Hofer-Zehnder semicapacity of cotangent bundles and symplectic submanifolds
- 格式:pdf
- 大小:262.07 KB
- 文档页数:19
arXiv:math/0303230v3 [math.SG] 18 Aug 2003HOFER-ZEHNDERSEMICAPACITYOFCOTANGENTBUNDLES
ANDSYMPLECTICSUBMANIFOLDS
LEONARDOMACARINI
Abstract.WeintroducetheconceptofHofer-ZehnderG-semicapacity(orG-
sensitiveHofer-Zehndercapacity)andprovethatgivenageometricallybounded
symplecticmanifold(M,ω)andanopensubsetN⊂MendowedwithaHamilton-
ianfreecircleactionϕthenNhasboundedHofer-ZehnderGϕ-semicapacity,where
Gϕ⊂π1(N)isthesubgroupgeneratedbythehomotopyclassoftheorbitsofϕ.In
particular,NhasboundedHofer-Zehndercapacity.
Wegivetwotypesofapplicationsofthemainresult.Firstly,weprovethat
thecotangentbundleofacompactmanifoldendowedwithafreecircleactionhas
boundedHofer-Zehndercapacity.Inparticular,thecotangentbundleT∗Gofany
compactLiegroupGhasboundedHofer-Zehndercapacity.Secondly,weconsider
Hamiltoniancircleactionsgivenbysymplecticsubmanifolds.Forinstance,weprove
thefollowinggeneralizationofarecentresultofGinzburg-G¨urel[7]:almostalllevels
ofafunctiondefinedonaneighborhoodofaclosedsymplecticsubmanifoldSina
geometricallyboundedsymplecticmanifoldcarrycontractibleperiodicorbitsofthe
Hamiltonianflow,providedthatthefunctionisconstantonS.
1.Introduction
Wewillconsiderheretheproblemoftheexistenceofperiodicorbitsonprescribed
energylevelsofHamiltoniansystems.Anapproachtothisproblemwastheintroduc-
tionofcertainsymplecticinvariantsrelatedtosymplecticrigidityphenomena.More
precisely,H.HoferandE.Zehnderintroducedin[9]thefollowingdefinition:
Definition1.1.Givenasymplecticmanifold(M,ω),definetheHofer-Zehnderca-
pacityofMby
c
HZ(M,ω)=sup
H∈Ha(M,ω)maxH,
whereH
a(M,ω)isthesetofadmissibleHamiltoniansHdefinedonM,thatis,
•H∈H(M)⊂C∞(M,R),whereH(M)isthesetofpre-admissibleHamilto-
niansdefinedonM,thatis,Hsatisfiesthefollowingproperties:0≤H≤
H:=maxH−minH,thereexistanopensetV⊂MsuchthatH|
V≡0
andacompactsetK⊂M\∂MsatisfyingH|
M\K≡H;
•everynon-constantperiodicorbitofX
Hhasperiodgreaterthan1.2LEONARDOMACARINI
WewillalsoconsiderhereamodifiedHofer-ZehndercapacityintroducedbyD.
McDuffandJ.Slimowitz[16]sensitivetothepresenceofovertwistedcriticalpoints.
Itisgivenby
c
HZ(M,ω)=sup
H∈Ha(M,ω)maxH,
whereH∈H
a(M,ω)ifHisadmissibleandhasnoovertwistedcriticalpoints,that
is,
•thelinearizedflowatthecriticalpointsofHhasnonon-trivialperiodicorbits
ofperiodlessthan1.
Remark.Itisanopenquestionwhetherthecapacitiesc
HZandc
HZcoincide.
Itiseasytoprovethatifasymplecticmanifold(M,ω)hasboundedHofer-Zehnder
capacity,thatis,ifc
HZ(U,ω)<∞foreveryopensubsetU⊂Mwithcompact
closure,thengivenanyHamiltonianH:M→Rwithcompactenergylevels,there
existsadensesubsetΣ⊂H(M)suchthatforeverye∈Σtheenergyhypersurface
H−1(e)hasaperiodicsolution.Actually,ifthereexistsaneighborhoodofanenergy
hypersurfaceH−1(e
0)withfiniteHofer-Zehndercapacitythenthereexistsǫ>0anda
densesubsetG⊂(e
0−ǫ,e
0+ǫ)suchthatH−1(e)hasperiodicorbitsforeverye∈G.
Thisresultwasimprovedin[14],whereitisshowedthatthereareperiodicorbitson
H−1(e)foralmostalle∈(e
0−ǫ,e
0+ǫ)withrespecttotheLebesguemeasure.The
sameholdsforc
HZ(M,ω).
LetusconsiderherearefinementoftheoriginalHofer-Zehndercapacitybycon-
sideringperiodicorbitswhosehomotopyclassiscontainedinagivensubgroupGof
π
1(M).Moreprecisely,wedefinetheHofer-Zehndersemicapacityasfollows:
Definition1.2.Givenasymplecticmanifold(M,ω)andasubgroupG⊂π
1(M)
definetheHofer-ZehnderG-semicapacity(orG-sensitiveHofer-Zehndercapacity)of
Mby
cG
HZ(M,ω)=sup
H∈HGa(M,ω)maxH,
whereHG
a(M,ω)isthesetofG-admissibleHamiltoniansdefinedonM,thatis,
•H∈H(M),thatis,Hispre-admissible(seethedefinition1.1);
•everynonconstantperiodicorbitofX
HwhosehomotopyclassbelongstoG
hasperiodgreaterthan1.
WedefinecG
HZ(M,ω)analogouslyconsideringG-admissibleHamiltonianswithout
overtwistedcriticalpoints.
Remark.Wecallitasemicapacitybecausegivenasymplecticembeddingψ:
(N,τ)→(M,ω)suchthatdimN=dimMitcannotbeexpected,ingeneral,that
cG
HZ(N,τ)≤cψ∗G
HZ(M,ω),whereψ
∗:π
1(N)→π
1(M)istheinducedhomomorphism
onthefundamentalgroup.However,wecanstatethefollowingweakmonotonicity
property(foraproofsee[13]):givenasymplecticembeddingψ:(N,τ)→(M,ω)
suchthatdimN=dimMthen
cψ−1
∗H
HZ(N,τ)≤cH
HZ(M,ω),HOFER-ZEHNDERSEMICAPACITYOFCOTANGENTBUNDLES3
foreverysubgroupH⊂π
1(M).Inparticular,ifψ
∗isinjectivewehavethat
cG
HZ(N,τ)≤cψ∗G
HZ(M,ω).
Notethatobviously,
c
HZ(M,ω)=cπ1(M)
HZ(M,ω)≤cG
HZ(M,ω),
foreverysubgroupG⊂π
1(M).Moreover,itcanbeshowthat,liketheHofer-
Zehndercapacity,iftheHofer-ZehnderG-semicapacityisboundedthenthereare
periodicorbitswithhomotopyclassinGonalmostallenergylevelsforeveryproper
Hamiltonian[14].Definition1.3.Asymplecticmanifold(M,ω)iscalledgeometricallyboundedifthere
existsanalmostcomplexstructureJonMandaRiemannianmetricgsuchthat
•Jisuniformlyω-tame,thatis,thereexistpositiveconstantsc
1andc
2such
that
ω(v,Jv)≥c
1v2and|ω(v,w)|≤c
2vw
foralltangentvectorsvandwtoM;
•thesectionalcurvatureofgisboundedfromaboveandtheinjectivityradius
isboundedawayfromzero.
Closedsymplecticmanifoldsareclearlygeometricallybounded;aproductoftwo
geometricallyboundedsymplecticmanifoldsisalsosuchamanifold.Itwasshowed
in[5,11]thatthecotangentbundleofacompactmanifoldendowedwithanytwisted
symplecticformisgeometricallybounded.Atwistedsymplecticstructureonacotan-
gentbundleT∗Misasymplecticformgivenbyω
0+π∗Ω,whereω
0isthecanonical
symplecticform,π:T∗M→MisthecanonicalprojectionandΩisaclosed2-form
onM.
Definition1.4.Givenasymplecticmanifold(M,ω)defineitsindexofrationality
by
m(M,ω)=inf
[u]ω;[u]∈π
2(M)satisfies
[u]ω>0
.
Iftheabovesetisempty,wedefinem(M,ω)=∞.Ifm(M,ω)>0wecall(M,ω)a
rationalsymplecticmanifold.
ThemainresultherestatesthattheexistenceofafreeHamiltoniancircleaction
impliestheboundednessoftheHofer-Zehndersemicapacity.Itremovesatechnical
hypothesisinaprevioustheoremin[13].
MainTheorem.Let(M,ω)beageometricallyboundedsymplecticmanifoldand
N⊂ManopensubsetthatadmitsafreeHamiltoniancircleactionϕ.Then,given
anyopensubsetUi֒→Nwithcompactclosure,
ci−1
∗Gϕ
HZ(U,ω)<∞,
wherei
∗:π
1(U)→π
1(N)istheinducedhomomorphismonthefundamentalgroup
andG
ϕ⊂π
1(N)isthesubgroupgeneratedbytheorbitsofthecircleaction.Moreover,
ifMisrational,thenci−1
∗Gϕ
HZ(U,ω)<∞.