当前位置:文档之家› Hofer-Zehnder semicapacity of cotangent bundles and symplectic submanifolds

Hofer-Zehnder semicapacity of cotangent bundles and symplectic submanifolds

Hofer-Zehnder semicapacity of cotangent bundles and symplectic submanifolds
Hofer-Zehnder semicapacity of cotangent bundles and symplectic submanifolds

a r

X i

v

:m

a

t h /

3

3

2

3

v

3

[

m

a

t h

.

S

G

]

1

8

A

u

g

2

3

HOFER-ZEHNDER SEMICAPACITY OF COTANGENT BUNDLES AND SYMPLECTIC SUBMANIFOLDS LEONARDO MACARINI Abstract.We introduce the concept of Hofer-Zehnder G -semicapacity (or G -sensitive Hofer-Zehnder capacity)and prove that given a geometrically bounded symplectic manifold (M,ω)and an open subset N ?M endowed with a Hamilton-ian free circle action ?then N has bounded Hofer-Zehnder G ?-semicapacity,where G ??π1(N )is the subgroup generated by the homotopy class of the orbits of ?.In particular,N has bounded Hofer-Zehnder capacity.We give two types of applications of the main result.Firstly,we prove that the cotangent bundle of a compact manifold endowed with a free circle action has bounded Hofer-Zehnder capacity.In particular,the cotangent bundle T ?G of any compact Lie group G has bounded Hofer-Zehnder capacity.Secondly,we consider Hamiltonian circle actions given by symplectic submanifolds.For instance,we prove the following generalization of a recent result of Ginzburg-G¨u rel [7]:almost all levels of a function de?ned on a neighborhood of a closed symplectic submanifold S in a geometrically bounded symplectic manifold carry contractible periodic orbits of the Hamiltonian ?ow,provided that the function is constant on S .1.Introduction We will consider here the problem of the existence of periodic orbits on prescribed energy levels of Hamiltonian systems.An approach to this problem was the introduc-tion of certain symplectic invariants related to symplectic rigidity phenomena.More precisely,H.Hofer and E.Zehnder introduced in [9]the following de?nition:De?nition 1.1.Given a symplectic manifold (M,ω),de?ne the Hofer-Zehnder ca-pacity of M by c HZ (M,ω)=sup H ∈H a (M,ω)

max H,

where H a (M,ω)is the set of admissible Hamiltonians H de?ned on M ,that is,?H ∈H (M )?C ∞(M,R ),where H (M )is the set of pre-admissible Hamilto-nians de?ned on M ,that is,H satis?es the following properties:0≤H ≤ H :=max H ?min H ,there exist an open set V ?M such that H |V ≡0and a compact set K ?M \?M satisfying H |M \K

≡ H ;?every non-constant periodic orbit of X H has period greater than 1.

2LEONARDO MACARINI

We will also consider here a modi?ed Hofer-Zehnder capacity introduced by D. McDu?and J.Slimowitz[16]sensitive to the presence of overtwisted critical points. It is given by

c HZ(M,ω)=sup H∈ H a(M,ω)max H,

where H∈ H a(M,ω)if H is admissible and has no overtwisted critical points,that is,

?the linearized?ow at the critical points of H has no non-trivial periodic orbits of period less than1.

Remark.It is an open question whether the capacities c HZ and c HZ coincide.

It is easy to prove that if a symplectic manifold(M,ω)has bounded Hofer-Zehnder capacity,that is,if c HZ(U,ω)<∞for every open subset U?M with compact closure,then given any Hamiltonian H:M→R with compact energy levels,there exists a dense subsetΣ?H(M)such that for every e∈Σthe energy hypersurface H?1(e)has a periodic solution.Actually,if there exists a neighborhood of an energy hypersurface H?1(e0)with?nite Hofer-Zehnder capacity then there exists?>0and a dense subset G?(e0??,e0+?)such that H?1(e)has periodic orbits for every e∈G. This result was improved in[14],where it is showed that there are periodic orbits on H?1(e)for almost all e∈(e0??,e0+?)with respect to the Lebesgue measure.The same holds for c HZ(M,ω).

Let us consider here a re?nement of the original Hofer-Zehnder capacity by con-sidering periodic orbits whose homotopy class is contained in a given subgroup G of π1(M).More precisely,we de?ne the Hofer-Zehnder semicapacity as follows:

De?nition1.2.Given a symplectic manifold(M,ω)and a subgroup G?π1(M) de?ne the Hofer-Zehnder G-semicapacity(or G-sensitive Hofer-Zehnder capacity)of M by

c G HZ(M,ω)=sup

H∈H G a(M,ω)

max H,

where H G a(M,ω)is the set of G-admissible Hamiltonians de?ned on M,that is,?H∈H(M),that is,H is pre-admissible(see the de?nition1.1);

?every nonconstant periodic orbit of X H whose homotopy class belongs to G has period greater than1.

We de?ne c G HZ(M,ω)analogously considering G-admissible Hamiltonians without overtwisted critical points.

Remark.We call it a semicapacity because given a symplectic embeddingψ: (N,τ)→(M,ω)such that dim N=dim M it cannot be expected,in general,that

c G HZ(N,τ)≤cψ?G

HZ (M,ω),whereψ?:π1(N)→π1(M)is the induced homomorphism

on the fundamental group.However,we can state the following weak monotonicity property(for a proof see[13]):given a symplectic embeddingψ:(N,τ)→(M,ω) such that dim N=dim M then

cψ?1?H

HZ

(N,τ)≤c H HZ(M,ω),

HOFER-ZEHNDER SEMICAPACITY OF COTANGENT BUNDLES3 for every subgroup H?π1(M).In particular,ifψ?is injective we have that (M,ω).

c G HZ(N,τ)≤cψ?G

HZ

Note that obviously,

(M,ω)≤c G HZ(M,ω),

c HZ(M,ω)=cπ1(M)

HZ

for every subgroup G?π1(M).Moreover,it can be show that,like the Hofer-Zehnder capacity,if the Hofer-Zehnder G-semicapacity is bounded then there are periodic orbits with homotopy class in G on almost all energy levels for every proper Hamiltonian[14].

De?nition1.3.A symplectic manifold(M,ω)is called geometrically bounded if there exists an almost complex structure J on M and a Riemannian metric g such that ?J is uniformlyω-tame,that is,there exist positive constants c1and c2such that

ω(v,Jv)≥c1 v 2and|ω(v,w)|≤c2 v w

for all tangent vectors v and w to M;

?the sectional curvature of g is bounded from above and the injectivity radius is bounded away from zero.

Closed symplectic manifolds are clearly geometrically bounded;a product of two geometrically bounded symplectic manifolds is also such a manifold.It was showed in[5,11]that the cotangent bundle of a compact manifold endowed with any twisted symplectic form is geometrically bounded.A twisted symplectic structure on a cotan-gent bundle T?M is a symplectic form given byω0+π??,whereω0is the canonical symplectic form,π:T?M→M is the canonical projection and?is a closed2-form on M.

De?nition1.4.Given a symplectic manifold(M,ω)de?ne its index of rationality by

m(M,ω)=inf [u]ω;[u]∈π2(M)satis?es [u]ω>0 .

If the above set is empty,we de?ne m(M,ω)=∞.If m(M,ω)>0we call(M,ω)a rational symplectic manifold.

The main result here states that the existence of a free Hamiltonian circle action implies the boundedness of the Hofer-Zehnder semicapacity.It removes a technical hypothesis in a previous theorem in[13].

Main Theorem.Let(M,ω)be a geometrically bounded symplectic manifold and N?M an open subset that admits a free Hamiltonian circle action?.Then,given any open subset U i?→N with compact closure,

c i?1?G?HZ(U,ω)<∞,

where i?:π1(U)→π1(N)is the induced homomorphism on the fundamental group and G??π1(N)is the subgroup generated by the orbits of the circle action.Moreover,

(U,ω)<∞.

if M is rational,then c i?1?G?

HZ

4LEONARDO MACARINI

The main idea in the proof of the Main Theorem is to relate the Hofer-Zehnder

capacity of a symplectic manifold endowed with a free Hamiltonian action with the

Hofer-Zehnder capacity of its symplectic reduction.More precisely,let P be a sym-

plectic manifold with a free Hamiltonian G-action and bounded Hofer-Zehnder ca-pacity.When its reduced symplectic manifold M also has bounded Hofer-Zehnder

capacity?Of course,it does not hold in general,since every symplectic manifold M

can be obtained as a reduction of M×T?S1with respect to the obvious circle action on T?S1and this symplectic manifold has bounded Hofer-Zehnder capacity by the Main Theorem.On the other hand,the example of Zehnder[20]shows that there

exist compact symplectic manifolds with in?nite Hofer-Zehnder capacity.

Let us consider the easiest case,namely when G=S1.In what follows,we will

always denote the symplectic gradient of a Hamiltonian H by X H.Given a pre-admissible Hamiltonian H on M we can construct a pre-admissible Hamiltonian H on P whose reduced dynamics coincides with the dynamics of H.The problem is to give conditions to ensure that the reduced periodic orbit on M is not trivial,that is,that the periodic orbit of X H is not tangent to the orbits of the group action. An approach to solve this problem is to use the fact that besides the existence of a non-trivial periodic orbit,the Hofer-Zehnder capacity gives an upper bound T for the period of the orbit.Thus,we can try to construct a circle action with su?ciently great period in such a way that the Hofer-Zehnder capacity of the support of X H is su?ciently small(compared to the period of the action)and that the component of X H tangent to the circle action remains bounded.It would ensure that if a periodic orbit of X H is tangent to the orbits of the action then its period is necessarily greater than T.

When M has a free Hamiltonian circle action we construct such a circle action on

M×T?S1but,instead of M,its symplectic reduction is given by a?nite quotient M/Z n for n su?ciently great(Theorem2.1).We then get the boundedness of the Hofer-Zehnder semicapacity of M/Z n(resp. c G HZ)by Hofer-Viterbo theorem[8](resp. McDu?-Slimowitz theorem[16])generalized for geometrically bounded symplectic manifolds by G.Lu[11,12].It was essentially achieved in[13].However,we need a theorem to relate the Hofer-Zehnder capacity of M and its?nite symplectic quotient M/Z n.This is the content of Theorem2.2proved in Section4.

1.1.Applications to cotangent bundles.Now,let us consider some applications of the Main Theorem.Considering the lifted action to the cotangent bundle,we have the following corollary:

Corollary1.1.Let M be a manifold with a free circle action?:S1×M→M. Then T?M endowed with the canonical symplectic form has bounded Hofer-Zehnder G?-semicapacity,where G??π1(M)=π1(T?M)is the subgroup generated by the orbits of the action.

Now,let G be a compact Lie group and consider the action of the maximal torus in G.It gives the following immediate corollary:

HOFER-ZEHNDER SEMICAPACITY OF COTANGENT BUNDLES5 Corollary1.2.Let G be a compact Lie group.Then T?G has bounded Hofer-Zehnder capacity.

1.2.Applications to symplectic submanifolds.The next corollary is a general-ization of a recent result of V.Ginzburg and B.G¨u rel[7]for weakly exact symplectic manifolds.Their proof is completely di?erent and is based on symplectic homology. Moreover,they consider only energy hypersurfaces that bound a compact domain containing the symplectic submanifold S while our result holds for any energy hyper-surface that does not intersect S.

Corollary1.3.Let(M,ω)be a geometrically bounded symplectic manifold and S?M a closed symplectic submanifold.There exists a neighborhood U of S such that if H is a proper Hamiltonian on U constant on S then H has periodic orbits with contractible projection on S on almost all energy levels.

Remark.The only condition on U is that U\S admits a free Hamiltonian circle action.Its existence follows by the symplectic neighborhood theorem[15].

As an immediate corollary we have the following result about the existence of periodic orbits for magnetic?ows(for an introduction to magnetic?ows see[6,13]): Corollary 1.4.Let(M,?)be a closed symplectic manifold and H:T?M→R be the standard kinetic energy Hamiltonian for a Riemannian metric on M.Then the Hamiltonian?ow of H with respect to the twisted symplectic formω0+π??has periodic orbits with contractible projection on M on almost all su?ciently low energy levels.

The next application is based on the following result of P.Biran[1]which enable us to represent a K¨a hler manifold as a disjoint union of two basic components whose symplectic nature is very standard:

Theorem1.1(P.Biran[1]).Let(M2n,?)be a closed K¨a hler manifold with[?]∈H2(M,Z)andΣ?M a complex hypersurface whose homology class[Σ]∈H2n?2(M) is the Poincar′e dual to k[?]for some k∈N.Then,there exists an isotropic CW-complex??(M,?)whose complement-the open dense subset(M\?,?)-is symplectomorphic to a standard symplectic disc bundle(E0,1

ωcan is uniquely characterized by the requirements that its restriction to the zero k

6LEONARDO MACARINI

sectionΣequals?|Σ,the?bers ofπ:E0→Σare symplectic and have area1/k andωcan is invariant under the obvious circle action along the?bers.It is called standard because the symplectic type of(E0,ωcan)depends only on the symplectic type of(Σ,?|Σ)and the topological type of the normal bundle NΣ[1].

Let us recall that the pair(M,Σ)is called subcritical[2,3]if M\Σis a subcritical Stein manifold,that is,if there exists a plurisubharmonic Morse function?on M\Σsuch that index p(?)

Since(E0\Σ,ωcan)has an obvious Hamiltonian free circle action,we have the following immediate corollary of the Main Theorem:

Corollary1.5.According to the notation of the Theorem1.1,we have that

c G HZ(E0\Σ,?)<∞,

where G?π1(E0\Σ)is the subgroup generated by the orbits of the obvious S1-action on E0\Σ.In particular,the periodic orbits are contractible in M.Moreover,if(M,Σ) is subcritical,then

(M\Σ,?)<∞,

c i?G

HZ

where E0\Σi?→M\Σ.

Remarks.

?The result for subcritical manifolds follows by the fact that if dim?<1

HOFER-ZEHNDER SEMICAPACITY OF COTANGENT BUNDLES7? H >2π( H1|U +√

n),

then H′ >2π( H1|U +√

n)<∞.

When M is rational,the hypothesis on the critical points is not necessary and hence

(U,ω)≤2πn( H1|U +√

c i?1?G?

HZ

8LEONARDO MACARINI

3.Proof of Theorem2.1

If H has no overtwisted critical points,let n0=n0( H1|U )be given by

√n)}.

n0=inf{n∈N;

If H has overtwisted critical points and M is rational,let n0=n0( H1|U ,m(M,ω))

√n)and

be the in?mum of n∈N such that

m(M,ω)≥(2π/n)( H1|U +√

n)H1(x)+

n,the induced Z n-action is given byρ√n.On the other hand,√n and,since H

andΦcommute,we have thatρ1/√

1

HOFER-ZEHNDER SEMICAPACITY OF COTANGENT BUNDLES9 given by

J(x,θ,μ)=(1/√nΦ(θ,μ).

√nΦ(θ,μ)generate a circle action But,since the Hamiltonians(1/

with the same period1/

10LEONARDO MACARINI

But note that

ωW (π?2dθ(ξ)X H 1(?θ(z )(z )),π?2dθ(η)X H 1(?θ(z )(z )))=0

and

ωW (dH 1(z )ξY (?θ(z )(z )),dH 1(z )ηY (?θ(z )(z )))=0,

since the vectors are colinear.On the other hand,

ωW (π?2dθ(ξ)X H 1(?θ(z )(z )),dH 1(z )ηY (?θ(z )(z )))=0

and

ωW (dH 1(z )ξY (?θ(z )(z )),π?2dθ(η)X H 1(?θ(z )(z )))=0,

because the vectors are orthogonal with respect to the product decomposition P =M ×T ?S 1and by the de?nition of ωW .

We have then that,

(ψ?ωW )z (ξ,η)=ωW ((d?)θ(z )(z )ξ,(d?)θ(z )(z )η)+ωW ((d?)θ(z )(z )ξ,π?2dθ(η)X H 1(?θ(z )(z )))

?ωW ((d?)θ(z )(z )ξ,dH 1(z )ηY (?θ(z )(z )))+ωW (π?2dθ(ξ)X H 1(?θ(z )(z )),(d?)θ(z )(z )η)

?ωW (dH 1(z )ξY (?θ(z )(z )),(d?)θ(z )(z )η)=

=(ωW )z (ξ,η)+π?2dθ(η)(i X H 1(?θ(z )(z ))ω)(d?θ(z )(z )ξ)?dH 1(z )η(i Y (?θ(z )(z ))ω)(d?θ(z )(z )ξ)

+π?2

dθ(ξ)(i X H 1(?θ(z )(z ))ω)(d?θ(z )(z )η)?dH 1(z )ξ(i Y (?θ(z )(z ))ω)(d?θ(z )(z )η),where the last equality follows from the fact that ??t ωW =ωW .Now,note that

π?2dθ(η)(i X H 1(?θ(z )(z ))ω)(d?θ(z )(z )ξ)=π?2dθ(η)dH 1(z )ξ,

because i X H 1ωW =dH 1and ??dH 1=dH 1.On the other hand,we have that

dH 1(z )η(i Y (?θ(z )(z ))ω)(d?θ(z )(z )ξ)=dH 1(z )ηπ?2dθ(ξ),

because i Y ωW =π?2dθand ??π?2dθ=π?2dθ(note that π?2dθhere is the pullback of the angle form dθon S 1to P ).Consequently,

(ψ?ωW )z (ξ,η)=(ωW )z (ξ,η)+

+π?2dθ(η)dH 1(z )ξ?dH 1(z )ηπ?2dθ(ξ)+π?2dθ(ξ)dH 1(z )η?dH 1(z )ξπ?2dθ(η)

=(ωW )z (ξ,η),

as desired.

Now,we claim that the quotient projection πμ: J

?1(μ)→ J ?1(μ)/S 1is given by π1?ψ?1| J ?1(μ),where π1:P →N is the projection onto the ?rst factor.In e?ect,note that,by the previous lemma,ψsends the orbits of X J to the orbits of X Φ.On the other hand,π1is the quotient projection at Φ?1(μ)=ψ?1( J

?1(μ))with respect to the trivial circle bundle given by the orbits of X Φ.

HOFER-ZEHNDER SEMICAPACITY OF COTANGENT BUNDLES 11

To show that σμis equal to τ,note that

π?μτ=(ψ?1)?i ?Φ?1(μ)π?1τ

=(ψ?1)?i ?Φ?1(μ)ωW

=i ?ψ(Φ?1(μ))ωW

=i J ?1(μ)ωW ,

where the third equality follows from the fact that ψ?ωW =ωW . 3.2.Construction of a ρ-invariant pre-admissible Hamiltonian H on N ×T ?S 1from H .Consider the smooth map π:P →N/Z n de?ned by

π|J ?1(μ)=πμ,where πμis the quotient projection.Now,let ˉH :=H ?τ?1be the induced Hamiltonian on N/Z n .We will construct from ˉH a ρ-invariant Hamiltonian de?ned on P .Fix a su?ciently small constant δ>0and de?ne this new Hamiltonian by H (z )=(ˉH +α(J (z ))(m (ˉH )?ˉH ))( π(z )),where α:R →R is a C ∞function such that 0≤α≤1,α(μ)=1?μ/∈(δ,1?δ),α(μ)=0?μ∈(12+δ)and |α′(μ)|≤2+2δfor every μ∈[0,1].Thus, H |J ?1(μ)is the lift of ˉH

μ:=ˉH +α(μ)(m (ˉH )?ˉH )=(1?α(μ))ˉH +α(μ)m (ˉH )by the quotient projection πμ.1/21

01Figure 2.Graph of the function α.

The ?rst obvious property of H is that m ( H )=m (ˉH )=m (H ).In e?ect,m ( H )=sup μ∈R m (ˉH +α(μ)(m (ˉH )?ˉH ))=m (ˉH ),since 0≤α≤1and α(μ)=1?μ/

∈(δ,1?δ).It is easy to see that H ∈H ( U,ω)where U is given by (see ?gure 3) U = 0≤μ≤1

π?1μ(τn (U )).

In e?ect,it is clear that 0≤ H ≤m ( H ).Moreover, H | V ≡0where V is the subset of P given by 12+δπ?1μ(τn (V ))and τn (V )?N/Z n is the open set such that

12LEONARDO MACARINI

ˉH|

τn(V)≡0becauseα(μ)=0?μ∈(12+δ).Note that the interior of V is not empty.

On the other hand, H≡m( H)outside the compact set K= δ≤μ≤1?δπ?1μ(τn(K))? U\? U,whereτn(K)?τn(U)\?τn(U)is the compact set such thatˉH|τn(U)\τn(K)≡m(ˉH).

Finally,note that if H has no overtwisted critical points then H also has no over-twisted critical points becauseˉHμhas no such critical points and the derivative of X H equals the identity in the direction tangent to the orbits ofρ.

3.3.Existence of a non-trivial periodic orbit of XˉH given by the reduction of a periodic orbit of X H.Let us now prove that there exists a non-trivial periodic orbitˉγof XˉH with period less than(2π/n)( H1|U +√

.

m(H)

Moreover,the homotopy class[γ]ofγbelongs to the subgroupπ1(S1)?π1(P). Proof.Since

3a+2r sinθ,

U))?R2is a connected two-dimensional compact submanifold with boundary,such that there exists an open

HOFER-ZEHNDER SEMICAPACITY OF COTANGENT BUNDLES13 disk of radius R with L distinct points y j∈B2(R)(0≤L<∞)and an orientation preserving di?eomorphism

ψ:φ(τ2(U))→B2(R)\{y1,...,y L}

such that φ(τ2(U))ω0 = B2(R)\{y1,...,y L

}ω0 =πR2.

From a theorem of Dacorogna and Moser(see Lemma2.2in[19])this

ψcan

be required to be symplectic.Thus,consider the HamiltonianˉH:M×B2(R)→R given by

ˉH(x,y)= m(H)if y=y j for some j=1,...,L

H(x,φ?1ψ?1y)otherwise

which is obviously C∞,since H|U\K=m(H),where K?U is a compact subset such that K?U\?U.

By Proposition1.6of[16](extended for geometrically bounded symplectic mani-folds in[11]),XˉH has a contractible periodic orbitˉγwith period

T<

πR2

m(ˉH)

= τ2(U)ωS10

n

+

1

n =(2π/n)( H1|U +√

n?(1/n)H1|U:

Reduced dynamics of X H:

Note thatˉHμ=(1?α(μ))ˉH+α(μ)m(H)has the Hamiltonian vector?eld with respect toωn given by XˉH

μ

=(1?α(μ))XˉH.Thus,the reduced dynamics of X H at J?1(μ)is a reparametrization of the dynamics of XˉH.Since0≤α(μ)≤1,the nonconstant periodic orbits of XˉH

μ

have period greater than or equal to those of XˉH. Consequently,by Section3.1,it is su?cient to show that the periodic orbit of H given by Theorem3.1is not tangent to an orbit of?(such that it is projected onto a singularity of XˉH).

Non-triviality of the projected orbit:

14LEONARDO

MACARINI

n )

1(0)

Figure 3.The subset U

.Suppose that there exists a periodic orbit γof X H tangent to an orbit of ρ.We

will show that the period of γis strictly greater than T max ( U,

H )(see Theorem 3.1).Firstly,note that

T max ( U,

H )= τ2( U )ωS 10 n ) X J 2 X J .

Consequently,since the period of the orbits of ρis equal to

√n

X J 2 .But,by the de?nition of n ,

T =√ X H ,X J

n ) X J 2 ,

for δ>0su?ciently small.Thus,it is su?cient to prove that

X H ,X J

n )

HOFER-ZEHNDER SEMICAPACITY OF COTANGENT BUNDLES15 In e?ect,note that

X H,X J

W?J 2

= ? H,?J

?J 2 ,

where in the second equation we used the fact that W de?nes an isometry.On the other hand,we have that for everyξ∈T z P,

d H(z)ξ=dˉH( π(z))d π(z)ξ+m(H)α′(J(z))dJ(z)ξ?ˉH( π(z))α′(J(z))dJ(z)ξ

?α(J(z))dˉH( π(z))d π(z)ξ

=(m(H)?ˉH( π(z)))α′(J(z))dJ(z)ξ+(1?α(J(z)))dˉH( π(z))d π(z)ξ. But note that,since γis tangent to a?ber,it is projected onto a singularity of XˉH,

that is,dˉH( π(z))=0for every z∈ γ.Hence,

X H,X J

?J 2

=(m(H)?ˉH( π(z)))|α′(J(z))|

≤(2+2δ)m(H),

as desired.

Consequently,by Section3.1,we conclude by symplectic reduction thatˉH has a non-trivial periodic orbitˉγof period less than or equal to

(2π/n)( H1|U +√

m(H)

.

But,sinceτ:N→N/Z n is a symplectic covering with n sheets,we have that the liftγofˉγis a periodic orbit of X H with period less than or equal to

2π( H1|U +√

m(H)

.

Finally,note that the periodic orbit γof X H given by Theorem3.1satis?es[ γ]∈π1(S1).Hence,the corresponding reduced periodic orbitˉγsatis?es[ˉγ]∈(τn)?G?since(πμ)?π1(S1)=(τn)?G?.Thus,since the periodic orbitγof X H is given by the lift ofˉγbyτn,we have that[γ]∈G?.

4.Proof of Theorem2.2

It is su?cient to prove Theorem2.2for n=2,since proceeding inductively we can apply the theorem below for N/Z n and conclude the result for any n=2m.

16LEONARDO MACARINI

Theorem4.1.Let M be a symplectic manifold endowed with a Z2free symplectic action,that is,a symplectomorphismψ:M→M such thatψ2=Id andψ(x)=x for every x∈M.Then,given an admissible Hamiltonian H on M(resp.H∈ H a(M,ω)),there exists an admissible Hamiltonian H′(resp.H′∈ H a(M,ω))such that

?H′is Z2-invariant;

?supp X H′=supp X H+H?ψ;

? H′ ≥(1/2) H .

Moreover,ifψis isotopic to the identity and H is G-admissible(resp.H∈ H G a(M,ω)) then H′is also G-admissible(resp.H′∈ H G a(M,ω)),for any subgroup G?π1(M). Proof.De?ne H=(1/2)(H+H?ψ).The?rst step in the proof is the following key proposition:

Proposition4.1.Given a periodic orbitγ:[0,T]→M of X H then X H and X H?ψare colinear alongγ.

Proof.Initially,note that X H and X H?ψcommute,since

{H,H?ψ}=ω(X H,X H?ψ)

=ω(X H,ψ?X H)

=ω(ψ?X H,ψ?ψ?X H)

=ω(ψ?X H,X H)=0,

where in the second and third equalities we used the fact thatψis symplectic and the last equality follows by the antisymmetry ofω.

Lemma4.1.If X H and X H?ψare not colinear alongγ,thenγis not isolated.In fact,there exists a1-parameter deformation ofγby periodic orbits of X H with the same period and energy,that is,there exists a family of geometrically distinct periodic orbitsγs:[0,T]→M for s∈(??,?)for some?>0such thatγ0=γand H(γs(t))= H(γ0(t))for every s∈(??,?).

Proof.Suppose that there exists t∈[0,T]such that X H(γ(t))and X H?ψ(γ(t))are linearly independent.Then,X H(γ(t))and X H?ψ(γ(t))are not colinear to X H(γ(t)). Since[X H,X H]=0we have thatφs?γ:[0,T]→M is a periodic orbit for every s∈R, whereφs is the?ow of X H.These periodic orbits are geometrically distinct for every s su?ciently small because X H(γ(t))and X H(γ(t))are linearly independent. Consider now the following linear application:

Φ:C∞(M)→C∞(M/Z2)

given byΦ(H)(x)=(1/2)(H+H?ψ)(π?1(x)),whereπ:M→M/Z2is the quotient projection.Note that we can identify C∞(M/Z2)with the subspace S?C∞(M)of ψ-invariant smooth functions and,with respect to this identi?cation,Φis just the projection.

HOFER-ZEHNDER SEMICAPACITY OF COTANGENT BUNDLES17 Now,suppose,by contradiction,that X H and X H?ψare not colinear alongγ.By the previous lemma,we have thatπ?γis not an isolated periodic orbit of XΦ(H).In fact,there exists a1-parameter deformation ofπ?γgiven by periodic orbits of the same period.

Lemma4.2(Lemma19of[17]).Given?>0,there exists F∈C∞(M/Z2)such that F?Φ(H) C∞

Now,let F be the corresponding function in S?C∞(M)given by the identi?cation of S with C∞(M/Z2).Write F= H+G such that G C∞

Φ(F)= F.

Since F?H C∞

Proof.Suppose,by contradiction,that H has an overtwisted critical point p.By Corollary3.5of[16],there exists a sequence of Hamiltonians H n such that H? H n C∞n→∞?→0and X H n has a non-trivial periodic orbit γn of period less than1 converging to p.By the discussion in the proof of the previous proposition,there exists a sequence H n such that H?H n C∞n→∞?→0and either X H n or X H n?ψhas a non-trivial periodic orbitγn of period<1given by a reparametrization of γn.Thus, p is also a critical point for both H and H?ψ.

Now,note that,since X H and X H?ψcommute,DX H(p)and DX H?ψ(p)also com-mute.Hence,if(1/2)(DX H+DX H?ψ)(p)has an eigenvalue±iλforλ>2π,the same holds either for DX H(p)or DX H?ψ(p),a contradiction. Now,letδ>0be a su?ciently small constant and f:[min H,max H]→R a smooth function such that|f′|≤1+2δ,f(x)=0for every x∈[min H,min H+δ] and f(x)= H for every x∈[max H?δ,max H]:

Consider the Hamiltonian given by

H′=f? H.

Note that,sinceψis proper and by the de?nition of f,H′is pre-admissible.Moreover, we have that H′ = H ≥(1/2) H ,because min H≤(1/2)max H and max H= max H,becauseψis proper.

Now,suppose that X H′has a periodic orbit of period T′<1and homotopy class in G.Then,since X H′(x)=f′( H(x))X H(x)and|f′|≤1+2δforδarbitrarily small, we have that X H also has a periodic orbitγof period T<1such that[γ]∈G. By the previous proposition,X H and X H?ψare colinear to X H alongγ.Conse-quently,since X H=(1/2)(X H+X H?ψ),we conclude thatγis also a periodic orbit

18LEONARDO MACARINI

HOFER-ZEHNDER SEMICAPACITY OF COTANGENT BUNDLES19

[12]G.Lu,Errata to the“The Weinstein conjecture on some symplectic mani-

folds containing the holomorphic spheres”,Kyushu J.Math54(2000).

[13]L.Macarini,Hofer-Zehnder capacity and Hamiltonian circle actions,

preprint2002math.SG/0205030,to appear in Comm.in Contemporary

Mathematics.

[14]L.Macarini,F.Schlenk,A re?nement of the Hofer–Zehnder theorem on the

existence of closed trajectories near a hypersurface,math.SG/0305148.

[15]D.McDu?,D.Salamon,Introduction to Symplectic Topology,Oxford Math-

ematical Monographs.The Clarendon Press,Oxford University Press,New

York,1998.

[16]D.McDu?,J.Slimowitz,Hofer-Zehnder capacity and length minimizing

Hamiltonian paths,Geom.Topol.5(2001),799–830.

[17]C.Robinson,Generic properties of conservative systems,Amer.J.Math.92

(1970),562–603.

[18]M.Schwarz,On the action spectrum for closed symplectically aspherical man-

ifolds,Paci?c J.Math.193(2000),no.2,419–461.

[19]K.Siburg,Symplectic capacities in two dimensions,Manuscripta Math.78

(1993),149–163.

[20]E.Zehnder,Remarks on periodic solutions on hypersurfaces,NATO ASI

Series,Series C,In:Periodic Solutions of Hamiltonian Systems and Related

Topics,209(1987),267–279.

Instituto de Matem′a tica Pura e Aplicada-IMPA,Estrada Dona Castorina,110-Jardim Bot?a nico,22460-320Rio de Janeiro RJ,Brasil

E-mail address:leonardo@impa.br

如何写先进个人事迹

如何写先进个人事迹 篇一:如何写先进事迹材料 如何写先进事迹材料 一般有两种情况:一是先进个人,如先进工作者、优秀党员、劳动模范等;一是先进集体或先进单位,如先进党支部、先进车间或科室,抗洪抢险先进集体等。无论是先进个人还是先进集体,他们的先进事迹,内容各不相同,因此要整理材料,不可能固定一个模式。一般来说,可大体从以下方面进行整理。 (1)要拟定恰当的标题。先进事迹材料的标题,有两部分内容必不可少,一是要写明先进个人姓名和先进集体的名称,使人一眼便看出是哪个人或哪个集体、哪个单位的先进事迹。二是要概括标明先进事迹的主要内容或材料的用途。例如《王鬃同志端正党风的先进事迹》、《关于评选张鬃同志为全国新长征突击手的材料》、《关于评选鬃处党支部为省直机关先进党支部的材料》等。 (2)正文。正文的开头,要写明先进个人的简要情况,包括:姓名、性别、年龄、工作单位、职务、是否党团员等。此外,还要写明有关单位准备授予他(她)什么荣誉称号,或给予哪种形式的奖励。对先进集体、先进单位,要根据其先进事迹的主要内容,寥寥数语即应写明,不须用更多的文字。 然后,要写先进人物或先进集体的主要事迹。这部分内容是全篇材料

的主体,要下功夫写好,关键是要写得既具体,又不繁琐;既概括,又不抽象;既生动形象,又很实在。总之,就是要写得很有说服力,让人一看便可得出够得上先进的结论。比如,写一位端正党风先进人物的事迹材料,就应当着重写这位同志在发扬党的优良传统和作风方面都有哪些突出的先进事迹,在同不正之风作斗争中有哪些突出的表现。又如,写一位搞改革的先进人物的事迹材料,就应当着力写这位同志是从哪些方面进行改革的,已经取得了哪些突出的成果,特别是改革前后的.经济效益或社会效益都有了哪些明显的变化。在写这些先进事迹时,无论是先进个人还是先进集体的,都应选取那些具有代表性的具体事实来说明。必要时还可运用一些数字,以增强先进事迹材料的说服力。 为了使先进事迹的内容眉目清晰、更加条理化,在文字表述上还可分成若干自然段来写,特别是对那些涉及较多方面的先进事迹材料,采取这种写法尤为必要。如果将各方面内容材料都混在一起,是不易写明的。在分段写时,最好在每段之前根据内容标出小标题,或以明确的观点加以概括,使标题或观点与内容浑然一体。 最后,是先进事迹材料的署名。一般说,整理先进个人和先进集体的材料,都是以本级组织或上级组织的名义;是代表组织意见的。因此,材料整理完后,应经有关领导同志审定,以相应一级组织正式署名上报。这类材料不宜以个人名义署名。 写作典型经验材料-般包括以下几部分: (1)标题。有多种写法,通常是把典型经验高度集中地概括出来,一

excel表格的基本操作函数乘法

excel表格的基本操作函数乘法 乘法是没有快捷键的,看下边例子,求合价: C2输入公式=A1*B1,下拉公式,计算每一项的合价; 最后对合价进行求和,求和就有快捷键了,选中C8,点击工具栏上的求和按钮或者按快捷键“ALT+=”,excel会自动捕捉求和区域,填入=SUM(c2:c7),回车即可。 如果不求每一项的合价,直接求所有项目的价款总和,用sumproduct函数 我们先从简单的说起吧!首先教大家在A1*B1=C1,也就是说在第一个单元格乘以第二个单元格的积结果会显示在第三个单元格中。 ①首先,打开表格,在C1单元格中输入“=A1*B1”乘法公式。 ③现在我们在“A1”和“B1”单元格中输入需要相乘的数据来进行求积,如下图,我分别在A1和B1单元格中输入10和50进行相乘,结果在C1中就会显示出来,等于“500”。 上面主要讲解了两个单元格相乘求积的方法,但是在我们平常工作中,可能会遇到更多数据相乘,下面主要说说多个单元格乘法公式运用,如:“A1*B1*C1*D1”=E1。 2、Excel中多个单元格相乘的乘法公式 ①在E1单元格中输入乘法公式“=A1*B1*C1*D1”。 ②然后依次在A1、B1、C1、D1中输入需要相乘的数据,结果就会显示在“E1”中啦! 看看图中的结果是否正确呀!其实,这个方法和上面的差不多,只不过是多了几道数字罢了。 3、Excel混合运算的乘法公式

5加10减3乘2除3等于多少? 提示:加=+,减=-,乘=*,除=/。 ①首先,我们要了解这个公式怎么写,“5+10-3*2/3”这是错误的写法,正确写法应该是“(5+10-3)*2/3”。 ②好了,知道公式了,我们是不是应该马上来在Excel中的“F1”中输入“=(A1+B1-C1)*D1/E1”。 ③然后依次在A1、B1、C1、D1、E1中输入需要运算的数据。 好了,上面的一些基本乘法公式就已经讲玩了,下面教大家个小技巧,在有多行需要计算的时候该怎么办呢? 4、将公式复制到每行或每列 ②此时,从F1到下面的F2、F3、F4等等,都已经复制了“F1”中的公式,下次你需要运算的时候,直接在前面输入数据,在F2、 F3、F4等单元格中就会自动显示运算的结果了。

英语演讲稿:未来的工作

英语演讲稿:未来的工作 这篇《英语演讲稿范文:未来的工作》,是特地,希望对大家有所帮助! 热门演讲推荐:竞聘演讲稿 | 国旗下演讲稿 | 英语演讲稿 | 师德师风演讲稿 | 年会主持词 | 领导致辞 everybody good afternoon:. first of all thank the teacher gave me a story in my own future ideal job. everyone has a dream job. my dream is to bee a boss, own a pany. in order to achieve my dreams, i need to find a good job, to accumulate some experience and wealth, it is the necessary things of course, in the school good achievement and rich knowledge is also very important. good achievement and rich experience can let me work to make the right choice, have more opportunities and achievements. at the same time, munication is very important, because it determines whether my pany has a good future development. so i need to exercise their municative ability. i need to use all of the free time to learn

最新小学生个人读书事迹简介怎么写800字

小学生个人读书事迹简介怎么写800字 书,是人类进步的阶梯,苏联作家高尔基的一句话道出了书的重要。书可谓是众多名人的“宠儿”。历来,名人说出关于书的名言数不胜数。今天小编在这给大家整理了小学生个人读书事迹,接下来随着小编一起来看看吧! 小学生个人读书事迹1 “万般皆下品,惟有读书高”、“书中自有颜如玉,书中自有黄金屋”,古往今来,读书的好处为人们所重视,有人“学而优则仕”,有人“满腹经纶”走上“传道授业解惑也”的道路……但是,从长远的角度看,笔者认为读书的好处在于增加了我们做事的成功率,改善了生活的质量。 三国时期的大将吕蒙,行伍出身,不重视文化的学习,行文时,常常要他人捉刀。经过主君孙权的劝导,吕蒙懂得了读书的重要性,从此手不释卷,成为了一代儒将,连东吴的智囊鲁肃都对他“刮目相待”。后来的事实证明,荆州之战的胜利,擒获“武圣”关羽,离不开吕蒙的“运筹帷幄,决胜千里”,而他的韬略离不开平时的读书。由此可见,一个人行事的成功率高低,与他的对读书,对知识的重视程度是密切相关的。 的物理学家牛顿曾近说过,“如果我比别人看得更远,那是因为我站在巨人的肩上”,鲜花和掌声面前,一代伟人没有迷失方向,自始至终对读书保持着热枕。牛顿的话语告诉我们,渊博的知识能让我们站在更高、更理性的角度来看问题,从而少犯错误,少走弯路。

读书的好处是显而易见的,但是,在社会发展日新月异的今天,依然不乏对读书,对知识缺乏认知的人,《今日说法》中我们反复看到农民工没有和用人单位签订劳动合同,最终讨薪无果;屠户不知道往牛肉里掺“巴西疯牛肉”是犯法的;某父母坚持“棍棒底下出孝子”,结果伤害了孩子的身心,也将自己送进了班房……对书本,对知识的零解读让他们付出了惨痛的代价,当他们奔波在讨薪的路上,当他们面对高墙电网时,幸福,从何谈起?高质量的生活,从何谈起? 读书,让我们体会到“锄禾日当午,汗滴禾下土”的艰辛;读书,让我们感知到“四海无闲田,农夫犹饿死”的无奈;读书,让我们感悟到“为报倾城随太守,西北望射天狼”的豪情壮志。 读书的好处在于提高了生活的质量,它填补了我们人生中的空白,让我们不至于在大好的年华里无所事事,从书本中,我们学会提炼出有用的信息,汲取成长所需的营养。所以,我们要认真读书,充分认识到读书对改善生活的重要意义,只有这样,才是一种负责任的生活态度。 小学生个人读书事迹2 所谓读一本好书就是交一个良师益友,但我认为读一本好书就是一次大冒险,大探究。一次体会书的过程,真的很有意思,咯咯的笑声,总是从书香里散发;沉思的目光也总是从书本里透露。是书给了我启示,是书填补了我无聊的夜空,也是书带我遨游整个古今中外。所以人活着就不能没有书,只要爱书你就是一个爱生活的人,只要爱书你就是一个大写的人,只要爱书你就是一个懂得珍惜与否的人。可真所谓

SQL常见语句及函数

1.求字持串的长度LENGTH 您可用LENGTH函数求字符串的长度。LENGTH返回一个数值。该值等于参数中的字符个数。 例:使用LENGTH函数 SQL>select Last_Name, length(Last_Name) from customer order by LastName; 2.使用SUBSTR函数从字符串中提取子串 语法: SUBSTR函数的语法如下: SUBSTR(string, string charcter, number of charcters) 变量定义如下: string为字符列或字符串表达式 string charcter为子串的起始位置 number of charcters为返回字符的个数c 例:说明了怎样使用SUBSTR函数取得教师的姓的前四个字符 SQL>select last_Name, substr(Last_Name, 1, 4) from instector order by Last_Name 例:在SUBSTR函数中使用LENGTH函数(取后三个字符) 5Qt.>select last_Name, substr(Last_Name, Length(Last_Name) - 2, 3) from instector order by Last_Name 3.在字符串中查找模式 例:使用LIKE运算符 SQL>column description format a40 word_wrapped SQL>column title format a35 SQL>select Title, Description from Course where Description like '%thory%' or Description like '%theories%'; 4.替换字符串的一部分 经常遇到的数据操纵任务是在特定的列中将数据由一种模式转换成另一种模式。 假设您希望在Course表中改变课程说明,将说明中的字seminar用字discussion替代.那么您可用oracle提供的函数REPLACE,该函数使得某列的字符串能被另一字符串代替。 语法: REPLACE函数的语法如下: REPLACE(string, existion_string, [replacement_string]) 变量定义如下: string为字符表达式c existion_string为已存在的字符串。 replacement_string为用来替代的可选字符串。 例:使用REPLACE函数 显示了在Course表中如何使用REPLACE来改变课程名称(title):首先使用查询显示当前课程名称,UPDATE语句中使用REPLACE函数将SEMINAR改变成

EXCEL乘法函数公式使用方法

在Excel表格中,我们常常会利用Excel公式来统计一些报表或数据等,这时就少不了要用到加、减、乘、除法,在前面我们已经详细的讲解了求差公式使用方法。那么我们又如何利用公式来对一些数据进行乘法计算呢?怎样快速而又方便的来算出结果呢?下面小编就来教大家一步一步的使用Excel乘法公式! 我们先从简单的说起吧!首先教大家在A1*B1=C1,也就是说在第一个单元格乘以第二个单元格的积结果会显示在第三个单元格中。 1、A1*B1=C1的Excel乘法公式 ①首先,打开表格,在C1单元格中输入=A1*B1乘法公式。 ②输入完毕以后,我们会发现在 C1 单元格中会显示0,当然了,因为现在还没有输入要相乘的数据嘛,自然会显示0了。 ③现在我们在A1和B1单元格中输入需要相乘的数据来进行求积,如下图,我分别在A1和B1单元格中输入10和50进行相乘,结果在C1中就会显示出来,等于500。 上面主要讲解了两个单元格相乘求积的方法,但是在我们平常工作中,可能会遇到更多数据相乘,下面主要说说多个单元格乘法公式运用,如:A1*B1*C1*D1=E1。 2、Excel中多个单元格相乘的乘法公式 ①在E1单元格中输入乘法公式=A1*B1*C1*D1。 ②然后依次在A1、B1、C1、D1中输入需要相乘的数据,结果就会显示在E1中啦! 看看图中的结果是否正确呀!其实,这个方法和上面的差不多,只不过是多了几道数字罢了。 因为在工作中不止是乘法这么简单,偶尔也会有一些需要加减乘除一起运算的时候,那么当遇到这种混合运算的时候我们应当如何来实现呢?这里就要看你们小学的数学有没学好了。下面让我们一起来做一道小学时的数学题吧! 3、Excel混合运算的乘法公式,5加10减3乘2除3等于多少? 提示:加=+,减=-,乘=*,除=/。

关于坚持的英语演讲稿

关于坚持的英语演讲稿 Results are not important, but they can persist for many years as a commemoration of. Many years ago, as a result of habits and overeating formed one of obesity, as well as indicators of overall physical disorders, so that affects my work and life. In friends to encourage and supervise, the participated in the team Now considered to have been more than three years, neither the fine rain, regardless of winter heat, a day out with 5:00 time. The beginning, have been discouraged, suffering, and disappointment, but in the end of the urging of friends, to re-get up, stand on the playground. 成绩并不重要,但可以作为坚持多年晨跑的一个纪念。多年前,由于庸懒习惯和暴饮暴食,形成了一身的肥胖,以及体检指标的全盘失常,以致于影响到了我的工作和生活。在好友的鼓励和督促下,参加了晨跑队伍。现在算来,已经三年多了,无论天晴下雨,不管寒冬酷暑,每天五点准时起来出门晨跑。开始时,也曾气馁过、痛苦过、失望过,但最后都在好友们的催促下,重新爬起来,站到了操场上。 In fact, I did not build big, nor strong muscles, not a sport-born people. Over the past few years to adhere to it, because I have a team behind, the strength of a strongteam here, very grateful to our team, for a long time, we encourage each other, and with sweat, enjoying common health happy. For example, Friends of the several run in order to maintain order and unable to attend the 10,000 meters race, and they are always concerned about the brothers and promptly inform the place and time, gives us confidence and courage. At the same time, also came on their own inner desire and pursuit for a good health, who wrote many of their own log in order to refuel for their own, and inspiring. 其实我没有高大身材,也没健壮肌肉,天生不属于运动型的人。几年来能够坚持下来,因为我的背后有一个团队,有着强大团队的力量,在这里,非常感谢我们的晨跑队,长期以来,我们相互鼓励着,一起流汗,共同享受着健康带来的快

Python语句、函数与方法的使用技巧总结

Python语句、函数与方法的使用技巧总结 显示有限的接口到外部 当发布python第三方package时,并不希望代码中所有的函数或者class可以被外部import,在__init__.py中添加__all__属性,该list中填写可以import 的类或者函数名,可以起到限制的import的作用,防止外部import其他函数或者类。 #!/usr/bin/env python # -*- coding: utf-8 -*- from base import APIBase from client import Client from decorator import interface, export, stream from server import Server from storage import Storage from util import (LogFormatter, disable_logging_to_stderr, enable_logging_to_kids, info) __all__ = ['APIBase', 'Client', 'LogFormatter', 'Server', 'Storage', 'disable_logging_to_stderr', 'enable_logging_to_kids', 'export', 'info', 'interface', 'stream'] with的魔力

with语句需要支持上下文管理协议的对象,上下文管理协议包含__enter__和__exit__两个方法。with语句建立运行时上下文需要通过这两个方法执行进入和退出操作。 其中上下文表达式是跟在with之后的表达式,该表达式返回一个上下文管理对象。 # 常见with使用场景 with open("test.txt", "r") as my_file: # 注意, 是__enter__()方法的返回值赋值给了my_file, for line in my_file: print line 知道具体原理,我们可以自定义支持上下文管理协议的类,类中实现__enter__和__exit__方法。 #!/usr/bin/env python # -*- coding: utf-8 -*- class MyWith(object): def __init__(self): print "__init__ method" def __enter__(self):

三角函数公式大全与证明

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

关于工作的优秀英语演讲稿

关于工作的优秀英语演讲稿 Different people have various ambitions. Some want to be engineers or doctors in the future. Some want to be scientists or businessmen. Still some wish to be teachers or lawers when they grow up in the days to come. Unlike other people, I prefer to be a farmer. However, it is not easy to be a farmer for Iwill be looked upon by others. Anyway,what I am trying to do is to make great contributions to agriculture. It is well known that farming is the basic of the country. Above all, farming is not only a challenge but also a good opportunity for the young. We can also make a big profit by growing vegetables and food in a scientific way. Besides we can apply what we have learned in school to farming. Thus our countryside will become more and more properous. I believe that any man with knowledge can do whatever they can so long as this job can meet his or her interest. All the working position can provide him with a good chance to become a talent. 1 ————来源网络整理,仅供供参考

个人先进事迹简介

个人先进事迹简介 01 在思想政治方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.利用课余时间和党课机会认真学习政治理论,积极向党组织靠拢. 在学习上,xxxx同学认为只有把学习成绩确实提高才能为将来的实践打下扎实的基础,成为社会有用人才.学习努力、成绩优良. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意识和良好的心理素质和从容、坦诚、乐观、快乐的生活态度,乐于帮助身边的同学,受到师生的好评. 02 xxx同学认真学习政治理论,积极上进,在校期间获得原院级三好生,和校级三好生,优秀团员称号,并获得三等奖学金. 在学习上遇到不理解的地方也常常向老师请教,还勇于向老师提出质疑.在完成自己学业的同时,能主动帮助其他同学解决学习上的难题,和其他同学共同探讨,共同进步. 在社会实践方面,xxxx同学参与了中国儿童文学精品“悦”读书系,插画绘制工作,xxxx同学在班中担任宣传委员,工作积极主动,认真负责,有较强的组织能力.能够在老师、班主任的指导下独立完成学院、班级布置的各项工作. 03 xxx同学在政治思想方面积极进取,严格要求自己.在学习方面刻苦努力,不断钻研,学习成绩优异,连续两年荣获国家励志奖学金;作

为一名学生干部,她总是充满激情的迎接并完成各项工作,荣获优秀团干部称号.在社会实践和志愿者活动中起到模范带头作用. 04 xxxx同学在思想方面,积极要求进步,为人诚实,尊敬师长.严格 要求自己.在大一期间就积极参加了党课初、高级班的学习,拥护中国共产党的领导,并积极向党组织靠拢. 在工作上,作为班中的学习委员,对待工作兢兢业业、尽职尽责 的完成班集体的各项工作任务.并在班级和系里能够起骨干带头作用.热心为同学服务,工作责任心强. 在学习上,学习目的明确、态度端正、刻苦努力,连续两学年在 班级的综合测评排名中获得第1.并荣获院级二等奖学金、三好生、优秀班干部、优秀团员等奖项. 在社会实践方面,积极参加学校和班级组织的各项政治活动,并 在志愿者活动中起到模范带头作用.积极锻炼身体.能够处理好学习与工作的关系,乐于助人,团结班中每一位同学,谦虚好学,受到师生的好评. 05 在思想方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.作为一名共产党员时刻起到积极的带头作用,利用课余时间和党课机会认真学习政治理论. 在工作上,作为班中的团支部书记,xxxx同学积极策划组织各类 团活动,具有良好的组织能力. 在学习上,xxxx同学学习努力、成绩优良、并热心帮助在学习上有困难的同学,连续两年获得二等奖学金. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意 识和良好的心理素质.

函数导数公式及证明

函数导数公式及证明

复合函数导数公式

) ), ()0g x ≠' ''2 )()()()() ()()f x g x f x g x g x g x ?-=?? ())() x g x , 1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -== 证: ' 00()()()()lim lim n n x x f x x f x x x x f x x x →→+-+-== 根据二项式定理展开()n x x + 011222110(...)lim n n n n n n n n n n n n n x C x C x x C x x C x x C x x x ----→+++++-= 消去0n n n C x x - 11222110...lim n n n n n n n n n n x C x x C x x C x x C x x ----→++++= 分式上下约去x 112211210 lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项 111 n n n C x nx --== 12210()[()()...()]lim n n n n x x x x x x x x x x x x x x ----→+-+++++++=

12210 lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++ 1221...n n n n x x x x x x ----=++++ 1n n x -= 2.证明指数函数()x f x a =的导数为'ln ()x x a a a = 证: ' 00()()()lim lim x x x x x f x x f x a a f x x x +→→+--== 0(1)lim x x x a a x →-= 令1x a m -=,则有log (1)a x m =-,代入上式 00(1)lim lim log (1)x x x x x a a a a m x m →→-==+ 1000 ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m a m a a a a m m m a m →→→===+++ 根据e 的定义1lim(1)x x e x →∞ =+ ,则1 0lim(1)m x m e →+=,于是 1 ln ln lim ln ln ln(1) x x x x m a a a a a a e m →===+ 3.证明对数函数()log a f x x =的导数为''1 ()(log )ln a f x x x a == 证: '0 0log ()log ()() ()lim lim a a x x x x x f x x f x f x x x →→+-+-== 00log log (1)ln(1) lim lim lim ln a a x x x x x x x x x x x x x a →→→+++===

关于工作的英语演讲稿

关于工作的英语演讲稿 【篇一:关于工作的英语演讲稿】 关于工作的英语演讲稿 different people have various ambitions. some want to be engineers or doctors in the future. some want to be scientists or businessmen. still some wish to be teachers or lawers when they grow up in the days to come. unlike other people, i prefer to be a farmer. however, it is not easy to be a farmer for iwill be looked upon by others. anyway,what i am trying to do is to make great contributions to agriculture. it is well known that farming is the basic of the country. above all, farming is not only a challenge but also a good opportunity for the young. we can also make a big profit by growing vegetables and food in a scientific way. besides we can apply what we have learned in school to farming. thus our countryside will become more and more properous. i believe that any man with knowledge can do whatever they can so long as this job can meet his or her interest. all the working position can provide him with a good chance to become a talent. 【篇二:关于责任感的英语演讲稿】 im grateful that ive been given this opportunity to stand here as a spokesman. facing all of you on the stage, i have the exciting feeling of participating in this speech competition. the topic today is what we cannot afford to lose. if you ask me this question, i must tell you that i think the answer is a word---- responsibility. in my elementary years, there was a little girl in the class who worked very hard, however she could never do satisfactorily in her lessons. the teacher asked me to help her, and it was obvious that she expected a lot from me. but as a young boy, i was so restless and thoughtless, i always tried to get more time to play and enjoy myself. so she was always slighted over by me. one day before the final exam, she came up to me and said, could you please explain this to me? i can not understand it. i

r语句常用函数汇总(1)

R-note 一、基本函数 1.函数c()—向量,length()—长度,mode()—众数,rbind()—组合,cbind()— 转置,mode()—属性(数值、字符等) 2.函数mean( )-中位数, sum( )-求和, min( )-最小 值, max( )-最大值, var( )-方差, sd( )-标准差, prod( ) –连乘 3.函数help()--帮助 4.正态分布函数rnorm( ) 、泊松分布函数rpois( ) 、指数分布函数rexp( ) 、 Gamma分布函数rgamma( ) 、均匀分布函数runif( ) 、二项分布函数rbinom( ) 、几何分布函数rgeom( ) (一)基本函数 1.>2:60*2+1 [1]5 7 9 11……..。。。(共60个数) 2. a[5]:a数列第5个数,a[-5]:删除a数列第5位数 a[-(1:5)]: 删除a数列第1-5位数 a[c(2,4,7)]:a数列第2,4,7位数 a[a<20]:a数列小于20的数 a[a[3]]:先查找a数列第3位数对应数值,然后找第该位数对应数值 5.Seq()函数---序列数产生器 Seq(5,20):产生5,6。。。。20的数集 Seq(5,100,by=2):产生5开始,步长为2的数集,最大值为100 Seq(5,100,length=10):产生从5开始,从第三个数开始等于第二个数加上第二个数减去第一个数的差值,最后一个数为100. 如:=+() 6.letters():产生字母序列 letters[1:30]:a,b,c,d…..30个字母 ()选择 (a):a数列里面最大数 which(a==2):查找a数列中等于2的数,并返回该数所对应位置

关于人英语演讲稿(精选多篇)

关于人英语演讲稿(精选多篇) 关于人的优美句子 1、“黑皮小子”是我对在公交车上偶遇两次的一个男孩的称呼代号。一听这个外号,你也定会知道他极黑了。他的脸总是黑黑的;裸露在短袖外的胳膊也是黑黑的;就连两只有厚厚耳垂的耳朵也那么黑黑的,时不时像黑色的猎犬竖起来倾听着什么;黑黑的扁鼻子时不时地深呼吸着,像是在警觉地嗅着什么异样的味道。 2、我不知道,如何诠释我的母亲,因为母亲淡淡的生活中却常常跳动着不一样的间最无私、最伟大、最崇高的爱,莫过于母爱。无私,因为她的爱只有付出,无需回报;伟大,因为她的爱寓于

普通、平凡和简单之中;崇高,是因为她的爱是用生命化作乳汁,哺育着我,使我的生命得以延续,得以蓬勃,得以灿烂。 3、我的左撇子伙伴是用左手写字的,就像我们的右手一样挥洒自如。在日常生活中,曾见过用左手拿筷子的,也有像超级林丹用左手打羽毛球的,但很少碰见用左手写字的。中国汉字笔画笔顺是左起右收,适合用右手写字。但我的左撇子伙伴写字是右起左收的,像鸡爪一样迈出田字格,左看右看,上看下看,每一个字都很难看。平时考试时间终了,他总是做不完试卷。于是老师就跟家长商量,决定让他左改右写。经过老师引导,家长配合,他自己刻苦练字,考试能够提前完成了。现在他的字像他本人一样阳光、帅气。 4、老师,他们是辛勤的园丁,帮助着那些幼苗茁壮成长。他们不怕辛苦地给我们改厚厚一叠的作业,给我们上课。一步一步一点一点地给我们知识。虽然

他们有时也会批评一些人,但是他们的批评是对我们有帮助的,我们也要理解他们。那些学习差的同学,老师会逐一地耐心教导,使他们的学习突飞猛进。使他们的耐心教导培养出了一批批优秀的人才。他们不怕辛苦、不怕劳累地教育着我们这些幼苗,难道不是美吗? 5、我有一个表妹,还不到十岁,她那圆圆的小脸蛋儿,粉白中透着粉红,她的头发很浓密,而且好像马鬓毛一样的粗硬,但还是保留着孩子一样的蓬乱的美,卷曲的环绕着她那小小的耳朵。说起她,她可是一个古灵精怪的小女孩。 6、黑皮小子是一个善良的人,他要跟所有见过的人成为最好的朋友!这样人人都是他的好朋友,那么人人都是好友一样坦诚、关爱相交,这样人与人自然会和谐起来,少了许多争执了。 7、有人说,老师是土壤,把知识化作养分,传授给祖国的花朵,让他们茁壮成长。亦有人说,老师是一座知识的桥梁,把我们带进奇妙的科学世界,让

优秀党务工作者事迹简介范文

优秀党务工作者事迹简介范文 优秀党务工作者事迹简介范文 ***,男,198*年**月出生,200*年加入党组织,现为***支部书记。从事党务工作以来,兢兢业业、恪尽职守、辛勤工作,出色地完成了各项任务,在思想上、政治上同党中央保持高度一致,在业务上不断进取,团结同事,在工作岗位上取得了一定成绩。 一、严于律己,勤于学习 作为一名党务工作者,平时十分注重知识的更新,不断加强党的理论知识的学习,坚持把学习摆在重要位置,学习领会和及时掌握党和国家的路线、方针、政策,特别是党的十九大精神,注重政治理论水平的提高,具有坚定的理论信念;坚持党的基本路线,坚决执行党的各项方针政策,自觉履行党员义务,正确行使党员权利。平时注重加强业务和管理知识的学习,并运用到工作中去,不断提升自身工作能力,具有开拓创新精神,在思想上、政治上和行动上时刻同党中央保持高度一致。 二、求真务实,开拓进取 在工作中任劳任怨,踏实肯干,坚持原则,认真做好学院的党务工作,按照党章的要求,严格发展党员的每一个步骤,认真细致的对待每一份材料。配合党总支书记做好学院的党建工作,完善党总支建设方面的文件、材料和工作制度、管理制度等。

三、生活朴素,乐于助人 平时重视与同事间的关系,主动与同事打成一片,善于发现他人的难处,及时妥善地给予帮助。在其它同志遇到困难时,积极主动伸出援助之手,尽自己最大努力帮助有需要的人。养成了批评与自我批评的优良作风,时常反省自己的工作,学习和生活。不但能够真诚的指出同事的缺点,也能够正确的对待他人的批评和意见。面对误解,总是一笑而过,不会因为误解和批评而耿耿于怀,而是诚恳的接受,从而不断的提高自己。在生活上勤俭节朴,不铺张浪费。 身为一名老党员,我感到责任重大,应该做出表率,挤出更多的时间来投入到**党总支的工作中,不找借口,不讲条件,不畏困难,将总支建设摆在更重要的位置,解开工作中的思想疙瘩,为攻坚克难铺平道路,以支部为纽带,像战友一样团结,像家庭一样维系,像亲人一样关怀,践行入党誓言。把握机遇,迎接挑战,不负初心。

Intouch函数及语句介绍

Intouch函数及语句介绍 R 1: RecipeDelete() 从指定配方模板文件中删除配方名。 句法RecipeDelete(“Filename”,“RecipeName”); 参数描述 FileName 被函数所作用的配方模板文件。实际字符串或消息标记名。 RecipeName 在将被函数删除的指定配方模板文件中的特定配方。RecipeLoad()、RecipeSave() 和RecipeDelete() 函数需用户提供RecipeName 参数。 RecipeSelectRecipe() 函数返回此参数的值。实际字符串或消息标记名。 实例 下面的语句将配方“Recipel”从recfile.csv 文件中删除: RecipeDelete("c:\recipe\recfile.csv", "Recipe1"); 2: RecipeGetMessage()写给模拟标记名某一错误代码同时写给消息标记名相应的错误代码消息。 句法 RecipeGetMessage(Analog_T ag,Message_T ag,Number); 参数描述 Analog_T ag不带引号或常数的实际整型或实型标记名。 Message_T ag不带引号或常数的实际整型或实型标记名。 Number该参数设置返回给Message_Tag 的最大字符串长度。InTouch,消息标记名有131 字符的最大长度。除非你减小在InTouch 标记名称典中的Message_Tag 的最大字符串长度,该参数值为131。该参数可以是常数或包含一个数值的整型标记名。 实例 在“InTouch 数据更改脚本”中使用RecipeGetMessage() 函数,相应的错误代码可以被写到一个模拟标记名,并且关联的错误代码消息可以被写到一个消息标记名中。 Data Change Script Tagname[.field]:ErrorCode Script body:RecipeGetMessage(ErrorCode, ErrorMessage,131); 当模拟标记名ErrorCode 的值发生变化时,将自动执行此脚本。当此脚本执行时,RecipeGetMessage() 函数将读取标记名ErrorCode 的当前数字值,并且返回与此数字值关联的消息到标记名ErrorMessage。 ErrorCode = RecipeLoad ("c:\App\recipe.csv","Unit1","cookies"); RecipeGetMessage(ErrorCode, ErrorMessage, 131); 3: RecipeLoad() 将指定的配方加载到指定的标记名单元中。 句法 RecipeLoad(“Filename”,“UnitName”,“RecipeName”); 参数描述 Filename此函数所作用的配方模板文件的名称。FileName 可以是字符串常数或含有配方模板文件的消息标记名。 UnitName此函数使用的指定配方模板文件中指定的单元。RecipeLoad()函数需用户提供UnitName。RecipeSelectUuit() 函数返回此参数的值。UnitName 可以是字符常数或含有该单元名称的消息标记名。 RecipeName此函数使用的指定配方模板文件中指定的配方。RecipeLoad()、RecipeSave() 和RecipeDelete() 函数需用户提供RecipeName。RecipeSelectRecipe() 函数返回此参数的值。RecipeName 可以是字符常数或含有该配方名称的消息标记名。

相关主题
文本预览
相关文档 最新文档