当前位置:文档之家› 压电式力和力矩传感器.

压电式力和力矩传感器.

压电式力和力矩传感器.
压电式力和力矩传感器.

二、压电式力和力矩传感器

1) 压电式力和力矩传感器应用及分类

应用-测量动态力

大多数的力传感器内包含弹性元件,弹性元件在力的作用下会发生变形,通过弹簧的变形可以确定作用力的大小。为了获得较高的测量分辨力,要求弹性元件有足够大的弹性。然而,较大的弹性却限制了传感器的频率范围。同时由于力的作用,弹性元件的几何形状以及力臂关系均会发生变化。

为克服这一限制,奇石缘公司利用压电测量原理测量动态力。压电材料,比如石英,在力的作用下产生与所受力成比例的电荷:作用力越大,电荷越多。在压电式传感器中,石英既是弹性元件,同时也是测量换能器。

由于石英的刚性很高,力作用下的位移非常小,一般在几微米内。这种几乎无位移的测量,对于缓慢的准静态过程来说误差很小。对于快速过程的测量,由于石英的高刚度和与之关联的高固有频率,其优越性是其它任何原理无法比拟的。

石英晶体将测量(力、压力或加速度)直接转换成输出信号,这些信号理想线性、并且无滞后。石英传感器的其它优点为:小型、坚固、灵敏度高和测量范围非常宽。

奇石缘公司提供四类不同的压电式力传感器:

1)单分量力传感器

2)多分量力传感器

3)应变传感器

4)扭矩传感器

单向力传感器:

这类传感器一般为环状,由两个钢环和夹在中间的对压力敏感的石英晶片组成。

单向力传感器:

对压力敏感的

石英晶片夹在

两个钢环中间。

1) 垫圈式传感器是一种安装方式灵活,应用非常广泛的传感器。置于底盘和顶盘之间的两块石英晶片在一定的预载下安装,传感器的外壳经焊接密封。测量信号由置于石英晶片间的电极获得,并传递到输出插头。由于传感器有中间通孔,适合于螺纹连接测量力。传感器安装后,预紧螺栓形成一个力的旁路,一部分欲测量的力,通过预紧螺栓传递,并没有经过力传感器。为了准确确定安装后测量链的灵敏度,必须进行现场标定。

2) 用两个特殊的螺母预紧垫圈式传感器,构成拉、压力传感器。预载后的传感器非常适合测量如杆件装配中的挤压力和拉伸力。这类传感器出厂前预载后校准,安装方便,并可立即使用。

3) 测量微小力的传感器中采用横向压电效应的狭长棒状石英敏感元件,细长的石英晶片预紧安装在传导力的传感器结构中,其压电灵敏度为垫圈式传感器的30倍。

三向力传感器:

对剪切敏感的石英晶片(Fx,Fy)与对压力敏感的石英晶片(Fz)一起组成结构紧凑的三向力传感器。

三向力传感器:

对剪力敏感的石英

晶片和对压力敏感

的石英晶片。

压电式测量原理是设计三向力传感器的理想选择。三向力传感器的组装与单向垫圈式传感器类似。一对具有纵向压电效应的石英晶片测量纵向分力Fz,另外两对不同剪切效应的石英晶片测量两个横向分力(Fx和Fy)。由于剪切力只能通过摩擦传递,三向传感器必须在足够预紧力的情况下安装。

多分量力传感器一般不是由单个传感器组成,而是由三个或四个传感器一起组成测力计或测力平台,利用压电传感器的特性,可以并联具有同一灵敏度的多个传感器。

获取的输出信号等于单个力的代数和。因此,一个测力计就像单个的多分量传感器一样,分别测量与力作用点无关的三个分力。

作用于测力计的力矩虽然对传感器有载荷作用,但由于信号并联而不能测量。然而,当传感器不并联时,力矩可由传感器获得的单个输出信号确定。这种测量系统测量合力的三个

分力和合力矩的三个分量。力矩以传感器排列的坐标系为基准。大部分奇石缘测力计和测力台既适用于3分量力的测量,也适于6分量力-力矩的测量。

3分量力传感器

3分量拉压力传感器

3分量测力计,内置四个力传感器

旋转式切削测力计

应变传感器

应变传感器测量表面或结构应变间接确定过程力。奇石缘应变传感器将应变转换为成比例的力,并产生相应的电荷信号。部件在力的作用下产生应力和应变。

应变是受载部件长度的相对变化,因此而应变为无量纲单位。

在许多应用中,应变测量作为在部件上间接测力的方法。与直接测力的传感器相比,用于间接测力的传感器尺寸非常小。其优点是:安装此种传感器对部件没有影响,与直接测力不同的是,应变测量信号与力的作用点有关。

应变既可以在结构表面测量也可以在结构内部直接测量。

压电式表面应变传感器可以通过一个螺钉固定在结构表面合适的位置。通过螺钉固定,在传感器和结构表面之间产生摩擦力。结构表面测量方向上的长度变化传递到传感器的敏感元件,并产生剪切向力。表面应变传感器在复杂结构上的合适安装位置需要通过试验确定。

安装于结构内部的应变传感器需要圆柱形安装孔。其优点是测量元件可置于最佳位置。根据应变的方向不同,奇石缘提供测量纵向和横向应变的传感器。为了使传感器可以测量拉压应变,需要在预紧状态下安装孔内。

与传统的应变测量技术相比较,压电式应变传感器的灵敏度非常高。

表面应变传感器纵向测量销

横向测量销用于间接测力的表面应变传感器

扭矩传感器

对剪切力敏感的石英晶片环形排列,其敏感轴与圆环切线一致,在预紧下封装,用于测量扭矩。

扭矩传感器:

剪力敏感的石英

晶片成环形排列

测量扭矩需要特殊的传感器。先将一组剪切效应的石英晶片排列成环形,每个晶片的敏感轴方向与所在环线位置的切线一致。然后再以单向力传感器相似的结构形式组装成扭矩传

感器。扭矩传感器必须在高预紧状态下安装,以使其能够产生足够的摩擦力传递横向力。作用于切线方向的横向力。由于所有的石英片并联,总输出与施加的扭矩成正比。

出厂前用两个专用螺母预紧好、并进行标定的扭矩传感器可直接用于测量。这种传感器尤其适用于检测旋转开关的质量。

扭矩传感器扭矩测力计

另一种传感器的设计-固定式扭矩测力计,适用于检测螺栓。扭矩测量对于确定旋转刀具的切削力起重要作用,奇石缘提供用于这种用途的旋转式测量系统。

扭矩主要用于校准拧紧设备,测量制动力的旋转式扭矩车轮等。

直接和间接测量力

直接测量力时,传感器安装在力的通道中,测量全部的力。因此,测量非常准确,实际上与力的作用点没有关系。

当传感器不能安装在力的直接通道时,可采用间接测量方法。部分力被通过旁路传递。由于只有部分力被测量,间接测量的系统必须在安装后进行标定。系统的灵敏度与力的作用点有关,此外,安装过程也会影响线性和迟滞。

二次标定

一般情况下,奇石缘的传感器在安装过程中需要加预紧力。预紧后的传感器可以测量压力和拉力(相当于减少传感器的预紧)。横向力通过摩擦传递。此外,预紧可去除微间隙,从而确保测量系统的高刚度和宽频率范围。由于预紧螺栓构成力的分流,传感器只能测量全部力的90%左右。对于精确的测量,传感器必须在安装和预紧后进行二次标定。

2) 压电式与应变式力传感器比较

压电式力传感器、扭矩和应变传感器设计非常紧凑和坚固。测量范围可以覆盖1到106倍,具有很高的固有频率,并对干扰不敏感。温度范围宽、抗过载能力强、寿命长、无疲劳。压电传感器对几乎所用应用领域都适用,尤其是周期性的过程,如自动化生产过程。

与应变式传感器相比,奇石缘石英传感器具有原理上的显著优点,主要由石英的高刚度决定的。

坚固、抗过载和长期可靠

因为测量范围宽,压电传感器设计很紧凑,传感器尺寸与测量范围成比例。由于其刚性结构,压电传感器非常坚固和抗过载。即使在应用数几百万次后,传感器的灵敏度依然保持恒定,且永不出现疲劳。只要按照说明书的要求使用,压电传感器的使用寿命几乎是无限的。此外坚固设计使传感器具有很高的固有频率,对测量高动态过程很理想。

高灵敏,宽测量范围

与应变式传感器不同,石英传感器具有高达106倍的宽测量范围,由于灵敏度、最小测量阈值和分辨率与弹性变形结构的刚度无关。压电传感器可用于测量很小的力,例如在一个较大的静载基础上的微小变化力。

压电式力传感器优点:

高达106倍的极宽测量范围

灵敏度、最小测量阈值与测量范围无关

设计紧凑,传感器尺寸与测量范围成比例

刚性高,无变形条件下的测力

抗过载、不疲劳、长期可靠

使用寿命几乎无限

固有频率高,是应变式传感器的10倍

工作稳定范围宽

对抗干扰不敏感

可并行连接,叠加测量结果

多分量传感器设计多样,选择灵活

压电传感器不能用于静态测量

由于测量链的绝缘电阻有限,只有变化才能产生信号,电荷信号不能无限长期保持不泄露。因此压电传感器的信号没有绝对零点,不适合进行长期稳态,如称重应用。对于周期性

变化的过程测量,上述限制变成压电传感器的优点,因为它们总是测量相对力,而不是绝对力。因此,任何静态或缓慢变化的附带状态会被自动消除。

3) 力传感器的安装基础

力可由其传递路径上的全部力或部分力的模式直接测量,也可以应变方式间接测量。在直接测力时,全部过程力通过传感器传递,而在力分流模式下,传感器只测量过程力的一部分。应变传感器以表面应变或机器内部应变方式间接测量过程力。

部分过程力可以通过安装在传感器附近的元件传递。这些元件形成一个力分流。力分流也可以通过安装用于直接测量的预加载元件产生,在大多数情况下,力分流少于10%。力分流模式应用这一效应。安装传感器使得只有一小部分过程力被测量。过程力的主要部分传入机械结构中。应用这种方法可以测量超过传感器测量范围很小过程力一样,在间接测力时建立的力分流基本上是99%或更多。无论何种传感器类型和安装方式,如果力分流状态发生变化,必须重新校准传感器。

测量方法概述

直接测力:全部过程力通过传感器(力分流n<≈10%)

分流测力:小部分力通过传感器(力分流n<≈10-99%)

间接测力:极少的过程力通过传感器(力分流n>>10-99%)

直接测力

直接力测量: 在力的传递路径上安装传感器,测量全部过程力。

直接测力要求将传递力的路径断开,安装已校准的力传感器。因此,安装的力传感器必须匹配部件的强度和刚度要求。用于直接测力的传感器大多在安装前校准和预加载,因此安装不会影响力分流。已校准和预加载的直接测力传感器用于要求测量绝对力和安装后不进行校准的场合,例如压装力的监控或产品测试中微小力的测量。

优点:灵敏度高、测量精度高、重复性高、线性好、迟滞小、预加载范围大、容易安装、传感器已校准。

缺点:当传感器安装在运动零件上时,有来自加速度力的干扰、改变了机器的强度或刚度状态、对工件的尺寸有所限制。

直接测力示意图

分流测力

分流测力:传感器安装在机械结构中。通常大部分过程力通过力分流传递。

当需要测量的力非常大或当传感器不能直接安装到力传递路径中时,可把传感器安装在力的分流中。由于传感器只测量过程力的一部分,而其余的力通过分流传递,测量范围经常可以比直接测力时需要的小。因此可以提供另一种低成本的测量方案。

分流测力的另一个优点是其非常高的抗过载能力。如果需要测量绝对力的大小,安装在力分流上的传感器必须在安装后进行校准。由于灵敏度是通过力分流测定的,而力分流本身依赖于力作用点,校准只有在力分流状态固定时才有效。因此对于力作用点固定的应用,例如压装力的监控,力分流测量时首选的测量方法。

传感器的安装方式和力作用点不仅影响传感器的灵敏度,而且还影响其线性和迟滞。

力分流n[%]=100.Fn/Fp

N=力分流(没经传感器测量的过程力比例);Fp=过程力;n=0(无预载,安装前的传感器);So=安装前的传感器灵敏度;S=安装后的传感器;Fn=分流力。S=So?(1-n/100) 优点:抗过载能力强、成本低、测量的过程力比传感器的测量范围可高至100/(100-n)倍、恒定状态下测量精度可靠、高重复性。

缺点:测量值与力作用点和力传递路径有关、测量绝对力时,需要现场校准。

间接测力

当在一个结构上施加力时,引起的结构变形可以作为与力成比例的应变来测量。因此过程力可通过表面或结构应变间接测定。奇石缘应变传感器把应变转换成比例的力,并产生相应的电荷信号。因此经常称为力-应变传感器。

灵敏度由单位应变με(μm/m)对应的电荷量来确定,一般无需校准,因为应变非常小,可忽略不计。当用来测量绝对值时,应变测量链的灵敏度(v/kN)通常总是相对力传感器作为参考来校准。不过对于周期过程,通常监控力曲线的相对变化已足够,无需确定绝对值。

优点:安装方式最简便、匹配现有设备简易、抗过载能力强、成本经济。

缺点:测量值与力作用点和力的传递路径有关、测量绝对值时需要现场校准。

4)压电式测量链

大部分压电式传感器在出厂前进行标定,因此可立即用于直接测量。具有同一灵敏度的几个传感器也可并联。这种情况下,输出信号等于所有单个力的总和。这些传感器通过高绝缘特殊电缆与电荷放大器相连。电荷放大器将传感器的电荷信号成比例转换为电压信号。电荷放大器上可以设置传感器的灵敏度和测量范围。这种标定过的测量链输出的信号可以进行显示和后处理。

测量和分析

信号调节对于测量力、应变和扭矩等物理量非常重要。压电传感器产生与传感器所受载荷成线性比例的电荷信号。需用电荷放大器将电荷信号转换为电压或电流信号,然后才可以进行信号处理。为了满足实际应用中的不同需求,奇石缘提供多种电荷放大器,它们在结构、通道数、精度、测量范围、灵敏度、带宽、滤波特性、比例输出和信号评估等方面各有不同。

当今普遍使用计算机记录测量数据。对显示及评估力信号软件的功能和用户界面友好性等方面要求很高。奇石缘的DasView数据分析软件特别适合配测力计或单、多向力传感器使用。在信号分析分析方面,DasView可以在线显示信号波形,具有统计分析和图表功能。该软件除了可对测量链的采集仪器进行设置外,还支持单个测量的数据文件生成,以及配置和测量结果数据库的建立和管理。

常用压力传感器原理分析

常用压力传感器原理分析 振膜式谐振压力传感器 振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振 频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。 在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示 压电式压力传感器 某些电介质沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电 的状态,此现象称为“压电效应”。常用的压电材料有天然的压电晶体(如石英晶体)和压电陶瓷(如钛酸钡)两大类,它们的压电机理并不相同,压电陶瓷是人造 多晶体,压电常数比石英晶体高,但机械性能和稳定性不如石英晶体好。它们都具有较好特性,均是较理想的压电材料。 压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系: Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 图1为一种压电式压力传感器的结构示意图。压电元件夹于两个弹性膜片之间,压电元件的一个侧面与膜片接触并接地,另一侧面通过引线将电荷量引出。被测压力 均匀作用在膜片上,使压电元件受力而产生电荷。电荷量一般用电荷放大器或电压放大器放大,转换为电压或电流输出,输出信号与被测压力值相对应。 除在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

压电传感器课程设计

压电式传感器的应用 一:概述 传感器是指那些对被测对象的某一确定的信息具有感受与检出功能, 并使之按照一定规律转换与之对应有用输出信号的元器件或装置,是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋,美国早在80年代就声称世界已进入传感器时代,日本则把传感器技术列为十大技术之创立。 压电式传感器是典型的有源传感器。当压电材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。压电式传感器具有体积小,重量轻,工作频带宽等特点,因此在各种动态力,机械冲击与振动的测量,以及声学,医学,力学,宇航,军事等方面都得到了非常广泛的应用。本文就压电传感器的工作原理和应用做相关介绍。 二:基本原理 压电式传感器的工作原理是基于某些介质材料的压电效应。是一种自发电式和机电转换式传感器,它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 三:应用原理 压电式传感器的应用原理就是利用压电材料的压电效应这个特性,即当有力作用在压电元件上时,传感器就有电荷输出。由于外力作用在压电材料上产生的电荷只有在无泄漏的情况下才能保存,故需要测量回路具有无限大的输入阻抗,这实际上是不可能的,因此压电式传感器不能用于静态测量。 压电元件作为压电式传感器的核心,在受外力作用时,其受力和变形方式大

压电式传感器习题

第6章 压电式传感器 1、为什么压电式传感器不能用于静态测量,只能用于动态测量中?而且是频率越高越好? 2、什么是压电效应?试比较石英晶体和压电陶瓷的压电效应 3、设计压电式传感器检测电路的基本考虑点是什么,为什么? 4、有一压电晶体,其面积为20mm 2,厚度为10mm ,当受到压力P=10MPa 作用时,求产生的电荷量及输出电压: (1)零度X 切的纵向石英晶体; (2)利用纵向效应的BaTiO 3。 解:由题意知,压电晶体受力为 F=PS=10×106×20×10-6=200(N) (1)0°X 切割石英晶体,εr =4.5,d 11=2.31×10-12C/N 等效电容 36120101010205.41085.8---?????==d S C r a εε =7.97×10-14 (F) 受力F 产生电荷 Q=d 11F=2.31×10-12×200=462×10-2(C)=462pC 输出电压 ()V C Q U a a 3141210796.51097.710462?=??==-- (2)利用纵向效应的BaTiO 3,εr =1900,d 33=191×10-12C/N 等效电容 361201010102019001085.8---?????==d S C r a εε =33.6×10-12(F)=33.6(pF) 受力F 产生电荷 Q=d 33F=191×10-12×200=38200×10-12 (C)=3.82×10-8C 输出电压 ()V C Q U a a 312810137.1106.331082.3?=??==-- 5、某压电晶体的电容为1000pF ,k q =2.5C/cm ,电缆电容C C =3000pF ,示波器的输入阻

压电式压力传感器(带信号放大解调滤波电路)

题目:压电式压力传感器的设计 姓名:刘福班级:3 学号:1003030321 专业:测控技术与仪器 目录 引言 第一章传感器基本原理 第二章传感器的基本要求 第三章传感器的结构设计 第四章传感器的参数计算 第五章测量电路信号处理电路 总结 参考文献

一、引言 此次压电式力传感器主要阐述了压电式力传感器的具体设计过程。 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。 压电式传感器的设计,主要是让同学们了解传感器的设计过程,知道如何计算一些参数,如何设计尺寸,如何选择材料,把自己学到的知识熟练灵活的运用起来,活学活用,加深对传感器这门课程的认知。

第一章传感器基本原理 1、基本原理:压电效应 压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。常见有以下几种压电效应模型(见图1) 图1 压电效应可分正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用,内部就产生电极化,同时在某两个表面上产生符号相 反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、面切变型5种形式。

压电式压力传感器原理及应用

压电式压力传感器原理及应用 自动化研1302班王民军 压电式压力传感器是工业实践中最为常用的一种传感器。而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 一、压电式传感器的工作原理 1、压电效应 For personal use only in study and research; not for commercial use 某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。压电式传感器的原理是基于某些晶体材料的压电效应。 2、压电式压力传感器的特点 压电式压力传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见

压电式压力传感器、加速度计)。压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。 For personal use only in study and research; not for commercial use 式中Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。为了保证静态特性及稳定性,通常多采用压电晶片并联。在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。 For personal use only in study and research; not for commercial use 二、压电压力传感器等效电路和测量电路 在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料

智能压力传感器的设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2009—2013年) 题目智能化压力传感器的设计 学院:环化学院系测控系 专业班级:测控技术与仪器093班 学生姓名:钟刚学号: 5801209114 指导教师:刘诚职称:讲师 起讫日期: 2013.3.15—2013.6.6 南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。

作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

传感器及转换器形成系统的“前端”,没有它,许多现代化的电子系统都无法正常工作。传感器已广泛的应用于工业控制系统和能源工业装置当中(如石油和天然气的生产、配电工业)。它们也是制造录音机和录像机这些原始设备产品的重要内在组成部分。大多数这些数字电子系统之所以具有普遍性和强大优势是得益于传感器广泛应用于这些电子电路中。 本课题将深入研究智能压力传感器系统理论及其在压力测试方面的应用,对新型智能压力传感器系统的智能化功能、智能化软件和硬件配置进行全面的设计。提出了一种差动电容式传感器的前置电路,基于电容/ 电压转换的原理,对微小电容变化量进行测量。电路输出的直流电压与差动电容变化量成线性关系,且能对偏差电容和电路的漂移进行自动补偿。 完善智能化软件,实现温度补偿、自动校准、总线数字通讯、自动增益控制等多种智能化特性,使智能化程度尽可能的提高。 关键词:传感器;压力;智能化。

压电式压力传感器原理

压电式压力传感器原理、特点及应用 压电式压力传感器的原理 压电式压力传感器的原理主要是压电效应,它是利用电气元件和其他机械把待测的压力转换成为电量,再进行相关测量工作的测量精密仪器,比如很多压力变送器和压力传感器。压电传感器不可以应用在静态的测量当中,原因是受到外力作用后的电荷,当回路有无限大 的输入抗阻的时候,才可以得以保存下来。但是实际上并不是这样的。因此压电传感器只可以应用在动态的测量当中。它主要的压电材料是:磷酸二氢胺、酒石酸钾钠和石英。而石英呢,其实是一种天然的晶体,而压电效应就是在此晶体的基础上发现的。在规定的范围里, 压电性质是不会消失,而是一直存在的。但是如果温度在这个规定的范围之外,压电性质就会彻底地消失不见。当应力发生变化的时候,电场的变化很小很小,其他的一些压电晶体就会替代石英。酒石酸钾钠,它是具有很大的压电系数和压电灵敏度的,但是,它只可以使用在室内的湿度 和温度都比较低的地方。磷酸二氢胺是一种人造晶体,它可以在很高的湿度和很高的温度的环境中使用,所以,它的应用是非常广泛的。随着技术的发展,压电效应也已经在多晶体上得到应用了。例如:压电陶瓷,铌镁酸压电陶瓷、铌酸盐系压电陶瓷和钛酸钡压电陶瓷等等都包括在内。

压电式压力传感器的特点 以压电效应为工作原理的传感器,是机电转换式和自发电式传感器。它的敏感元件是压电的材料制作而成的,而当压电材料受到外力作用的时候,它的表面会形成电荷,电荷会通过电荷放大器、测量电路的放大以及变换阻抗以后,就会被转换成为与所受到的外力成正比关系的电量输出。 它是用来测量力以及可以转换成为力的非电物理量,例如:加速度和压力。它有很多优点:重量较轻、工作可靠、结构很简单、信噪比很高、灵敏度很高以及信频宽等等。但是它也存在着某些缺点:有部分电压材料忌潮湿,因此需要采取一系列的防潮措施,而输出电流的响应又比较差, 那就要使用电荷放大器或者高输入阻抗电路来弥补这个缺点,让仪器更好地工作。 压电式压力传感器的应用 压电式压力传感器的应用领域很广泛:电声学、生物医学和工程力学等等。它能够测量发动机里面的燃烧压力,也能够应用在军事方面。它可以测量在膛中的枪炮子弹在击发的那一刻,膛压的改变量以及炮口所受到的冲击波压力。它能够测量很小的压力,也能够测量大 的压力。由于它的使用寿命很长、重量较轻、体积较小、结构较简单,因此它所涉及的领域远远不止这些。在对建筑物、桥、汽车和飞机等的冲击和震动的测量,也是非常广泛的。特别是在宇航和航空的领域

传感器原理及工程应用设计

传感器原理及工程应用设计

传感器原理及工程应用设计(论文) 压电传感器在动平衡测量系统中的设计与应用 学生姓名:李梦娇 学号:20094073231 所在学院:信息技术学院 专业:电气工程及其自动化(2)班 中国·大庆 2011年12月

摘要 传感器是动平衡测量系统中的重要元件之一, 是一种将不平衡量产生的振动信号不失真地转变成电信号的装置。利用压电式力传感器作为动平衡测量系统中的敏感元件来测量不平衡质量引起的振动。重点阐述了该压电式力传感器的结构设计、安装位置设计及振动信号检测中的关键问题。同时, 详细分析了该传感器的信号调理电路特点。现场实验结果表明, 设计的压电式力传感器在动平衡测量中的性能良好。动平衡处理是旋转部件必须采取的工艺措施之一, 以单片机为核心的动平衡测量系统将逐步取代常规动平衡仪。 关键词:动平衡振动信号压电式力传感器调理电路测量系统单片机

ABSTRACT As one of the important elements in the dynamic balancing measurement system, transducer is the device that converts the vibration signal caused by the mi balance into electrical signal without distortion. The piezoelectric pressure transducer is app lied to dynamic balancing measurement system formeasuring the vibration caused by mi balanced mass. The structure design and the installation location of the piezoelectric force transducer and the critical issues in vibration signal detection are expounded. The characteristics of the signal conditioning circuit of this transducer are analyzed in detail. The experimental results show that the performance of the piezoelectric pressure transducer offers excellent performance in dynamic balancing measurement. The dynamic equilibration measurement is one of the main technological steps to betaken for all the swiveling part s. T he conventional dynamic equilibration measurement system is being replaced by a new o ne based on a monolithic computer. Keyword:dynamic balance vibration signal Piezoelectric force transducer Conditioning circuit Measurement system Monolithic computer

振动信号检测系统的设计1

信号检测综合训练 说明书 题目:振动信号检测系统设计 学院:电气工程与信息工程学院 班级:电子(2)班 姓名: 钱鹏鹏 学号:11260224 指导老师:缑新科 2014.12.07

摘要 机械在运动时,由于旋转体的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。机械振动在大多情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。机械振动还伴随着同频率的噪声,恶化环境,危害健康。另一方面,振动也被利用来完成有用工作,如运输、夯实、清洗、粉碎、脱水等。这时必须正确选择振动参数,充分发挥振动机械的性能。在现代企业管理制度中,除了对各种机械设备提出低振动和低噪声要求外,还需随时对机器的运行状况进行监测、分析、诊断,对工作环境进行控制。为了提高机械结构的抗振性能,有必要进行机械机构振动分析和振动设计,这些都离不开振动测试。 本文在此基础上设计了一种专用的振动信号检测系统,具有功耗低、体积小、精度高等优点。 信号检测的内容要求: 通过MCS-51系列单片机设计振动信号检测系统。要求如下: 1 振动信号的特点,选择合适的传感器,并设计相应的检测电路; 2 将设计完成的检测电路,通过软件防真验证; 3 主要设计指标:可测最大加速度:-5m/s~+5m/s;可测最大速度:-0.16m/s~+0.16m/s;可测最大位移:-5mm~+5mm;通频带:0.05Hz~35Hz;转换精度:8bit;采样频率:128Hz 4 利用LCD显示振动信号,有必要的键盘控制。

总体设计方案介绍: 本系统由发射电路和接收电路组成。发射电路主要由加速度传感器构成。接收电路由单片机最小系统和外部串口以及显示部分模块三部分组成。。 硬件电路设计: (1)使用MMA8452加速度传感器和STC89C52单片机来实现。 一.设计目的:了解加速度传感器的工作机理,以及单片机的各种性能; 二.设计器材:电源、proteus7.7软件、89C52,MMA8452加速度传感器,导线若干。 三.设计方案介:该系统目的是便于对一些物理量进行监视、控制。本设计以加速度传感器显示出加速度信号即振动信号,再通过单片机将信号从串口接入电脑显示出来,即完成振动信号的检测功能。 (2)振动传感器的分类 1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。 相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。根据电磁感应定律,感应电动势为:u=Blx&r 。式中B为磁通密度,l为线圈在磁场内的有效长度,r x&为线圈在磁场中的相对速度。 从传感器的结构上来说,惯性式电动传感器是一个位移传感器。然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

压电式测力传感器

压电式测力传感器的原理及应用 摘要:伴随着电子工程、机械工程、物理学及生物学的发展和需求,传感器微电子技术也逐步的成熟起来,成为一个独立的,设计生物、物理、化学、材料、工程学等领域的新学科。它也将延伸到我们生活的各行各业、方方面面。由于传感器技术的空前发展,其应用领域也不断深入,人们对这方面知识的需求愈显迫切,各种特性,功能各异的传感器也应运而生,例如生物传感器,红外传感器,压电式传感器……,对于这形色功能各异的传感器我们怎样去认识、熟悉它也是一个需要解决的难题,本文将带领我们进入这个新奇的世界,…… 关键词:微电子技术,传感器,压电式测力传感器 1引言:生活中的声控开关、商场中的智能大门、时下正热的红外遥感技术,对这一切就 时时刻刻发生我们身边和应用到我们生活中的随口拖出的“神秘”东西,对于这些智能的生活用具到底怎样工作的呢?在这之中我们不得不提到一个重要的幕后操纵者——传感器,什么是传感器,传感器的工作原理及其性能是什么,……,本文将通过介绍传感器中的一种压电式传感器带领我们进入这个神秘的世界,并通过实例的解析去认识它 2 传感器的综述 2.1 传感器的专业术语及系统介绍 传感器:(广义)凡能外界信息并按一定规律转换成便于测量和控制的信息的装置;(狭义)只有将外界信息按一定规律转换成电量的装置。 传感器的总特性:主要指传感器以及被测对象和后接仪器组成的测量系统的输入和输出的匹配、传感器的机械特性以及其工作特性。 静态特性:表示传感器在被测量各值处于稳定状态时的输入-输出的关系,其指标是灵敏度、线性度、稳定度迟滞等。 动态特性:指输入随时间变化的特性,它表示传感器对随时间变化的输入量的响应特性。它取决于传感器本身,另外与被测量的形式有关。 传感器的组成:通常,传感器由敏感元件,传感元件和其他辅助件组成,又是也将信号调节与转换电路、辅助电源作为传感器的组成部分。如下图: 敏感元件:直接感受被测量(一般为非电量),并输出与被测量成确定关系的其他量(一般为电量)的元件。如应变式压力传感器的弹性膜片、热电偶等都为敏感元件。 传感元件:又称变换器,它一般情况下不直接感受被测量,而是将敏感元件的输出量转换为电量输出的元件。如应变式传感器中的应变片等。 信号调节与辅助电路:能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有

压电式力传感器

压电式力传感器 学生学号 学生姓名 专业班级 指导教师 起止日期

设计目的:

目录5力传感器 5.3压电式力传感器 5.3.1压电式传感器工作原理 5.3.2压电式传感器测量电路 5.3.3压电式传感器的结构 5.3.4压电式传感器的应用

5.3.1压电式传感器工作原理 1.压电效应 (1)正压电效应 (2)逆压电效应 利用逆压电效应可制成多种超声波发生器和压电扬声器。 如图所示是压电效应的示意图。 2.压电材料的分类及特性 压电式传感器中的压电元件材料一般有三类:一类是压电晶体(单晶体);另一类是经过极化处理的压电陶瓷(多晶体);第三类是高分子压电材料。 (1)石英晶体 (2)水溶性压电晶体 (3)铌酸锂晶体 (4)压电陶瓷 1)钛酸钡压电陶瓷 2)锆钛酸铅系压电陶瓷 3)铌酸盐系压电陶瓷 (5)压电半导体 (6)高分子压电材料 3.压电元件常用的结构形式 在压电传感器中,常用两片或多片组合在一起使用。如图所示。

在以上两种连接方式中,并联法输出电荷大,本身电容大,因此时间常数也大,适用于测量缓变信号,并以电荷量作为输出的场合。串联法输出电压高,本身电容小,适用于以电压作为输出量以及测量电路输入阻抗很高的场合。 4.压电材料的选择 (1)具有较大的压电常数。 (2)压电元件的机械强度高、刚度大并具有较高的固有振动频率。 (3)具有高的电阻率和较大的介电常数,以期减少电荷的泄露以及外部分布电容的影响,获得良好的低频特性。 (4)具有较高的居里点。。 (5)压电材料的压电特性不随时间蜕变,有较好的时间稳定性。 5.3.2压电式传感器测量电路 1.压电式传感器的等效电路 压电式传感器在受外力作用时,在两个电极表面将要聚集电荷,且电荷相等,极性相反。这时它相当于一个以压电材料为电介质的电容器,其电容量为: 因此,可以把压电式传感器等效成一个与电容相并联的电荷源,如图a所示,也可以等效成一个电压源,如图b所示。 压电式传感器与测量仪表连接,还必须考虑电缆电容Cc,放大器的输入电阻Ri 和输入电容Ci以及传感器的泄露电阻Ra。如图所示压电式传感器完整的等效电路。

压电式传感器论文

自动检测换技术 相关知识: 电感式传感器的概述; 电感式传感器的基本工作原理; 电感式传感器的测量转换电路; 典型事例; 电感式传感器的应用领域;

电感式传感器 电感式传感器是一种利用线圈自感或互感的变化来实现测量的一种传感器装置,常用来测量位移、振动、力、应变、流量、加速度等物理量。 电感式传感器是基于电磁感应原理来进行测量的。 电感式传感器的分类 自感型——变磁阻式传感器; 互感型——差动变压器式传感器; 涡流式传感器——自感型和互感型都有; 高频反射式——自感型; 低频透射式——互感型电感式传感器; 电感式传感器的概述: 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。 为什么电感式传感器,一般采用差动形式?

采用差动式结构:1、可以改善非线性、提高灵敏度,提高了测量的准确性。2、电源电压、频率的波动及温度变化等外界影响也有补偿作用,作用在衔铁上的电磁力,由于是两个线圈磁通产生的电磁力之差,所以对电磁吸力有一定的补偿作用,提高抗干扰性。 目录 1 简介 2 特点 3 种类

电感式传感器- 简介 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。 电感式传感器- 特点 ①无活动触点、可靠度高、寿命长; ②分辨率高; ③灵敏度高; ④线性度高、重复性好; ⑤测量范围宽(测量范围大时分辨率低); ⑥无输入时有零位输出电压,引起测量误差; ⑦对激励电源的频率和幅值稳定性要求较高; ⑧不适用于高频动态测量。电感式传感器主要用于位移测量和可以转换成位移变化的机械量(如力、张力、压力、压差、加速度、振动、应变、流量、厚度、液位、比重、转矩等)的测量。 电感式传感器- 种类 常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸

(完整版)四种压力传感器的基本工作原理及特点

四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上,使它产生变形,在其变形的部位粘贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称为电阻应变式压力传感器。 1.2 电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片。 箔式应变片是以厚度为0.002——0.008mm 的金属箔片作为敏感栅材料,,箔栅宽度为0.003——0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝(直径0.015--0.05mm),平行地排成栅形(一般2——40条),电阻值60——200 ?,通常为120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时,电阻片也跟随变形。如下图所示。B 为栅宽,L 为基长。 材料的电阻变化率由下式决定: d d d R A R A ρρ=+ (1) 式中; R —材料电阻

由材料力学知识得; [(12)(12)]dR R C K μμεε=++-= (2) K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分dR 、dL 改写成增量ΔR 、ΔL,可得 R L K K R L ε??== (3) 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形ε,而形应变值可由丝式应变片或箔式应变片测出,从而得到了ΔR 的变化,也就得到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括 测中压用的膜片——应变筒式压力传感器 测高压用的应变筒式压力传感器 1.3.1膜片——应变筒式压力传感器的特点 该传感器的特点是具有较高的强度和抗冲击稳定性,具有优良的静态特性、动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2 膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性较大。但小压力测量中由于变形很小,非线性误差可小于0.5%,同时又有较高的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片—应变筒式压力传感器相比,自振频率较低,因此在低ρ—材料电阻率

传感器原理设计与应用重点总结

本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~ 第一章:传感器概论 1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。 2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。 3、传感器的分类 按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。 按构成原理分类: 结构型:依靠机械结构参数变化来实现变换。 物性型:利用材料本身的物理性质来实现变换。 按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器 按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器 4、传感器技术的发展动向: 教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器 老师表述:微型化、集成化、廉价。 第二章:传感器的一般特性 1、静态特性 检测系统的四种典型静态特性 线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。 灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。 即S N=输入量的变化/输出量的变化=dy/dx 迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。 (产生的原因:传感器机械部分存在的不可避免的缺陷。) 重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。 精确度. 测量范围和量程. 零漂和温漂. 2、动态特性:(传感器对激励(输入)的响应(输出)特性) 动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差

压电式力传感器的设计

机械工程测试课程设计 学院:xxxxxx 专业班级:xxxxxx 学号:xxxxxx 姓名:xxx

《力的测量课程设计》 目录 设计摘要 (1) 引言 (1) 第一章传感器的结构设计 (2) 第二章传感器的参数计算 (3) 第三章测量电路 (5) 总结 (6) 参考文献 (6)

设计摘要 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。 引言 压电式力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,在工业中有着不可少的作用。压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。 传感器原理与应用作为一门课程,我们在认真学好理论课程的同时,还要与实际结合起来,只有这样才能对压电式传感器的使用有更好的理解。 通过对传感器的设计来加深对理论课程的理解,这是王伟老师要求我们进行课程设计的目的。做到理论联系实际,从而学会正确分析传感器使用过程中出现的问题,不断总结经验,进而用来来指导实践,这样我们才能将学好的知识得到很好的应用。也为我们日后再该领域的进一步研究打下坚实的基础。

压电式力传感器的设计

设计任务书 一、题目:压电式力传感器的设计 二、设计要求: 1.小型低频的单向力传感器 2.最大测力为400千克 3.压电材料采用石英晶体 三、设计成果要求: 1.设计说明书一份 2.设计参数合理,设计步骤完整。结果标准,论述充分,思路清楚,有条理, 给出相应的参考文献。

设计摘要 此次压电式力传感器设计说明书是按照长春理工大学材料科学与工程学院2010年教学计划的要求设计编写的,其中主要阐述了压电式力传感器的具体设计过程。 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。

目录 引言 (1) 第一章传感器的结构设计 (2) 第二章传感器的参数计算 (3) 第三章测量电路 (6) 总结 (7) 参考文献 (8)

引言 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,在工业中有着不可少的作用。压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。 传感器原理与应用作为一门课程,我们在认真学好理论课程的同时,还要与实际结合起来,只有这样才能对压电式传感器的使用有更好的理解。 通过对传感器的设计来加深对理论课程的理解,这是学院要求我们进行课程设计的目的。做到理论联系实际,从而学会正确分析传感器使用过程中出现的问题,不断总结经验,进而用来来指导实践,这样我们才能将学好的知识得到很好的应用。也为我们日后再该领域的进一步研究打下坚实的基础。

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加 速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器 波形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

相关主题
文本预览
相关文档 最新文档