另一条两侧大部分地区日期不同,此时地球公转速度较慢。若图中的时间为7日和8日,甲地为( ) A.7日4时 B.8日8时 C.7月8时 D.8月4时 2004年3月22日到4月3日期间,可以看到多年一遇的“五星连珠”天象奇观。其中水星是最难一见的行星,观察者每天只有在日落之后的1 小时才能看到它。图中阴影部分表示黑夜,中心点为极地。回答5—7题 5.图4中①②③④四地,可能看到“五星连珠”现象的是( ) A .① B .② C .③ D .④ 6.在新疆的吐鲁番(约890 E )观看五星连珠现象,应该选择的时间段(时间)是( ) A .18时10分至19时 B .16时10分至17时 C .20时10分至21时 D.21时10分至22时 7.五星连珠中,除了水星外,另外四颗星是( ) A .金星、木星、土星、天狼星 B .金星、火星、木星、海王星 C .火星、木星、土星、天王星 D .金星、火星、土星、木星 (2002年)下表所列的是12月22日甲、乙、丙、丁四地的白昼时间,根据表中数据回答下8-10题。 甲地 乙地 丙地 丁地 白昼长 5∶30 9∶09 11∶25 13∶56 8、四地中属于南半球的是( ) A.甲地 B.乙地 C.丙地 D.丁地 9、四地所处纬度从高到低顺序排列的是( ) A.甲乙丙丁 B.甲乙丁丙 C.丙丁乙甲 D.丁丙乙甲 10、造成四起白昼时间差异的主要因素是( ) ①地球的公转 ②地球自转 ③黄赤交角的存在 ④地方时的不同 A.①② B.②③ C.③④ D.①③ 2002年1月1日,作为欧洲联盟统一货币的欧元正式流通,这将对世界金融的整体格局产生重要影响。回 答4-5题: 11、假定世界各金融市场均在当地时间上午9时开市,下午5时闭市。如果某投资者上午9时在法兰克福(东经8.50 )市场买进欧元,12小时后欧元上涨,投资者想尽快卖出欧元,选择的金融市场应位于:( ) A.东京(东经139.50 ) B.(东经1140 ) C.伦敦 D.纽约(西经740 ) ① ④ ② ③

小学三年级数学《简单的时间计算》教案范文三篇

小学三年级数学《简单的时间计算》教案范文三篇时间计算是继二十四时计时法的学习之后安排的一个内容。下面就是小编给大家带来的小学三年级数学《简单的时间计算》教案范文,欢迎大家阅读! 教学目标: 1、利用已学的24时记时法和生活中对经过时间的感受,探索简单的时间计算方法。 2、在运用不同方法计算时间的过程中,体会简单的时间计算在生活中的应用,建立时间观念,养成珍惜时间的好习惯。 3、进一步培养课外阅读的兴趣和多渠收集信息的能力。 教学重点: 计算经过时间的思路与方法。 教学难点: 计算从几时几十分到几时几十分经过了多少分钟的问题。 教学过程: 一、创设情景,激趣导入 1、谈话:小朋友你们喜欢过星期天吗?老师相信我们的星期天都过得很快乐!明明也有一个愉快的星期天,让我们一起来看看明明的一天,好吗? 2、小黑板出示明明星期天的时间安排。 7:10-7:30 起床、刷牙、洗脸; 7:40-8:20 早锻炼; 8:30-9:00 吃早饭; 9:00-11:00 看书、做作业 …… 3、看了刚才明明星期天的时间安排,你知道了什么?你是怎么知道的?你还想知道什么?

二、自主探究,寻找方法 1、谈话:小明在星期天做了不少的事,那你知道小明做每件事情用了多少时间吗?每 个小组从中选出2件事情计算一下各用了多少时间。 (1)分组学习。 (2) 集体交流。 2、根据学生的提问顺序学习时间的计算。从整时到整时经过时间的计算。 (1)学生尝试练习9:00-11:00明明看书、做作业所用的时间。 (2)交流计算方法:11时-9时=2小时。 3、经过时间是几十分钟的时间计算。 (1)明明从7:40到8:20进行早锻炼用了多少时间呢? 出示线段图。 师:7:00-8:00、8:00-9:00中间各分6格,每格表示10分钟,两个线段下边 的箭头分别指早锻炼开始的时间和结束的时间,线段图涂色部分表示早锻炼的时间。谈话:从图上看一看,从7时40分到8时经过了多少分钟?(20分)从8时到8时20分又经过 了多少时间?所以一共经过了多少分钟。(20+20=40分)小朋友们,如果你每天都坚持锻炼 几十分钟,那你的身体一定会棒棒的。 (2)你还能用别的方法计算出明明早锻炼的时间吗?(7:40-8:40用了一个小时,去掉 多算的20分,就是40分。或者7:20-8:20用了1个小时,去掉多算的20分,就是 40分。) (3)练习:找出明明的一天中做哪些事情也用了几十分钟? 你能用自己喜欢的方法计算出明明做这几件事情用了几十分钟吗?你是怎么算的? 三、综合练习,巩固深化 1、想想做做1:图书室的借书时间。你知道图书室每天的借书时间有多长吗? 学生计算。 (1)学生尝试练习,交流计算方法。 (2)教师板书。 2、想想做做2。 (1)学生独立完成。 (2)全班交流。

古代时间的计算方法

中国古代时间的计算方法(1) 现时每昼夜为二十四小时,在古时则为十二个时辰。当年西方机械钟表传入中国,人们将中西时点,分别称为“大时”和“小时”。随着钟表的普及,人们将“大时”忘淡,而“小时”沿用至今。 古时的时(大时)不以一二三四来算,而用子丑寅卯作标,又分别用鼠牛虎兔等动物作代,以为易记。具体划分如下:子(鼠)时是十一到一点,以十二点为正点;丑(牛)时是一点到三点,以两点为正点;寅(虎)时是三点到五点,以四点为正点;卯(兔)时是五点到七点,以六点为正点;辰(龙)时是七点到九点,以八点为正点;巳(蛇)时是九点到十一点,以十点为正点;午(马)时是十一点到一点,以十二点为正点;未(羊)时是一点到三点,以两点为正点;申(猴)时是三点到五点,以四点为正点;酉(鸡)时是五点到七点,以六点为正点;戌(狗)时是七点到九点,以八点为正点;亥(猪)时是九点到十一点,以十点为正点。 古人说时间,白天与黑夜各不相同,白天说“钟”,黑夜说“更”或“鼓”。又有“晨钟暮鼓”之说,古时城镇多设钟鼓楼,晨起(辰时,今之七点)撞钟报时,所以白天说“几点钟”;暮起(酉时,今之十九点)鼓报时,故夜晚又说是几鼓天。夜晚说时间又有用“更”的,这是由于巡夜人,边巡行边打击梆子,以点数报时。全夜分五个更,第三更是子时,所以又有“三更半夜”之说。 时以下的计量单位为“刻”,一个时辰分作八刻,每刻等于现时的十五分钟。旧小说有“午时三刻开斩”之说,意即,在午时三刻钟(差十五分钟到正午)时开刀问斩,此时阳气最盛,阴气即时消散,此罪大恶极之犯,应该“连鬼都不得做”,以示严惩。阴阳家说的阳气最盛,与现代天文学的说法不同,并非是正午最盛,而是在午时三刻。古代行斩刑是分时辰开斩的,亦即是斩刑有轻重。一般斩刑是正午

excel表格日期计算

竭诚为您提供优质文档/双击可除 excel表格日期计算 篇一:excel中几个时间计算公式 假设b2为生日 =datedif(b2,today(),"y") datediF函数,除excel2000中在帮助文档有描述外,其他版本的excel在帮助文档中都没有说明,并且在所有版本的函数向导中也都找不到此函数。但该函数在电子表格中确实存在,并且用来计算两个日期之间的天数、月数或年数很方便。微软称,提供此函数是为了与lotus1-2-3兼容。 该函数的用法为 “datediF(start_date,end_date,unit)”,其中start_date 为一个日期,它代表时间段内的第一个日期或起始日期。end_date为一个日期,它代表时间段内的最后一个日期或结束日期。unit为所需信息的返回类型。 “y”为时间段中的整年数,“m”为时间段中的整月数,“d”时间段中的天数。“md”为start_date与end_date日期中天数的差,可忽略日期中的月和年。“ym”为start_date 与end_date日期中月数的差,可忽略日期中的日和年。“yd”

为start_date与end_date日期中天数的差,可忽略日期中的年。比如,b2单元格中存放的是出生日期(输入年月日时,用斜线或短横线隔开),在c2单元格中输入 “=datedif(b2,today(),"y")”(c2单元格的格式为常规),按回车键后,c2单元格中的数值就是计算后的年龄。此函数在计算时,只有在两日期相差满12个月,才算为一年,假如生日是20xx年2月27日,今天是20xx年2月28日,用此函数计算的年龄则为0岁,这样算出的年龄其实是最公平的。 身份证号提取年龄 =datediF(--text((len(a1)=15)*19”即可获得当时的日期时间; 2、使用公式:用=now()而非=date(),=date()只有日期,然后进行菜单“工具->选项”,选择“重新计算”页,选中“人工重算”,勾不勾选“保存前自动重算”看自己的需要和想法了,如果勾选了,那日期时间那总是最后一次保存的日期时间,不勾选的话,如果你的表格中有公式记得准备存前按F9 篇二:excel中如何计算两个日期之间的月数 excel中如何计算两个日期之间的月数

X射线衍射分析

X 射线衍射分析 1实验目的 1、 了解X 衍射的基本原理以及粉末X 衍射测试的基本目的; 2、 掌握晶体和非晶体、单晶和多晶的区别; 3、 了解使用相关软件处理XRD 测试结果的基本方法。 2实验原理 1、 晶体化学基本概念 晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶 体 定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和 物质环境均同,这些“点集”称空间点阵。③晶体结构 =空间点阵+结构单元。非 晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。 对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、 成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的 影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的 图1 14 种Bravais 点阵 表面延伸、链松弛、链的重吸收结晶、表面成核、分子间成核、晶体生长、晶体 生长完善。Bravais 提出了点阵空间这一概念,将其解释为点阵中选取能反映空 间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。满足上述条件棱 间直角最多,同时体积最小。1848年Bravais 证明只有14种点阵。 Bravais lattice Cryslal DerBCfliptlcn CSlnwle) cubic Cubic a - b=? E , a = = 90B BaO/-rentered F*韓?“nl ?喇 (Simple) T etr-Aa^n^ i = b*C i .a=g = 7=SCi , Boa^-tentered ler^go>nal CGlnwle) DfthDmunbic Orlharhanbir 目日即亡时恒创 Orlhorhcmbic Oase-ceMered Offliorhombic Fac$-LBnter$d OnhorhChibie (Simple) Rhombol*edrai Rhombohedr^i (Trigonal) R = b = (;&= p= 7^ 90' 闭卿闾扫D 城帕1 H 曲g 肿对 a = b?iC fc tt=ft=0I]-a 7=12D - ⑻側 1.) MOnlQClHiC Monoclinic a c s a = y= go ■,&4 ger Monodlnlc : (Slrrwle)AnDithl£: Anotlhic (Triclinic) a * : UH p 9D" PDFhAAiNT uaes Ehe 他 dfescnbing lhe pallerrt I Ellice cubic tatnigond orthortiombic rhonibdhedral hdxa.goinal (trigcnal) anortluc (tricl i me) iriufiOchrr ic

时间计算公式

高中地理计算公式 一、时间的计算 1、求时区: 时区数=已知经度/15°(商四舍五入取整数,即为时区数) 2、求区时: 所求区时=已知区时±时区差(东加西减) 3、求地方时: 所求地方时=已知地方时±4分钟/度×经度差(东加西减) 二、太阳高度的计算 1、求正午太阳高度: H=90°-︱纬度差︱(纬度差指当地纬度与太阳直射纬度之间的差) 2、求子夜太阳高度: H=︱纬度和︱-90°(纬度和指当地纬度与太阳直射纬度之间的和) 3、求南北两楼的楼间距: L=h?cotH (h为楼高,H为该地一年中最小的正午太阳高度) 三、昼夜长短的计算 1、求昼长: (1)昼长=昼弧∕15° (2)昼长=日落时间-日出时间 (3)昼长=24-夜长 (4)昼长=(12-日出地方时)×2 (5)昼长=(日落地方时-12) 2、求夜长 (1)夜长=夜弧∕15° (2)夜长=24-昼长 (3)夜长=(24-日落地方时)×2 (4)北半球某纬度的夜长=南半球同纬度的昼长 四、日出、日落时刻的计算 1、求日出时刻: (1)日出时刻=当地纬线与晨线交点的时刻(2)日出时刻=12-昼长∕2 2、求日落时刻: (1)日落时刻=当地纬线与昏线交点的时刻(2)日落时刻=12+昼长∕2 五、球面距离的计算 (1)赤道和经线上的距离111Km×度数 (2)纬线上的距离=111Km×度数?COSθ(θ为当地的纬度) (3)对趾点的计算:经度互补,一东一西;纬度相等,一南一北。 六、比例尺的计算 (1)比例尺=图上距离∕实地距离 (2)缩放图幅面积=原图幅面积×比例尺缩放的平方 七、相对高度的计算 (1)陡崖相对高度:(n-1)d≤H<(n+1)d (n为等高线条数,d为等高距) (2)H=T∕6°×1000米 (H为两地相对高度,T为两地温差)

1914年诺贝尔物理学奖——晶体的X射线衍射

1914年诺贝尔物理学奖——晶体的X射线衍射 1914年诺贝尔物理学奖授予德国法兰克福大学的劳厄(Max vonLaue,1879—1960),以表彰他发现了晶体的X射线衍射。 劳厄发现X射线衍射是20世纪物理学中的一件有深远意义的大事,因为这一发现不仅说明了X射线是一种比可见光波长短1000倍的电磁波,使人们对X 射线的认识迈出了关键的一步,而且还第一次对晶体的空间点阵假说作出了实验验证,使晶体物理学发生了质的飞跃。这一发现继佩兰(Perrin)的布朗运动实验之后,又一次向科学界提供证据,证明原子的真实性。从此以后,X射线学在理论和实验方法上飞速发展,形成了一门内容极其丰富、应用极其广泛的综合学科。 劳厄当时正在德国慕尼黑大学任教。他是1909年来到慕尼黑大学的,因为那时索末菲正在那里。索末菲的讲课和讨论班吸引了许多年轻的物理学家来到慕尼黑,讨论的主题都与当时物理学在理论和实验方面的新的概念和发现有关。其中有关X射线的本性的各种看法也是主题之一。劳厄在理论物理学方面有很深的造诣,同时也密切关注实际物理现象,特别是在光学和辐射方面。他很早就对狭义相对论发生了兴趣,曾从光学的光行差现象为相对论提供了独特的证明,并写了一本小册子介绍相对论。劳厄自从1909年来到慕尼黑大学后,由于受到伦琴的影响,注意力始终放在X射线的本性上。他完全了解有关这方面的研究现状和面临的困境,他倾向于波动说,知道问题的关键在于实现X射线的干涉或衍射。正好这时索末菲把编纂《数学科学百科全书》中“波动光学”条目的任务交给劳厄。为此劳厄研究了晶格理论。晶体的点阵结构在当时虽然还是一种假设,但是在劳厄看来却是合情合理的。他坚决站在原子论这一边,反对某些哲学家怀疑原子存在的观点。他认为:没有什么无懈可击的认识论论据能够驳斥这一事实,实际经验却不断地提供新鲜证据支持这一事实。由于他对晶体空间点阵有如此深刻的认识,所以当索末菲的博士研究生厄瓦尔德(P.Ewald)和他讨论晶体光学问题时,他敏锐地抓住了晶格间距的数量级,判定晶体可以作为X射线的天然光栅。他的灵感来自他日夜的苦思,同时也是由于他对这两个互不相干的假设都有明确具体的概念。劳厄不止一次地提到:如果不确信原子的存在,他永远也不会想到利用X射线透射的方法来进行实验。据劳厄和厄瓦尔德回忆,具体过程是这样的: 1912年2月的一天,厄瓦尔德来到劳厄的房间,求劳厄帮助解决如何用数学研究光对偏振原子点阵的作用。尽管劳厄帮不了他的忙,仍热心地建议他们第二天在研究所碰头,并去他家里在晚饭前后讨论。他们按约会面,步行穿过鲁德维希(Ludwig)大街后,厄瓦尔德开始向劳厄一般性地介绍他正在从事的课题,出乎他的意料,劳厄对这方面并不了解。他向劳厄解释,他是怎样依照色散的一般理论假设在点阵排列中振子的位置。劳厄反问他为什么要这样假设。厄瓦尔德回答说,人们认为晶体具有这种内部的规律性。看起来劳厄对此感到新奇。这时他们已经进入花园。劳厄问道:振子之间的距离多大?对此,厄瓦尔德回答说,

晶体X射线衍射实验报告

X 射线衍射实验报告 材料科学与工程 学院 材料科学与工程 专业 班级 姓 名 学号 同组者 实验日期 年 月 日 指导教师 评分 分 评阅人 评阅日期 一 实验设计背景与实验目的 1 实验设计背景 Al-Zn-Mg 合金是中强可焊铝合金,σb 达到500MPa ,延伸率为15%,电导率为30IACS%,具有较好的强度和延伸率,抗腐蚀性能较好。用作航空航天和地面设备的结构材料。是目前材料研究的一个重要课题。 该合金是可热处理强化合金,合金通过固溶-淬火-时效,时效温度不同,析出GP 区、η'相或η相。后两者具有六方结构,基本化学组成为MgZn2。而GP 区为5-10nm 的球状粒子。析出相不同,其合金性能也不相同。 图1 Al-Zn-Mg 合金的不同处理态TEM 观察 a)Al 固溶态(基体) b) 120℃/24h 时效态 c)180℃/24h 时效态 同一合金,固溶态的物相应为单相,而时态效为双相(基体和析出相),因 0.5μ 100nm b) a) 100nm c) 100nm

此,首先应通过实验鉴定物相组成(物相定性分析);对于双相态,应当了解析出相的百分含量;另外,由于合金元素在基体中不同程度的固溶,导致基体的点阵常数变化,通过这种变化可检测固溶程度。 2 实验目的 了解X射线衍射仪的结构,操作规程,掌握MDI JADE的使用方法; 掌握X射线在新材料开发中的实际应用方法(物相定性分析、物相定量分析和点阵常数精确测定)。 掌握新材料开发的最新进展和新实验方法和技巧。 二实验原理 1、X射线衍射仪 (1)X射线管 X射线管工作时阴极接负高压,阳极接地。灯丝附近装有控制栅,使灯丝发出的热电子在电场的作用下聚焦轰击到靶面上。阳极靶面上受电子束轰击的焦点便成为X射线源,向四周发射X射线。在阳极一端的金属管壁上一般开有四个射线出射窗口。转靶X射线管采用机械泵+分子泵二级真空泵系统保持管内真空度,阳极以极快的速度转动,使电子轰击面不断改变,即不断改变发热点,从而达到提高功率的目的

日期计算器

程序设计与算法课程设计

课程设计评语 对课程设计的评语: 平时成绩:课程设计成绩: 总成绩:评阅人签名: 注:1、无评阅人签名成绩无效; 2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效; 3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

目录 课程设计评语 (2) 目录 (3) 1.课程论文题目.............................................................................................. 错误!未定义书签。2.程序设计思路.. (4) 3.功能模块图 (4) 4.数据结构设计 (5) 5.算法设计 (5) 6.程序代码 (6) 7.程序运行结果 (7) 8.编程中遇到的困难及解决方法.................................................................. 错误!未定义书签。9.总结及建议.................................................................................................. 错误!未定义书签。10.致谢. (8)

1.课程设计题目:日期计算器 【要求】 功能:计算输入日期是当年中的第几天 系统要求实现以下功能: 1. 由用户分别输入:年、月、日 2. 计算该日期是当年中的第几天 3. 输出计算出的天数 分步实施: 1、首先设计Dater对象构造器 2、判断此年是否为闰年。 3、计算从此年年初到此日的一共多少天 4、输入输出处理。 【提示】 需求分析:使用Dater对象构造器,用1判断为闰年,,0判断为不是闰年,使用累加的方法计算年初到此日共有多少天,进行输入输出处理. (1)主函数设计 主函数提供输入,处理,输出部分的函数调用。 (2)功能模块设计 模块:由用户自己录入年,月,日,、。计算该日期为一年的中德第几天。输出计算出的天数,返回主菜单。 3. 功能模块图 (1)输入模块 由用户分别输入:年、月、日

相关主题
文本预览
相关文档 最新文档