当前位置:文档之家› ofdm基本原理总结

ofdm基本原理总结

ofdm基本原理总结
ofdm基本原理总结

OFDM 基本原理概述

设OFDM 信号的符号周期为T ,当N 个子载波的频率之间的最小间

N 表示子信道的个数,T 表示OFDM 符号宽度,i d (i =0,1,…,N-1)是分配给每个子信道的数据符号,0f 是第0个子载波载波频率,则从t=s t 开始的OFDM 符号可以表示为

100exp 2()(),()0,N i s s s i i d j f t t t t t T s t T π-=???

+-≤≤+???=?????

∑其它 它的等效基带信号是 1

()exp 2(),N i s s s i i s t d j t t t t t T T π-=??

=-≤≤+????∑ 式中实部和虚部分别对应于OFDM 符号的同相和正交分量,是集中可以分别与相应子载波

的余弦分量和正弦分量相乘,构成最终的子信道信号和合成的OFDM 符号。

信号解调,接收第k 路子载波信号

k d 与第k 路解调载波exp[2()]s j t t T

π--相乘,得到的结果在符号持续时间T 内进行积分,即可获得相应的发送信号k d

1^

0101exp 2()exp 2()1exp 2()s s s s N t T

k s i s t i N t T i s t i k k i d j t t d j t t dt T

T T i k d j t t dt T T d πππ-+=-+=????

=

---????????

-??=-????

=∑?∑?

OFDM 复等效基带信号可以采用离散傅立叶逆变化(IFFT)方法来实现。令s t =0,t=/kT N (k=0,1,….,N-1), 即对s(t)以 T/N 的速率进行抽样可以得到

1

2()(/)exp N i i ki s k s kT N d j N π-=??

== ???∑ 01k N ≤≤-

式中s(k)即为i d 的IDFT 运算。接收端为恢复出原始的数据符号i d ,可以对s(k)进行DFT 运算,得到1

2()exp N i i ki d s k j N π-=??

=

- ???∑ 01i N ≤≤-

OFDM 文章,时间连续系统模型时,发射机发射的第K 个载波波形时,

优----------OFDM 调制举例,假定子载波数量为8,在8个子载波上传送8个二进制数{1 1 1 -1 1 1 -1 1} IFFT 调制为

1111111

1

1)1)11))222

2

11

1111))1)1)111111

11

1

811)))1)2222

11111)1)11))2

2

2

2j j j j j j j

j j j j j j j j j j j j j j j

j j j j

j j j

j ???+-+-----??----??-+-+----???----??---+-+??----------++

?1

11111114

1))221))1081))221))j j

j j j j ??

????????????????-??

??????

??????

?-?????????

????

???

??

??

+??

??+??

??

+=??

????

-??

-??

??

-??

?

?

发送端模拟信号s (t )与接收端的模拟信号r (t )间的关系可表示为

max

()()(,)()

()(,)()

r t s t h t n t s t h t d n t τττττ=*+=

-+?

n(t)表示信道上的加性高斯白噪声,h(t, τ)表示t 时刻信道的冲击响应。假定h(t, τ)在时间[0,s vT ]内取值,s T 为取样周期,v 为整数,满足max s vT τ≈。如果接受端ADC 取样速率足够高,无混叠效应 0

()|

(,)[()](

)s v

k t k T

s s s m r r t h t m T s

k m T n k T ====-+∑

可以简写为0

v

k m k m

k m r h s

n -==

+∑。 矩阵表示0

11011110

1

11...0...

00...0.....

0

.

...k v k k k v k k k N v k N v k N r h h h s n r h h h s n r h h h s n ----+--+-+???????????????????

?????????????=+????????????????????????????????

记为

:1:1:1

k k N k k N v K k N r Hs n -+--+-+=+

当前符号输出信号不仅与当前输入信号有关,而且与前一符号块最后v 个输入信号有关,产

生了符号块间干扰ISI 。

将原符号块最后L (L>=V )个信号放到原符号块的前部,构成N+L 新序列。时域中原来发送信号与信道响应的线性卷积变为圆周卷积。

矩阵表示0

10

1110101110211120...0......00...0...0:

::::::

:0...

0........0...0.....0...0...::

:

:

:::: 0

...

v v k k k k m m

m m m

m k N k N m

h h h h h h r s r s

h h h h h h h h

h h h r s h h h h ------+-+??

???

????????????????

????=????????????

??????????

???

?

?11..k k k N n n n --+?????

???

???+??????????? 记为

:1:1:1k k N k k N K k N r Hs n -+-+-+=+

两边取DFT ,得k k k k y H x N =+

可见加入CP ,不仅消除ICI ,ISI ,且把信道变成N 个独立的并行子信道。可以根据各个子

信道上具体情况,选择不同的调制方式,优化系统性能。

P80,时域内接收信号*n n n r h x η=+, n=1,2,….N c

Xn 是发射的时域符号。表示成矩阵形式,r Xh η=+,其中r=(r1,r2,….,r Nc )T , h=(h1,h2,…..h L )T ,

L 为估计到的信道冲激响应的最大长度,除去循环前缀后,信道线性卷积转变为循环卷积矩

阵X

1122131231

21...........................c c c c c c c c c c

c c c N N N L N N L N N N N L N N N N L x x x x x x x x X x x x x x x x x --+-+-------+??

??

??

??=??

????

????

以上参考文献《多载波宽带无线通信技术》 尹长川 北邮出版

基于循环前缀的定时估计算法

MLE 算法的原理是在己知接收到的信号条件下,计算(ξ,θ)在二维空间各种取值的后

验概率,选取后验概率最大时的?ξ

、?θ分别作为频偏估计值和定时估计值,ξ表示相对频偏(实际频偏与相邻子载波频率间隔的比),θ表示定时偏差,单位是抽样时间间隔,通过推导

可以得到如下的公式,令

(,)()()m m ξθγρφΛ=-

其中

1()G m N n n N n m

m r r γ+-*+==?∑

1221()()2G m N n n N n m

m r r φ+++==?+∑

1

SNR

SNR ρ=

+

定时偏差θ,频偏ξ的估计公式为:

?argmax((,))θθξ=Λ ?ξ

=1?(())2angle γθπ

上式中,n r ——第n 个抽样点 N ——FFT 窗口长度 G N ——CP 长度

|.|表示求复数的幅度,*()?表示复数共扼,angle 表示求复数的相位,argmax 表示(,)ξθΛ达到最大时参数m 的值,SNR 是信噪比,可见MLE 算法需要估计信道的信噪比,()m γ是CP 与OFDM 符号中被复制部分的相关值,()m φ表示的是接收信号的能量值。定时偏差θ的估计与频偏ξ无关,因为频偏的存在只是使()m γ偏转一个相位,取|.|后,频偏的影响就消除了。MLE 算法可以采用迭代的方法来计算:

(1)()G

G

m N m N N m m N m m γγγγγγ**

+++++=+?-?

2

2

22

(1)()()/2G

G m N

m N N m m N m m r r r r φφ+++++=++-- (4-5)

(,)(1)(1)d m m ξγρφΛ=+-+

-3

-2.5

-2

-1.5

-1

-0.5

0.5

时间(符号定时定位)

最大似然函数的输出

从A 1到A 10为周期性的短训练符号,同为16取样长度 C1,C2是长训练符号,其长度和一个OFDM 符号长度一样,同为64取样长度。CP 为32的取样循环前缀以保证长训练符号C1,C2不受短训练符号的干扰扰的影响·

MIMO-OFDM系统中前导设计如图

注意:因为在一根天线发送S1S1

和S2

3.3.3 OFDM的信道估计与均衡

OFDM是一种很适合在多径环境中采用的传输方案。从频域看,多径特性可以描述成频率选择性衰落,为了消除多径带来的ICI, ISI,提高BER性能,解决的办法是增加子载波数,使信道的延迟相对减少,使频率选择性衰落在每个子信道上变成平坦衰落。但是增加子载波数同时意味着减小载波间距,而且对克服系统载波频偏及多普勒频偏、FFT规模大小等都提出了更高要求。所以实际中采用均衡来消除多径的干扰。

在理想的符号同步及采样时钟同步条件下,接收端经过A/D采样及串并变换之后的接

收信号,是一个时域信号。对于线性信道,在

最大信道时延扩展小于系统循环前缀时,各子载波信道之间严格正交。去掉循环前缀中的L:个采样值也就去除ICI, ISI的影响。然后对剩下的N个样值进行FFT变换,得到接收信号的频域形式系OFDM统的等效频域表达式为

信道的影响相当于对信号的频谱乘上一个复增益,各并行子信道的响应彼此独立。所以可以很方便地对各个子信道进行频域均衡。因为接收信号和发送信号之间只相差一个乘性因子,可以在各子信道上分别进行均衡,各子信道的接收信号被乘上一个校正因子。一阶抽头滤波器结构的均衡器就可以满足要求,这对于接收端的复杂度时一个很大的简化。当hi的变化相对于OFDM周期慢得多时,各子载波信号在各子信道上经历的是平坦衰落,还可以采用插入固定数据帧来进行快速的权值生成、调整。在本文的仿真中,笔者采用基于训练序列的信道估计方案。其思想是利用一段与信息符号长度相等的已知伪随机序列作为训练序列,与原符号帧一起通过信道:在接收端用原已知伪随机序列去除受到信道影响的接收信号即可得到信道的乘性因子。用这个因子去除有用符号帧,可得到稳定的QAM星座图样,起到有效的信道估计作用。

基于训练序列前导的包检测

1

*

L n n k n k D k c r r

-+++==∑

2

1

1

*

L L n n k D n k D

n k D

k k p r

r

r --++++++====∑∑

()

2

2

n n n

m p c =

Coarse frequency offset estimation and correction

2tx s

j f nT n n y s e

π=

222()2tx s rx s tx rx s s

j f nT j f nT n n j f f nT n nT j f

n r s e e s e s e ππππ--===

()

1

*0

1

*

22()0122()*0

21

20

s

s

s

s

s

L n n D n L j f nT j f n D T n

n D

n L j f nT j f

n D T n n D

n L j f

DT n

n z r r s

e

s

e

s s e e e s

πππππ-+=-++=--++=--====

=∑∑∑∑f

^

1

2s

f z

DT π=-∠

OFDM 信号可以是实的,也可以是复的。以楼主举的例子,取 32 个复数,再拼接上它们的共轭对称,这样做 IFFT 以后就得到实的 OFDM 信号。如果要产生复数的 OFDM, 则直接取 64 个复数做 IFFT 。

做 IFFT 时,实际上第一个数 (一定是实数) 定义 DC 成份,第 (N/2+1) 个复数定义最高频率成分,最后面的 (N/2-1) 个复数定义负频率成分。所以,IFFT 后的信号的频带是 (-fm, fm)。然后,如果用基带传输,只能传实部,信号的带宽是 fm ;如果用通带 (即用 RF 载波) 传,还可以多传一个复部,但是信号的带宽是 2*fm ,所以频带的效率是一样的。

ifft([4,6-3*i,2-i,1-i,45,1+i,2+i,6+3*i],8)

ans =8.3750 -3.2840 6.1250 -5.5518 4.8750 -6.4660 5.1250 -5.1982

fft([1,2,3,4,5,6,7,8]) ans =36.0000 -4.0000 + 9.6569i -4.0000 + 4.0000i -4.0000 + 1.6569i -4.0000 -4.0000 - 1.6569i -4.0000 - 4.0000i -4.0000 - 9.6569i

(1) 为了产生纯实数的 OFDM 信号,通常的做法是从信息数据中取 N 个复数用以定义正频率部分 (0~fm),再拼接它们的共轭对称以定义负频率部分 (-fm~0)。然后做 IFFT ,得到 2N 点的实数信号,其频率范围是 (-fm, fm)。这样产生的信号,传递 N 个复数信息数据。如果用基带传输,带宽为 fm 。如果用通带传输,带宽为 2fm 。(2) 为产生复数的 OFDM 信号,则直接从信息数据中取 2N 个复数,直接做 IFFT 后得到复数的信号,再用 cosine 和 sine 载波分别传送实部和虚部。与产生实数信号的过程相比,由于不需要产生共轭对称的频谱,负频率部分也被用来传送信息数据。这时 RF 信号的带宽为 2fm ,传送 2N 个复数信息数据。所以通带传输与基带传输的频带效率是一样的。(3) lovewa 的问题源于一篇 IEEE 的文章里的方法。该方法与上面的做法不同,所以令人迷惑。它的做法是从信息数据中取 N 个复数,做 IFFT 后取出实部;在接受端,加倍采样,得到 2N 个实数,从中恢复出原来的 N 个信息数据。由于只传输实部,不传送虚部, lovewa 的问题就是:能否利用通带传输中传输虚部的能力 (即用 sine 载波) 再传输一路信息,以提高信道频带的利用率。

(1) 一个实数时域信号,无论是用什么方法产生的,它的付氏变换一定是共轭对称的。如果对这一点有疑问,请复习付氏变换的性质。所以,当你对一个复数时域信号取出它的实部的时候,你已经使被取出的信号的付氏变换变成共轭对称的了。

(2) exp(j*2*pi*fn*t) 是一个复数时域信号。它的付氏变换是位于fn 的一条谱线。

(3) exp(j*2*pi*fn*t) = cos(2*pi*fn*t) + j*sin(2*pi*fn*t)。如果对exp(j*2*pi*fn*t) 取实部,将得到cos(2*pi*fn*t)。

(4) cos(2*pi*fn*t) 的付氏变换是位于-fn 和fn 的共轭对称的两条谱线,而不是一条。

(5) Cn*cos(2*pi*fn*t + Qn) 的付氏变换也是位于-fn 和fn 的共轭对称的两条谱线,而不是一条。这里Cn 和Qn 都是实数。

(6) IFFT 的计算过程就是把N 个复数与N 个exp(j*2*pi*fn*t) 相乘,再加起来。

(7) 所以,对IFFT 的结果取实部后得到的是N 项Cn*cos(2*pi*fn*t + Qn) 之和。其中的每一项都有两条谱线,一共有2N 条共轭对称的谱线。

(8) 这样的处理,其效果与方法(1) 中拼接共轭对称谱线的效果是一样的。这个实数信号被送到信道上。它的频带宽度与方法(1) 是一样的,而且同样传送N 个复数。所以两者的频带效率是相同(9) 如果在通带中用cosine 传送这样的信号,可以同时用sine 再传另外一路信号,但是与基带传输相比,带宽增加一倍。其频带效率与方法(2) 是相同的,并不能获得比方法(2) 高的频带效

材料成型基本原理第十八章答案

第十九章思考与练习 1.主应力法的基本原理和求解要点是什么? 答:主应力法(又成初等解析法)从塑性变形体的应力边界条件出发,建立简化的平衡方程和屈服条件,并联立求解,得出边界上的正应力和变形的力能参数,但不考虑变形体内的应变状态。其基本要点如下: ⑴把变形体的应力和应变状态简化成平面问题(包括平面应变状态和平面应 力状态)或轴对称问题,以便利用比较简单的塑性条件,即 G -二=七S。对于形状复杂的变形体,可以把它划分为若干形状简单的变形单元,并近似地认为这些单元的应力应变状态属于平面问题或轴对称问题。 ⑵根据金属流动的方向,沿变形体整个(或部分)截面(一般为纵截面)切取包含接触面在 内的基元体,且设作用于该基元体上的正应力都是均布的主应力,这样,在研究基元体的力的平衡条件时,获得简化的常微分方程以代替精确的偏微分方程。接触面上的摩擦力可用库仑摩擦条件或常摩擦条件等表示。 ⑶在对基元体列塑性条件时,假定接触面上的正应力为主应力,即忽略摩擦 力对塑性条件的影响,从而使塑性条件大大简化。即有二X- J y=叙(当二X > 二y) ⑷将经过简化的平衡微分方程和塑性条件联立求解,并利用边界条件确定积分常数,求得接 触面上的应力分布,进而求得变形力。 由于经过简化的平衡方程和屈服方程实质上都是以主应力表示的,故而得名“主应力法”。 2 .一20钢圆柱毛坯,原始尺寸为-5Qmm 50mm ,在室温下镦粗至高度h=25mm 设接触表面摩擦切应力E =0.2丫。已知Y =746 £2Q MPa ,试求所需的变形力P和单位流动压力P O

解:根据主应力法应用中轴对称镦粗得变形力算得的公式 . Y 而本题.=0.2Y 与例题.=mk , k =—相比较得:m=0.4,因为该圆柱被压缩至 2 h=25mm 根据体积不变定理,可得r e =25 ,2 , d=50 2 ,h=25 又因为 Y = 746 ;0.2 (1 -—2 ) 15 3 .在平砧上镦粗长矩形截面的钢坯,其宽度为 a 、高度为h ,长度 l a ,若接触面上的摩擦条件符合库仑摩擦 定律,试用主应力法推导单位流动压力 P 的表 达式。 解:本题与例1平面应变镦粗的变形力相似,但又有 其不同点,不同之处在于■= U^y 这个摩擦条件,故在 2U ;二 y ^y LdX 中是一个一阶微分方程, J 算得的结果不一样,后面的答案也不 h 一样, 4 .一圆柱体,侧面作用有均布压应力 G ,试用主应力法求镦粗力 P 和单位流动压力p (见图19-36) 解:该题与轴对称镦粗变形力例题相似,但边界条件不一样,当r =r e ,二 re -J 0 而不是二re =0 ,故在例题中,求常数C 不一样: 2 . C = X e ? 2k 飞0 h 2τ ■ -y (X -X e ) 2k — h m d P = 丫(1 图 19-36

OFDM基础理论的数学表达和解析(end)汇总

OFDM基础理论的数学表达与解析 王海舟 10/10/2016

目录 摘要 (3) 第一章、概述 (4) 第二章、OFDM技术基础理论 (4) 2.1芝诺悖论的哲学来源与泰勒级数 (4) 2.2三角级数和三角函数的正交性 (5) 2.3周期函数的傅里叶级数的表达 (6) 2.4欧拉公式 (8) 2.5非周期连续函数的傅里叶积分变换 (10) 2.6傅里叶变换的时移特性 (11) 2.7单位脉冲函数及其筛选特性 (12) 2.8卷积积分和卷积定理 (14) 2.9奈奎斯特准则和数字滤波初步 (15) 2.10OFDM技术的实现 (17) 第三章、OFDM技术基础理论学习的意义 (18)

摘要 以OFDM技术为基础的LTE通信网络,经过近3年来的高速发展,网络的建设规模方面已经超过GSM网络。4G的Volte语音业务替代2G的步伐也正在加快,而移动数据业务的发展更是一日千里,成为各个运营商竞争的最重要的战场。更何况OFDM技术仍将在未来的5G网络中起着技术基石的作用。 我们知道,2G网络历经了10年以上的发展,大批现场工程师得到了充足的培训,同时又拥有长期的实战经验,因而在网络优化工作中得心应手。相比而言,LTE网络在短时间的发展,致使我们面临短缺具备一定深度基础理论知识的网络优化工程师的情况;尽管工程师能够从多个方面能够取得一些培训,但由于缺少连贯的理论知识对接,这些培训远远不能支持专业的工程师走的更远、走的更深入。面对这样的困境,本人对OFDM技术要点进行理论梳理,从浩瀚的高等数学、工程数学、通信理论的知识海洋中,颉取最简理论线路,创新进行理论关联和演进的串接,不仅令工程师能够夯实最基础的理论,而且用最简捷的数学理论途径,达到深入理解OFDM技术。 关键词: OFDM、泰勒级数、欧拉公式、傅里叶变换、单位脉冲函数、卷积积分、数字滤波。

OFDM技术的基本原理1

OFDM技术的基本原理1 OFDM技术的基本原理 在传统的多载波通信系统中,整个系统频带被划分为若干个互相分离的子信道(载波)。载波之间有一定的保护间隔,接收端通过滤波器把各个子信道分离之后接收所需信息。这样虽然可以避免不同信道互相干扰,但却以牺牲频率利用率为代价。而且当子信道数量很大的时候,大量分离各子信道信号的滤波器的设置就成了几乎不可能的事情。 上个世纪中期,人们提出了频带混叠的多载波通信方案,选择相互之间正交的载波频率作子载波,也就是我们所说的OFDM。这种“正交”表示的是载波频率间精确的数学关系。按照这种设想,OFDM既能充分利用信道带宽,也可以避免使用高速均衡和抗突发噪声差错。OFDM是一种特殊的多载波通信方案,单个用户的信息流被串/并变换为多个低速率码流,每个码流都用一个子载波发送。OFDM不用带通滤波器来分隔子载波,而是通过快速傅立叶变换(FFT)来选用那些即便混叠也能够保持正交的波形。 OFDM是一种无线环境下的高速传输技术。无线信道的频率响应曲线大多是非平坦的,而OFDM技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。这样,尽管总的信道是非平坦的,具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,因此就可以大大消除信号波形间的干扰。由于在OFDM系统中各个子信道的载波相互正交,它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。 OFDM技术的推出其实是为了提高载波的频谱利用率,或者是为了改进对多载波的调制,它的特点是各子载波相互正交,使扩频调制后的频谱可以相互重叠,从而

材料成形基本原理(刘全坤)课后答案

第一章液态金属的结构与性质习题 1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并 不是原子间结合力的全部破坏? (2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明: ①物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积 变化?V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。 ②金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部 原子结合键只有部分被破坏。 由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。 2 .如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间 距r1各表示什么? 答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。 N1 表示参考原子周围最近邻(即第一壳层)原子数。 r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。 3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。 近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团 (2)说明液态金属或合金结构的近程有序的实验例证 ①偶分布函数的特征 对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。 ②从金属熔化过程看 物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化?V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。另一方面,金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。 可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。 ③Richter等人利用X衍射、中子及电子衍射手段,对碱金属、Au、Ag、 Pb和Tl等熔体进行了十多年的系统研究,认为液体中存在着拓扑球状密排结构以及层状结构,它们的尺寸范围约为10-6-10-7cm。 ④Reichert观察到液态Pb局域结构的五重对称性及二十面体的存在,并推 测二十面体存在于所有的单组元简单液体。 ⑤在Li-Pb、Cs-Au、Mg-Bi、Mg-Zn、Mg-Sn、Cu-Ti、Cu-Sn、Al-Mg、 Al-Fe等固态具有金属间化合物的二元熔体中均被发现有化学短程序的存在。 4.如何理解实际液态金属结构及其三种“起伏”特征? 答:理想纯金属是不存在的,即使非常纯的实际金属中总存在着大量杂质原子。实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。能量起伏是指液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。 结构起伏是指液态金属中大量不停“游动”着的原子团簇不断地分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,

材料成型基本原理习题答案

第一章习题 1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明 (2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明: ①物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化?V m/V为3%~5%左右, 表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。 ②金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。 2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么? 答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。 N1 表示参考原子周围最近邻(即第一壳层)原子数。 r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。 3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。 答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。 近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团 (2)说明液态金属或合金结构的近程有序的实验例证 ①偶分布函数的特征

OFDM的基本原理和简单应用

OFDM 的基本原理及其简单应用 摘要:本文主要介绍OFDM 的一些基本原理,并对OFDM 的一些优缺点进行了说明。正交频分复用(OFDM )是一种特殊的多载波数字调制技术,OFDM 技术不像常规的单载波技术,而是在经过特别计算的正交频率上同时发送多路高速信号。介绍了OFDM 的基本原理的同时展望了OFDM 标准化和在第四代移动通信系统的应用。 关键词:OFDM ,DFT/IDFT ,多载波调制,数字通信 中图分类号:TN911 文献标致码:A Basic Principles and Simple Applications Of OFDM (Xi’an university of science and technology Communication and Information Systems Institute shanxi xi ’an 710054) Abstract :In this article ,the principle of OFDM are introduced and OFDM are described some of the advantages and disadvantages. OFDM(orthogonal frequency division multiplexing) is a special digital modulation technology of multi-carriers. Unlike normal single carrier technology , OFDM can transmit a number of data streams simultaneously through its sub- carriers which are orthogonal. In the end, highlighted the standardization of OFDM and its applications in 4G mobile communication system. Key W ords :OFDM ,DFT/IDFT ,Multi-carrier modulation ,Digital communications 0.引言 随着移动通信和数据通信的飞速发展,移动用户对业务种类和通信速率的要求不断提高,正交频分复用(OFDM )具有高的频谱利用率、良好的抗多径干扰能力和抗短时间突发噪声(称为脉冲噪声)的能力,它可以增加系统容量,同时能更好地满足多媒体通信的要求。OFDM 是多载波调制(MCM )或离散多音频(DMT )的一种特殊形式,是一类多载波并行调制的体制,一种带宽有效性较高的调制技术,并可以对抗时延扩展多径和脉冲噪声等信道干扰。它的一些主要特点是: (1)为了提高频率利用率和增大传输速率,各路子载波的已调信号频谱有部分重叠。 (2)各路已调信号是严格正交的,以便接收端能完全的分离各路信号。 (3)每路子载波的调制是多进制调制。 (4)每路子载波的调制制度可以不同,根据各个子载波处信道特性的优劣不同采用不同的体制。 1.OFDM 的基本原理 1.1 多载波的基本原理 多载波就是把传输的宽带分成许多窄带子载波来并行传输,多载波可以在有限的无线传播带宽中获得更高的传输速率。在单载波体制的情况下,码元持续时间T 很短,但占用带宽B 很大,由于信道特性不理想,产生码间串扰。采用多载波后码元持续时间S T N T ,码间串扰将得到改善。

OFDM的基本原理

OFDM 的基本原理 杜岩 (山东大学信息科学与工程学院济南 250100) 1. 引言 现代社会对通信的依赖和要求越来越高,于是设计和开发效率更高的通信系统就成了通信工程界不断追求的目标。通信系统的效率,说到底就是频谱利用率和功率利用率。特别是在无线通信的情况下,对这两个指标的要求往往更高,尤其是频谱利用率。由于空间可用频谱资源是有限的,而无线应用却越来越多,使得无线频谱的使用受到各国政府的严格管理并统一规划。于是,各种各样的具有较高频谱效率的通信技术不断被开发出来,OFDM (Orthogonal Frequency Division Multiplexing)是目前已知的频谱利用率最高的一种通信系统,它将数字调制、数字信号处理、多载波传输等技术有机结合在一起,使得它在系统的频谱利用率、功率利用率、系统复杂性方面综合起来有很强的竞争力,是支持未来移动通信特别是移动多媒体通信的主要技术之一。 OFDM是一种多载波传输技术,N个子载波把整个信道分割成N个子信道,N个子信道并行传输信息。OFDM系统有许多非常引人注目的优点。第一,OFDM具有非常高的频谱利用率。普通的FDM系统为了分离开各子信道的信号,需要在相邻的信道间设置一定的保护间隔(频带),以便接收端能用带通滤波器分离出相应子信道的信号,造成了频谱资源的浪费。OFDM系统各子信道间不但没有保护频带,而且相邻信道间信号的频谱的主瓣还相互重叠(见图1.5),但各子信道信号的频谱在频域上是相互正交的,各子载波在时域上是正交的,OFDM系统的各子信道信号的分离(解调)是靠这种正交性来完成的。另外,OFDM 的个子信道上还可以采用多进制调制(如频谱效率很高的QAM),进一步提高了OFDM系统的频谱效率。第二,实现比较简单。当子信道上采用QAM或MPSK调制方式时,调制过程可以用IFFT完成,解调过程可以用FFT完成,既不用多组振荡源,又不用带通滤波器组分离信号。第三,抗多径干扰能力强,抗衰落能力强。由于一般的OFDM系统均采用循环前缀(Cyclic Prefix,CP)方式,使得它在一定条件下可以完全消除信号的多径传播造成的码间干扰,完全消除多径传播对载波间正交性的破坏,因此OFDM系统具有很好的抗多径干扰能力。OFDM的子载波把整个信道划分成许多窄信道,尽管整个信道是有可能是极不平坦的衰落信道,但在各子信道上的衰落却是近似平坦的(见图1.6),这使得OFDM系统子信道的均衡特别简单,往往只需一个抽头的均衡器即可。 当然,与单载波系统比,OFDM也有一些困难问题需要解决。这些问题主要是:第一,同步问题。理论分析和实践都表明,OFDM系统对同步系统的精度要求更高,大的同步误差不仅造成输出信噪比的下降,还会破坏子载波间的正交性,造成载波间干扰,从而大大影响系统的性能,甚至使系统无法正常工作。第二,OFDM信号的峰值平均功率比(Peak-to-Average Power Ratio,PAPR)往往很大,使它对放大器的线性范围要求大,同时也降低了放大器的效率。OFDM在未来通信系统中的应用,特别是在未来移动多媒体通信中的应用,将取决于上述问题的解决程度。 OFDM技术已经或正在获得一些应用。例如,在广播应用中欧洲的ETSI(European Telecommunication Standard Institute,欧洲电信标准学会)已经制定了采用OFDM技术的数

材料成型基本原理期末考试总结

名词解释 1溶质平衡分配系数;特定温度T*下固相合金成分浓度C*S与液相合金成分C*L达到平衡时的比值。 2缩孔:纯金属火共晶合金铸件中最后凝固部位形成的大而集中的孔洞; 缩松:具有宽结晶温度温度范围的合金铸件凝固中形成的细小而分散的缩孔; 3沉淀脱氧:将脱氧元素(脱氧剂)溶解到金属液中以FeO直接进行反应而脱氧,把铁还原的方法。 4均质形核:形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,所以也成“自发形核”(实际生产中均质形核是不太可能的)非均质形核:依靠外来质点或型壁界面而提供的衬底进行生核过程,亦称“异质形核”或“非自发形核”。 5.简单加载:是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。 6.冷热裂纹:冷裂纹是指金属经焊接或铸造成形后冷却到较低温度时产生的裂纹,热裂纹是金属冷却到固相线附近的高温区时所产生的开裂现象 7.最小阻力定律:当变形体质点有可能沿不同方向移动时,则物体各质点将沿着阻力最小的方向移动. 填空 1.动力学细化四个内容:铸型振动、超声波振动、液相搅拌、流变铸造 2.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同的形态的晶区 3.细化铸件宏观凝固组织的措施有合理地控制浇注工艺和冷却条件、孕育处理、动力学细化等三个方面 4.微观偏析的两种主要类型为晶内偏析与晶界偏析,宏观偏析按由凝固断面表面到内部的成分分布,有正常偏析与逆偏析两类 5.铸造过程中的气体主要来源是熔炼过程和浇注过程和铸型 6.我们所学的特殊条件下的凝固包括快速凝固和失重条件下凝固和定向凝固 7.液态金属(合金)凝固的驱动力由过冷度提供,而凝固时的形核方式有:均质形核和非均质形核两种 8.晶体的生长方式有连续生长和台阶方式生长两种 9.凝固过程的偏析可分为:微观偏析和宏观偏析两种 10.液体原子的分布特征为:长程无序,短程有序,即液态金属原子团的结构更类似于固态金属 11.Jakson因子α可以作为固液界面微观结构的判据,凡α<=2的晶体,其生长界面为粗糙,凡α>5的晶体,其生长界面为光滑 12.液态金属需要净化的有害元素包括碳氧硫磷 13.塑形成形中的三种摩擦状态分别是干摩擦、流体摩擦、边界摩擦 14.对数应变的特点是具有真实性、可靠性、和可加性 15.就大多数金属而言,其总的趋势是随着温度的升高,塑形增加 16.钢冷挤压时,需要对胚料表面进行磷化、皂化润滑处理 选择题1.塑形变形时,工具表面粗糙度对摩擦系数的影响(A)工件表面的粗糙度对摩擦系数的影响 A大于B等于C小于 2.塑形变形时,不产生硬化的材料叫做(A)A理想塑形材料B理想弹性材料C硬化材料 3.用近似平衡微分方程和近似塑形条件求解塑形成形问题的方法称为(B)A解析法B主应力法C滑移线法 4.韧性金属材料屈服时(A)准则较符合实际的 A密席斯B屈雷斯加C密席斯与屈雷斯加 5.塑形变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做(B)A理想弹性材料B理性刚塑形材料C塑形材料 6.硫元素的存在使碳钢易产生(A)A热脆性B冷脆性C兰脆性 7.应力状态中的(B)应力,能充分发挥材料的塑形A拉应力B压应力C拉应力与压应力 8.平面应变时,其平均正应力σs(B)中间主应力σz.A大于B等于C小于 9.钢材中磷使钢的强度、硬度提高,塑形、韧性(B).A提高B降低C没有变化 简答题1.简述顺序凝固原则和同时凝固原则的优缺点和适用范围 答:(1)铸件的顺序凝固原则是采取各种措施保证铸件各部分按照距离冒口的远近,由远及近朝着冒口方

高分子材料成型原理题库(简化)

高分子材料加工成型原理题库 一、填空: 1.聚合物具有一些特有的加工性质,如有良好的可模塑性,可挤压性,可纺性和可延性。 正是这些加工性,正是这些加工性质为聚合物材料提供了适于多种多样加工技术的可能性。 2.熔融指数是评价聚合物材料的可挤压性这一加工性质的一种简单而又实用的方法,而螺旋流动试验是评价聚合物材料的可模塑性这一加工性质的一种简单而又实用的方法。3.在通常的加工条件下,聚合物形变主要由高弹形变和粘性形变所组成。从形变性质来看包括可逆形变和不可逆形变两种成分,只是由于加工条件不同而存在着两种成分的相对差异。 4.PS、PP、PVC、PC、HDPE、PMMA和PA分别是聚合物聚苯乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、高密度聚乙烯、聚甲基丙烯酸甲酯和聚酰胺的缩写。 5.聚合物的粘弹性行为与加工温度T有密切关系,当T>Tf时,主要发生粘性形变,也有弹性效应,当Tg

材料成型基本原理课后答案

第十三章思考与练习 简述滑移和孪生两种塑性变形机理的主要区别。 答:滑移是指晶体在外力的作用下,晶体的一部分沿一定的晶面和晶向相对于另一部分发生相对移动或切变。滑移总是沿着原子密度最大的晶面和晶向发生。 孪生变形时,需要达到一定的临界切应力值方可发生。在多晶体内,孪生变形是极其次要的一种补充变形方式。 设有一简单立方结构的双晶体,如图13-34所示,如果该金属的滑移系是{100} <100>,试问在应力作用下,该双晶体中哪一个晶体首先发生滑移?为什么? 答:晶体Ⅰ首先发生滑移,因为Ⅰ受力的方向接近软取向, 而Ⅱ接近硬取向。 试分析多晶体塑性变形的特点。 答:①多晶体塑性变形体现了各晶粒变形的不同时性。 ②多晶体金属的塑性变形还体现出晶粒间变形的相互协调性。 ③多晶体变形的另一个特点还表现出变形的不均匀性。 ④多晶体的晶粒越细,单位体积内晶界越多,塑性变形的抗力大, 金属的强度高。金属的塑性越好。 4. 晶粒大小对金属塑性和变形抗力有何影响? 答:晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。 5. 合金的塑性变形有何特点? 答:合金组织有单相固溶体合金、两相或多相合金两大类,它们的塑性变形的特点不相同。 单相固溶体合金的塑性变形是滑移和孪生,变形时主要受固溶强化作用, 多相合金的塑性变形的特点:多相合金除基体相外,还有其它相存在,呈两相或多相合金,合金的塑性变形在很大程度上取决于第二相的数量、形状、大小和分布的形态。但从变形的机理来说,仍然是滑移和孪生。 根据第二相又分为聚合型和弥散型,第二相粒子的尺寸与基体相晶粒尺寸属于同一数量级时,称为聚合型两相合金,只有当第二相为较强相时,才能对合金起到强化作用,当发生塑性变形时,首先在较弱的相中发生。当第二相以细小弥散的微粒均匀分布于基体相时,称为弥散型两相合金,这种弥散型粒子能阻碍位错的运动,对金属产生显着的强化作用,粒子越细,弥散分布越均匀,强化的效果越好。 6. 冷塑性变形对金属组织和性能有何影响? 答:对组织结构的影响:晶粒内部出现滑移带和孪生带; 晶粒的形状发生变化:随变形程度的增加,等轴晶沿变形方向逐步伸长,当变形量很大时,晶粒组织成纤维状; 晶粒的位向发生改变:晶粒在变形的同时,也发生转动,从而使得各晶粒的取向逐渐趋于一致(择优取向),从而形成变形织构。 对金属性能的影响:塑性变形改变了金属内部的组织结构,因而改变了金属的力学性能。 随着变形程度的增加,金属的强度、硬度增加,而塑性和韧性相应下降。即产生了加工硬化。 7. 产生加工硬化的原因是什么?它对金属的塑性和塑性加工有何影响? 答:加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升。为了使变形继续下去,就需要增加变形外力或变形功。这种现象称为加工硬化。 加工硬化产生的原因主要是由于塑性变形引起位错密度增大,导致位错之间交互作用增强,大量形成缠结、不动位错等障碍,形成高密度的“位错林”,使其余位错运动阻力增大,于是塑性变形抗力提高。 8. 什么是动态回复?动态回复对金属热塑性变形的主要软化机制是什么? 答:动态回复是层错能高的金属热变形过程中唯一的软化机制。 对于层错能高的金属,变形位错的交滑移和攀移比较容易进行,位错容易在滑移面间转移,使异号位错互相抵消,其结果是位错密度下降,畸变能降低,达不到动态再结晶所需的能量水平。 9. 什么是动态再结晶?影响动态再结晶的主要因素有哪些?

OFDM系统原理及其实现

通信系统综合设计 报告 题目:OFDM系统原理及其实现 学部: 班级: 姓名: 学号: 指导教师: 撰写日期:

目录 第一章................................................... 错误!未定义书签。 要求................................................. 错误!未定义书签。 系统基本原理及基本模块............................... 错误!未定义书签。 设计思路......................................... 错误!未定义书签。 系统基本模块..................................... 错误!未定义书签。第二章................................................... 错误!未定义书签。 编程思路及框架....................................... 错误!未定义书签。 信道编码映射..................................... 错误!未定义书签。 串并/并串变换.................................... 错误!未定义书签。 调制解调......................................... 错误!未定义书签。 添加/取出循环前缀................................ 错误!未定义书签。第三章................................................... 错误!未定义书签。 实验结果............................................ 错误!未定义书签。 码率计算:....................................... 错误!未定义书签。 试验结果......................................... 错误!未定义书签。总结..................................................... 错误!未定义书签。附录..................................................... 错误!未定义书签。 第一章 要求 仿真实现OFDM调制解调,在发射端,经串/并变换和IFFT变换,加上保护间隔(又称“循环前缀”),形成数字信号,通过信道到达接收端,结束端实现反变换,进行误码分析。

材料成型基本原理第十八章答案

第十九章思考与练习 1.主应力法的基本原理和求解要点是什么? 答:主应力法(又成初等解析法)从塑性变形体的应力边界条件出发,建立简化 的平衡方程和屈服条件,并联立求解,得出边界上的正应力和变形的力能参数,但不考虑变形体内的应变状态。其基本要点如下: ⑴把变形体的应力和应变状态简化成平面问题(包括平面应变状态和平面应力状态)或轴对称问题,以便利用比较简单的塑性条件,即13s σσβσ-=。对于形状复杂的变形体,可以把它划分为若干形状简单的变形单元,并近似地认为这些单元的应力应变状态属于平面问题或轴对称问题。 ⑵根据金属流动的方向,沿变形体整个(或部分)截面(一般为纵截面)切取包含接触面在内的基元体,且设作用于该基元体上的正应力都是均布的主应力,这样,在研究基元体的力的平衡条件时,获得简化的常微分方程以代替精确的偏微分方程。接触面上的摩擦力可用库仑摩擦条件或常摩擦条件等表示。 ⑶在对基元体列塑性条件时,假定接触面上的正应力为主应力,即忽略摩擦力对塑性条件的影响,从而使塑性条件大大简化。即有 x y Y x y σσβσσ-=(当>) ⑷将经过简化的平衡微分方程和塑性条件联立求解,并利用边界条件确定积分常数,求得接触面上的应力分布,进而求得变形力。 由于经过简化的平衡方程和屈服方程实质上都是以主应力表示的,故而得名“主应力法”。 2.一20钢圆柱毛坯,原始尺寸为mm 50mm 50?φ,在室温下镦粗至高度 h =25mm ,设接触表面摩擦切应力Y 2.0=τ 。已知MPa 74620 .0ε =Y ,试求所需的 变形力P 和单位流动压力p 。

解:根据主应力法应用中轴对称镦粗得变形力算得的公式)61(h d m Y p + = 而本题Y 2.0=τ与例题2 ,Y k mk ==τ相比较得:m=0.4,因为该圆柱被压缩至 h=25mm 根据体积不变定理,可得225=e r , d=502 ,h=25 又因为Y =746) 15 221(2.0+ ε 3.在平砧上镦粗长矩形截面的钢坯,其宽度为a 、高度为h ,长度 l a ,若接触面上的摩擦条件符合库仑摩擦 定律,试用主应力法推导单位流动压力p 的表达式。 解:本题与例1平面应变镦粗的变形力相似,但又有 其不同点,不同之处在于y u στ=这个摩擦条件,故在 dx h u d y y σσ 2- =中是一个一阶微分方程,y σ 算得的结果不一样,后面的答案也不 一样, 4.一圆柱体,侧面作用有均布压应力0 σ,试用主应力法求镦粗力P 和单位流动压力p (见图19-36)。 解:该题与轴对称镦粗变形力例题相似,但边界条件不一样,当e r r = ,0σσ=re 而不是0=re σ,故在例题中,求常数c 不一样: 22στ++=k x h c e 2)(2σ τσ ++-- =∴k x x h e y 图 19-36

OFDM的基本原理剖析

OFDM的基本原理剖析 1 从FDM到OFDM 早期发展的无线网络或移动通信系统,是使用单载波调制(Single-carrier Modulation)技术,单载波调制是将要传送的信号(语音或数据),隐藏在一个载波上,再藉由天线传送出去。信号若是隐藏于载波的振幅,则有AM、ASK调制系统;信号若是隐藏于载波的频率,则有FM、FSK调制系统;信号若是隐藏于载波的相位,则有PM、PSK调制系统。 使用单载波调制技术的通讯系统,若要增加传输的速率,所须使用载波的带宽必须更大,即传输的符元时间长度(Symbol Duration)越短,而符元时间的长短会影响抵抗通道延迟的能力。若载波使用较大的带宽传输时,相对的符元时间较短,这样的通讯系统只要受到一点干扰或是噪声较大时,就可能会有较大的误码率(Bit Error Ratio, BER)。 为降低解决以上的问题,因此发展出多载波调制(Multi-carrier Modulation)技术,其概念是将一个较大的带宽切割成一些较小的子通道(Subchannel)来传送信号,即是使用多个子载波(Subcarrier)传来送信号,利用这些较窄的子通道传送时,会使子通道内的每一个子载波的信道频率响应看似平坦,这就是分频多任务(Frequency Division Multiplexing, FDM)观念。 因为带宽是一个有限的资源,若频谱上载波可以重迭使用,那就可以提高频谱效率(Spectrum Efficiency,η),所以有学者提出正交分频多任务(Orthogonal Frequency Division Multiplexing, OFDM)的技术架构。FDM与OFDM两者最大的差异,在OFDM系统架构中每个子信道上的子载波频率是互相正交,所以频谱上虽然重迭,

材料成形原理重点及答案

一、名词解释 1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。表面张力是由于物体在表面上的质点受力不均匀所致。 2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。 3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。 4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。 5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。 6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。 7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场 稳定温度场-不随时间而变的温度场(即温度只是坐标的函数): 8 温度梯度—是指温度随距离的变化率。或沿等温面或等温线某法线方向的温度变化率。 9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。 10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。 11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。 光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。也称为“小晶面”或“小平面”。 12 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。这种仅由熔体存在的负温度梯度所造成的过冷,习惯上称为“热过冷” 。 13 内生生长和外生生长-晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。平面生长、胞状生长和柱状枝晶生长皆属于外生生长。等轴枝晶在熔体内部自由生长的方式则称为“内生生长”。 14 枝晶间距-指相邻同次枝晶间的垂直距离。它是树枝晶组织细化程度的表征。 15 共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。 15离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。这种非共生生长的共晶结晶方式称为离异生长,所形成的组织称离异共晶。 16 孕育与变质-孕育主要是影响生核过程和促进晶粒游离以细化晶粒;而变质则是改变晶体的生长机理,从而影响晶体形

OFDM调制的过程及原理解释-个人笔记

1.OFDM调制/解调 1.1.概述 1.1.1.OFDM调制基本原理 如图OFDM调制的过程就是将待发送的多个数据分别与多路子载波相乘合成基带复信号s(t)的过程,而OFDM解调的过程就是由复信号s(t)求解傅立叶系数的过程。复信号s(t)是时域信号,而傅立叶系数就是频域的数据。需要明确的是:对于OFDM调制来讲,输入的数据是频域数据,而输出是S(t)就是时域数据;对于OFDM解调来讲,输入的s(t)是时域信号,而输出的数据就是频域数据。当使用IDFT/DFT实现OFDM调制/解调的时候,IDFT的输入是频域数据,输出是时域数据;DFT的输入是时域数据,输出是频域数据。 基于快速离散傅里叶变换的产生和接收OFDM信号原理:在发射端,输入速率为Rb的二进制数据序列先进行串并变换,将串行数据转化成N个并行的数据并分配给N个不同的

子信道,此时子信道信号传输速率为Rb/N。N路数据经过编码映射成N个复数子符号Xk。(一个复数子符号对应速率为Rb的一路数据)随后编码映射输出信号被送入一个进行快速傅里叶逆变换IFFT的模块,此模块将频域内N个复数子符号Xk变换成时域中2N个实数样值Xk。(两个实数样值对应1个复数子符号,即对应速率为Rb的一路数据)由此原始数据就被OFDM按照频域数据进行处理。计算出的IFFT变换之样值,被一个循环前缀加到样值前,形成一个循环扩展的OFDM信息码字。此码字在此通过并串变换,然后按照串行方式通过D/A和低通滤波器输出基带信号,最后经过上变频输出OFDM信号。 1.1. 2.OFDM的优缺点 1.1. 2.1.OFDM优点 1.1. 2.1.1.频谱效率高 由于FFT处理使各个子载波可以部分重叠,因为理论上可以接近乃奎斯特极限。以OFDM 为基础的多址技术OFDMA(正交频分多址)可以实现小区内各用户之间的正交性,从而避免用户间干扰。这使OFDM系统可以实现很高的小区容量。 1.1. 2.1.2.带宽扩展性强 由于OFDM系统的信号带宽取决于使用的子载波数量,因此OFDM系统具有很好的带宽扩展性。小到几百kHz,大到几百MHz,都很容易实现。尤其是随着移动通信宽带化(将由5MHz增加到最大20MHz),OFDM系统对大带宽的有效支持,称为其相对于单载波技术的“决定性优势”。 1.1. 2.1. 3.抗多径衰落 由于OFDM将宽带传输转化为很多子载波上的窄带传输,每个子载波上的信道可以看做水平衰落信道,从而大大降低了接收机均衡器的复杂度。相反,单载波信号的多径均衡的复杂度随着宽带的增大而急剧增加,很难支持较大的带宽(如20MHz)。

材料成型基本原理总结

. 材料成型力学原理部分 第十四章金属塑性变形的物理基础 1、塑形成形:利用金属的塑性,使金属在外力作用下成形的一种加工方法,亦称金属塑性加工或金属压力加工。 2、金属塑性成形的优点:生产效率高、材料利用率高、组织性能亦改变、尺寸精度高。 3、塑性成形工艺:锻造、轧制、拉拔、挤压、冲裁、成型 4、金属冷塑形变形的形式:1、晶内变形:滑移和孪生2、晶间变形:晶粒间发生相互滑动和转动 5、加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升,为了使变形继续下去,就需要增加变形外力或变形功。(指应变对时间的变化率) 6、热塑性变形时金属组织和性能的变化1、改善晶粒组织2、锻合内部缺陷3、破碎并改善碳化物和非金属夹杂物在钢中的分布4、形成纤维组织5、改善偏析 7、织构的理解:多晶体取向分布状态明显偏离随机分布的取向分布结构。 8、细化晶粒:1、晶粒越细小,利于变形方向的晶粒越多2、滑移从晶粒内发生止于晶界处,晶界越多变形抗力越大 9、热塑性变形机理:晶内滑移、晶界滑移和扩散蠕变 10、塑性:不可逆变形,表征金属的形变能力 11、塑性指标:金属在破坏前产生的最大变形程度 12、影响塑性的因素:1、化学成分和合金成分对金属塑性的影响2、组织状态对金属塑性的影响3、变形温度4、应变速率5、应力状态 13、单位流动压力P:接触面上平均单位面积上的变形力 14、碳和杂质元素的影响碳:其含量越高,塑性越差;磷:冷脆;硫:热脆性;氧:热脆性;氮:时效脆性、蓝脆、气孔;氢:氢脆、白点、气孔和冷裂纹等 15、合金元素的影响:塑性降低硬度升高 16、金属组织的影响(1)晶格类型(2)晶粒度(3)相组成(4)铸造组织 17、变形温度对金属塑性的影响:对大多少金属而言,总的趋势是随着温度升高,塑性增加。但是这种增加并不是线性的,在加热的某些温度区间,由于相态或晶界状态的变化而出现脆性区,使金属的塑性降低。(蓝脆区和热脆区) 18、变形抗力:指金属在发生塑性变形时,产生抵抗变形的能力一般用接触面上平均单位面积变形力来表示,又称单位面积上的流动压力 19、质点的应力状态:变形体内某点任意截面上应力的大小和方向 20、对变形抗力的影响因素:①化学成分:纯金属和合金②组织结构:组织状态、晶粒大小和相变③变形温度④变形程度:加工硬化⑤变形速度⑥应力状态 21、金属的超塑性:细晶超塑性、相变超塑性 第十五章应力分析 1、研究塑性力学时的四个假设:①连续性假设:变形体不存在气孔等缺陷②匀质性假设:质点的组织、化学成分等相同③各向同性假设④体积不变假设 2、质点:有质量但不存在体积或形状的点 3、内力:在外力作用下,物体内各质点之间就会产生相互作用的力。 4、应力:单位面积上的内力-----求法 5、点的应力状态:指变形体内一点任意方位微小面积截面上所承受的应力状况,即应力的大小和方向(名词解释) ? ? ? ? ? ? ? ? ? ? z zy zx yz y yx xz xy x σ τ τ τ σ τ τ τ σ 作用在x面上 作用在y面上 作用在z面上 作用方向为z 作用方向为y 作用方向为x 6、(名词解释)主平面:τ=0的微分面叫做主平面 7、(名词解释)主应力:主平面上作用的正应力即为主应力 8、(名词解释)应力主方向:主平面上的法线方向则称为应力主方向或应力主轴(主应力方向) 9、应力状态特征方程:0 3 2 2 1 3= - - -J J Jσ σ σ 10、应力张量不变量:、 、 11、斜微分面上的正应力和切应力: 2 3 2 2 2 1 n m lσ σ σ σ+ + =、 2 2 3 2 2 2 1 2 2 3 2 2 2 2 2 1 2) (n m l n m lσ σ σ σ σ σ τ+ + - + + =、 2 2 3 2 2 2 2 2 1 2n m l Sσ σ σ+ + = 12、判断:主切应力面上的正应力是存在的Y;主平面上没有切应力Y。 13、主切应力平面:使切应力数值达到极大值的平面,其上所作用的切应力称为主切应力。(在主轴空间中,垂直一个主平面而与另两个主平面交角为45°的平面就是主切应力平面。) 14、主剪应力和最大剪应力:剪应力有极值的切面叫做主剪应力平面,面上作用的剪应力叫做主剪应力。取应力主轴为坐标轴,则任意斜切面上的剪应力可求得: 2 2 3 2 2 2 1 2 2 3 2 2 2 2 2 1 2) (n m l n m lσ σ σ σ σ σ τ+ + - + + = 、23 2 2 2 1 n m lσ σ σ σ+ + =、223 2 2 2 2 2 1 2n m l Sσ σ σ+ + = 15、当时,是球应力状态,此时主剪应力为零,只有正应力,表明球应力状态下只有正应力作用。 16、主剪应力中绝对值最大的一个,也就是一点所有方向切面上剪应力的最大值,叫做最大剪应力,以τmax表示。如设σ1>σ2>σ3,则τmax=±(σ1-σ3)/2 应注意到,每对主剪应力平面上的正应力都是相等的。 17、应力张量=应力偏张量(形状)+应力球张量(体积): ? ? ? ? ? ? ? ? ? ? = zz yz xz zy yy xy zx yx xx ij σ τ τ τ σ τ τ τ σ σ ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? - - - = m m m m zz yz xz zy m yy xy zx yx m xx σ σ σ σ σ τ τ τ σ σ τ τ τ σ σ 18、应力张量、应力偏张量、应力球张量:、 、 (P309) 19、以受力物体内任意点的应力主轴为坐标轴,在无限靠近该点作等倾斜的微分面上,其法线与三个主轴的夹角都相等; 20、等倾面:若斜截面的法线方向与三个坐标轴的夹角相等,

相关主题
文本预览
相关文档 最新文档