当前位置:文档之家› 电子科技大学图论第三次作业杨春

电子科技大学图论第三次作业杨春

电子科技大学图论第三次作业杨春
电子科技大学图论第三次作业杨春

图论第三次作业 第六章习题

2.证明:

根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4;

(2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明:

∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明:

(1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ,

由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4.

(3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。

5.证明:

假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,

使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。

6.证明:

(1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,

(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5.

(2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质

36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至

少有12个点的度数不超过5.

8.证明:

(1)由握手定理()2()i d v m n G δ=≥∑和极大可平面图的性质36m n =-,可得

[6()]12G n δ-≥对4n ≥恒成立,又,所以6()3G δ-≤,即()3G δ≥。

(2)由定理5,对简单可平面图都有()5G δ≤,又图G 是3n ≥的简单连通平面

图,所以G 中至少有3个点的度数小于等于5.

(3)由定理5,对简单可平面图都有()5G δ≤,又图G 是4n ≥的简单连通平面

图,所以G 中至少有4个点的度数小于等于5.

17.证明:

利用反证法,假设存在6连通可平面图, 设G 是6连通图,则:k(G)≧6 由惠特尼定理可得:δ(G)≧k(G)≧6, ∴m>3n-6,这与G 是简单平面图相矛盾, 因此假设不成立,不存在6连通可平面图 19.证明:

假设不存在面f,使得deg(f)≦5,则:2m=≧6φ,

由欧拉公式得:φ=2-n+m≦,于是得:2m≦3n-6,

另一方面,由δ(G)≧3得:2m≧3n>3n-6与上面得到结果相矛盾,所以假设不成立,G至少存在一个面f,使得:deg(f)≦5.

第七章作业

2.证明:

设n=2k+1,∵G是Δ正则单图,且Δ>0,

∴m(G)==>kΔ,由定理5可知χˊ(G)=Δ(G)+1.

28.解:

(1)

又:

=k(k-1)(k-2)2(k-3)+k(k-1)2(k-2)=k(k-1)(k-2)(k2-4k+5)

=k(k-1)(k-2)2(k-3),

所以,原图色多项式为:k(k-1)(k-2)2(k2-4k+5)-k(k-1)(k-2)2(k-3) =k(k-1)(k-2)2(k2-5k+8)

(2)∵

原图与该图同构,又,同构的图具有相同的色多项式,

所以原图色多项式为:k(k-1)(k-2)2(k2-5k+8)。

31.证明:

(1)用归纳法来证明。当m=1时,直接计算P k(G)=k m-k m-1,得k m-1系数为-1,且P k(G)中具有非零系数的k的最小次数为1即G分支数,故m=1时命题成立;

设对于少于m条边的一切n阶单图命题均成立,考虑单图G=(n,m),由递推公式:P k(G)=P k(G-e)-P k(G·e),

由假设可令:P k(G-e)=k n+a1k n-1+…+a n-1k n-1,且a1=-m+1;

P k(G·e)=k n-1+b1k n-2+…+b n-2k n-2,且b1=-m+1,

∴P k(G)=k n+(a1+1)k n-1+(a1+b1)k n-2+…+b n-2k n-2,

∴P k(G)中k n-1的系数a1+1=-m;

P k(G)中具有非零系数的k的最小次数为n-2即为G的分支数。

(2)一个多项式,若是某个图的色多项式,那么也是该图对应的底图的色多项式。故我们仅需对单图来证明。若P k(G)=k4-3k3+3k2是某个单图G的色多项式,则由(1)可知,m(G)=3,从而χ(G)≧2,另一方面,

P1=1,这说明χ(G)≦1,与上面结论相矛盾,故P k不可能是任何单图的色多项式。

32.证明:因为G1和G2中分别有一个唯一的4度顶点:u1与v1.但是它们邻点状况不相同:u1有4个2度邻点,而v1只有两个2度顶点,所以G1与G2不同构。

利用直接计算方法可得:P k(G1)=P k(G2)=10k3+5k4+k5.

33.证明:

(1)当n=1时,P k(K1)=k,命题成立。

若n

P k(G)=P k(G-e)-P k(G·e)=k2(k-1)m-2-k(k-1)m-2=k(k-1)m-1,

故命题成立。

(2)∵P k(G-e)=P k(G)+P k(G·e),P k(G·e)≧0,所以P k(G-e)≧P k(G),另一方面由于G连通,设T是G的生成树,逐次用上述导出的公式将余数T的边从G中除去,于是最后有P k(G)≦P k(T),由(a),P k(T)=k(k-1)m-1,所以,P k(G)≦k(k-1)m-1.

若连通图G的P k(G)=k(k-1)m-1时,则n=m-1,所以G是一棵树。即当且仅当G是树时等号才成立。

第九章习题

1.解:∵每条边有2种定向方式,所以一个简单图共有2m(G)种定向。

2.证明:不失一般性,设G是连通图。G中奇度顶点个数必然为偶

数个,将偶数个奇度顶点配对,然后在每一对配对顶点间连一条边得到欧拉图G1,在G1中用Fluery算法求出G的一欧拉环游C,然后顺次在C上标上方向,由此得到C的定向图C1.

在C1中,去掉添加的边后,得到G的定向图D,显然:

对v∈V(D),有|d+(v)-d-(v)|≦1.

7.解:

强连通分支:{1}、{2,3,5,6,7}、{4}、{9}、{8};

单向连通分支:{1,2,3,4,5,6,7}、{8,9};

弱连通分支:{1,2,3,4,5,6,7,8,9}。

11.证明:设该树有i个分支点,由定理:(m-1)i=t-1得,

对于二元完全树,i=t-1

由树的性质可得,m=(i+t)-1=(t-1+t)-1=2t-2.原式得证。

12.证明:由树的性质,点数为n的树的边数m=n-1,

由11题可知m=2t-2=n-1,∴t=(n+1)/2.

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 v v 1 3 图G

电子科技大学各专业介绍

通信与信息工程学院 1.通信工程专业 专业介绍:本专业培养具有扎实通信系统及通信网理论基础、利用现代电子技术,研究各种信息传输、存储、交换、处理、监测与显示等技术和系统,研究近代通信技术、通信系统、通信网络与各种媒体处理的人才。本专业方向口径宽、适应性强、服务面广。毕业生具有创新能力和工程实践能力,能够从事通信领域和信息系统的研究、设计、制造、分析和运行管理等工作。 主修课程:电路分析基础、数字逻辑设计与应用、信号与系统、模拟电路基础、微机原理及应用、通信原理、程控交换原理、计算机通信网、宽带通信网、卫星通信、移动通信、无线网络技术、接入网技术、电磁场与电磁波、数字信号处理(DSP 技术)、ASIC 技术、EDA 技术等。 2.网络工程专业 专业介绍:本专业培养具有扎实的现代网络工程理论与现代通信理论基础、计算机应用能力强,研究网络规划工程设计、运行管理和性能分析及网络维护的人才。本专业方向口径宽,适应性强、服2.务面广。毕业生具有创新能力和工程实践能力,能够从事网络的规划和组网规划、网络工程设计和建设、运行维护和管理、安全防护和性能分析等网络工程领域的研究、设计、开发、应用以及管理和教育工作。 主修课程:电路分析基础、数字逻辑设计与应用、信号与系统、模拟电路基础、微机原理及应用、通信原理、程控交换原理、电磁场与电磁波、数字信号处理(DSP

技术)、TCP/IP 协议、软件技术基础宽带通信网、网络互联与路由技术、网络设备原理与技术、网络系统工程、网络规划与网络管理等。 3.物联网。。。资料暂缺 电子工程学院 1.电子信息工程专业 专业介绍:电子信息工程专业是我校最早设立的宽口径电子系统专业,是各发达国家中的热门专业之一,是四川省品牌专业。本专业旨在培养德智体全面发展、知识结构合理、基础扎实、勇于创新、个性突出、具有国际竞争力的优秀的电子信息工程领域内高级技术人才。 有以下四个各具特色的培养方向: 电子工程方向:培养学生掌握电子电路、信息系统的基本理论和工程技术,掌握信息获取与处理的基本理论及应用的一般方法,具备设计、开发、应用、集成电子设备和信息系统的能力。 信息工程方向:培养学生掌握电子电路、信息系统的基本理论和工程技术,掌握信息系统中图像和语音信息的采集、存贮、处理、控制、识别等技术。 遥测遥控方向:培养学生掌握电子电路、信息系统的基本理论和工程技术,掌握目标探测与识别技术、制导与控制控制技术等方面的基本理论和基本知识,具备测控系统的分析与综合、工程设计与计算、检测等方面的基本能力。 集成电路方向:要求学生掌握电子电路、信息系统的基本理论和工程技术,掌握

答案(电子科大版)图论及其应用第一章

习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1) 不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 1 1 12312(1,1,,1,,,)d d n d d d d d π++=---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若 ,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干 个连通的情形来证明。设 , 对于中的路 若与邻接,则构成一个闭路。若是一条路,由于,因 此,对于,存在与之邻接,则构成一个圈。 ● 17.证明:若G 不连通,则连通。 证明:对于任意的 ,若与属于G 的连通分支,显然与在中连通;

图论及其应用答案电子科大

图论及其应用答案电子科 大 Newly compiled on November 23, 2020

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两 个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通, 而在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从 u 与到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。

离散数学试卷及答案(2)

一、填空 20% (每小题2分) 1、 P :你努力,Q :你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。 2、论域D={1,2},指定谓词P 则公式),(x y yP x ??真值为 。 2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。 3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R= (列举法)。 R 的关系矩阵M R = 。 5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ; A 上既是对称的又是反对称的关系R= 。 6、设代数系统,其中A={a ,b ,c}, 则幺元是 ;是否有幂等 性 ;是否有对称性 。 7、4阶群必是 群或 群。 8、下面偏序格是分配格的是 。

9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。 10、公式R Q P Q P P ?∧∨?∧∧?∨)(())(( 的根树表示为 。 二、选择 20% (每小题2分) 1、在下述公式中是重言式为( ) A .)()(Q P Q P ∨→∧; B .))()(()(P Q Q P Q P →∧→??; C .Q Q P ∧→?)(; D .)(Q P P ∨→ 。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为( )。 A .0; B .1; C .2; D .3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A .3; B .6; C .7; D .8 。 4、 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A .4; B .5; C .6; D .9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为

07年研究生试卷(答案)

电子科技大学研究生试卷 (考试时间: 至 ,共_____小时) 课程名称 图论及其应用 教师 学时 60 学分 教学方式 讲授 考核日期_2007__年___月____日 成绩 考核方式: (学生填写) 一.填空题(每题2分,共12分) 1.简单图G=(n,m)中所有不同的生成子图(包括G 和空图)的个数是___2m __个; 2.设无向图G=(n,m)中各顶点度数均为3,且2n=m+3,则n=_ 6__; m=_9__; 3.一棵树有i n 个度数为i 的结点,i=2,3,…,k,则它有2+(i ?2)∑n i i 个度数为1的结点; 4.下边赋权图中,最小生成树的权值之和为__20___; 5、某年级学生共选修9门课。期末考试时,必须提前将这9门课先考完,每天每人只在下午考一门课,则至少需要___9__天才能考完这9门课。 二.单项选择(每题2分,共10分) 1.下面给出的序列中,不是某简单图的度序列的是( D ) (A) (11123); (B) (22222); (C) (3333); (D) (1333). 2. 下列图中,是欧拉图的是( D ) 学 号 姓 学 …………………… 密……………封…………… 线……………以……………内……………答…… ………题… …………无……………效…………………… v 5 v v 6A B

3.下列图中,不是哈密尔顿图的是(B) A B C D 4.下列图中,是可平面图的图的是(B) A B C D 5.下列图中,不是偶图的是(B) C A B D 三、 (8分)画出具有7个顶点的所有非同构的树 解:m=n?1=6 …… 四,用图论的方法证明:任何一个人群中至少有两个人认识的朋友数相同(10分) 证明:此题转换为证明任何一个没有孤立点的简单图至少有两个点的度数相同。 参考教材P5。 五.(10分) 设G为n 阶简单无向图,n>2且n为奇数,G与G的补图G中度数为奇数的顶点个数是否相等?证明你的结论 证明:根据补图定义d G(v i)+d G(v i)=n?1。相等。 由频序列相同证明有同样奇数的顶点个数。 参考教材P5。

电子通信类专业全国排名

国家实验室>国家重点实验室=国防重点实验室>教育部重点实验室>省级重点实验室 成电电子略强与西电,西电通信略强于成电, ?电子科大: 物理电子学,电磁场与微波技术,电路与系统,微电子与固体电子学 电子科学技术一级学科下设四个二级学科,分别是物理电子学,电磁场与微波技术,电路与系统,微电子与固体电子 电子与通信重点学科分布: 电子科大 6 清华 5 西电 5 北邮 4 北大 3 东南 3 北理工 3 上交 2 哈工大 2 复旦 2 北京交大 2 华南理工,华中科大,西安交大,中科大,浙大,西北工大,南京大学,吉林大学各一个信号与信息处理(134) 1 西安电子科技大学 A+ 2 北京邮电大学 A+ 3 电子科技大学 A+ 4 清华大学 A+ 5 东南大学 A+ 6 北京交通大学 A+ 7 北京理工大学 A 8 哈尔滨工业大学 A 9 华中科技大学 A 10 上海交通大学 A 11 北京航空航天大学 A 12 北京大学 A 13 西北工业大学 A 14 大连理工大学 A 15 中国科学技术大学 A 16 南京大学 A 17 四川大学 A 18 山东大学 A 19 天津大学 A 20 浙江大学 A 21 西安交通大学 A 22 武汉大学 A 23 哈尔滨工程大学 A 24 南京邮电大学 A 25 上海大学 A

26 杭州电子科技大学 A 电路与系统(91) 1 西安电子科技大学 A+ 2 电子科技大学 A+ 3 复旦大学 A+ 4 北京邮电大学 A+ 5 东南大学 A 6 中国科学技术大学 A 7 清华大学 A 8 上海交通大学 A 9 西北工业大学 A 10 浙江大学 A 11 西安交通大学 A 12 南京大学 A 13 杭州电子科技大学 A 14 华南理工大学 A 15 安徽大学 A 16 北京工业大学 A 17 太原理工大学 A 18 重庆大学 A 通信与信息系统(121) 1 北京邮电大学 A+ 2 西安电子科技大学 A+ 3 清华大学 A+ 4 电子科技大学 A+ 5 东南大学 A+ 6 上海交通大学 A+ 7 中国科学技术大学 A 8 北京交通大学 A 9 北京大学 A 10 浙江大学 A 11 哈尔滨工业大学 A 12 北京理工大学 A 13 华南理工大学 A 14 华中科技大学 A 15 北京航空航天大学 A 16 西安交通大学 A 17 武汉大学 A 18 西南交通大学 A 19 哈尔滨工程大学 A 20 西北工业大学 A 21 南京航空航天大学 A 22 南京邮电大学 A 23 东北大学 A

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

离散数学图论部分经典试题及答案

离散数学图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??? ???? ? ????? ???0101 010******* 11100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2∣E ∣ B .deg(V )=∣E ∣ C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 ο ο ο ο ο c a b e d ο f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ) . 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结 点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 ο ο ο ο c a b f

离散数学图论部分经典试题及答案

离散数学图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??? ???? ? ????? ???01010 1001000001 1100100110 则G 的边数为( ). A.6 B.5 C.4 D.3 2.已知图G 的邻接矩阵为 , 则G 有( ). A.5点,8边 B.6点,7边 C.6点,8边 D.5点,7边 3.设图G =,则下列结论成立的就是 ( ). A.deg(V )=2∣E ∣ B.deg(V )=∣E ∣ C.E v V v 2)deg(=∑∈ D.E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的就是 ( ) . A.{(a , d )}就是割边 B.{(a , d )}就是边割集 C.{(d , e )}就是边割集 D.{(a, d ) ,(a, c )}就是边割集 5.如图二所示,以下说法正确的就是 ( ). A.e 就是割点 B.{a, e }就是点割集 C.{b , e }就是点割集 D.{d }就是点割集 6.如图三所示,以下说法正确的就是 ( ) . A.{(a, e )}就是割边 B.{(a, e )}就是边割集 C.{(a, e ) ,(b, c )}就是边割集 D.{(d , e )}就是边割集 ο ο ο ο ο c a b e d ο f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的就是 ( ). 图四 A.(a )就是强连通的 B.(b )就是强连通的 C.(c )就是强连通的 D.(d )就是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A.m 为奇数 B.n 为偶数 C.n 为奇数 D.m 为偶数 9.设G 就是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A.e -v +2 B.v +e -2 C.e -v -2 D.e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A.G 中所有结点的度数全为偶数 B.G 中至多有两个奇数度结点 C.G 连通且所有结点的度数全为偶数 D.G 连通且至多有两个奇数度结点 11.设G 就是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A.1m n -+ B.m n - C.1m n ++ D.1n m -+ 12.无向简单图G 就是棵树,当且仅当( ). A.G 连通且边数比结点数少1 B.G 连通且结点数比边数少1 C.G 的边数比结点数少1 D.G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数就是 . 2.设给定图G (如图四所示),则图G 的点割 集就是 . 3.若图G=中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 . 4.无向图G 存在欧拉回路,当且仅当G 连通 且 . 5.设有向图D 为欧拉图,则图D 中每个结点的入度 . ο ο ο ο ο c a b e d ο f 图四

(完整版)成都电子科技大学自动化专业本科培养方案

自动化专业本科人才培养方案 一、专业代码与名称 专业代码:080602 专业名称:自动化 二、学制与学位 修业年限:四年 授予学位:工学学士 三、培养目标 经过系统的教育和教学活动,使学生具有扎实的基础、宽广的知识面和较强的实践动手能力,培养学生的创新精神和团队意识,使其在掌握自动化和控制工程领域先进技术的基础上,具有提出和解决带有挑战性问题的能力,不断提高自身的综合素质。同时,发展学生个性,培养学生具有健全人格,使其成为德智体美全面发展的高素质人才。 四、基本要求 本专业学生主要学习自动控制原理、计算机控制系统、传感器原理、过程控制系统、线性系统理论、电力电子技术、系统工程导论等专业知识,并接受1~2个学科专业方向的基本训练。毕业后可从事国民经济、国防和科研各部门的运动控制、过程控制、机器人智能控制、导航制导与控制,现代集成制造系统、模式识别与智能系统、系统工程理论与实践、新型传感器、电子与自动检测系统、复杂网络与计算机应用系统等领域的科学研究、技术开发、教学及管理等工作。 毕业生应获得以下几个方面的知识和能力: 1.扎实的数理基础,较好的人文社会科学和管理科学基础,以及外语综合能力; 2.系统掌握本学科领域必需的技术基础理论知识,包括电路理论、电子技术、信号与系统、自动控制理论、计算机软硬件、电力电子学、电力系统自动化等。 3.较强的工程实践能力,较熟练的计算机应用能力; 4.本学科领域内1~2个专业方向的知识与技能,了解本学科前沿的发展趋势; 5.较强的工作适应能力,一定的科学研究、技术开发和组织管理的实际工作能力。

五、专业特色 1、在科研、教学、实验和毕业设计环节与计算机技术、网络通信等专业有机结合,培养适应面宽广的“多才”专业; 2、理论与实践并重,培养学生的实际动手能力,不断提高学生的工程素质和专业基础,训练工程型人才; 3、开展各类竞赛辅助教学,培养学生的团队意识,引导学生发现问题并寻找解决问题的办法,不断提升学生的创新能力。 六、主干学科与主干课程 1、主干学科:检测技术及自动化装置、控制科学与工程 2、主干课程:自动控制原理、计算机控制系统、传感器原理、过程控制系统 3、双语教学课程:信号与系统、信息论导论、电力系统自动化、线性系统理论、数字 逻辑设计及应用 七、主要实践教学环节 1、实验:微型计算机系统原理及接口技术,电子技术实验基础I/II,现代电子技术综 合实验,电力电子技术,集成电路应用实验I/II,信号与系统,过程控制系 统,计算机控制系统,电机与拖动基础,传感器原理,自控原理基础实验, 单片机与PLC,数字系统设计,调速与随动,企业供配电系统,嵌入式系统 设计,现代控制技术综合实验,数字图像处理,现场总线控制系统,电力系 统自动化,信息论导论 2、上机:软件技术基础,现代工程设计制图,数值计算方法,自控原理基础实验,高 级语言程序设计,控制系统计算机仿真,计算机网络,现代控制技术综合实 验,人工智能导论,数字信号处理,系统工程导论 3、课程设计:电路分析基础,单片机与PLC,线性系统理论,现代控制技术综合实验 计算机控制系统,传感器原理,自控原理基础实验,单片机与PLC,数字系 统设计,企业供配电系统,嵌入式系统设计 4、实习实训:实习实训环节包括军事训练、基础工程训练、电工电气技术实训、电装 实习、综合课程设计、生产实习、毕业设计

离散数学试卷及答案

一、填空 20% 1、 P :你努力,Q :你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。 2、论域D={1,2},指定谓词P 则公式),(x y yP x ??真值为 。 2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。 3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R= (列举法)。 R 的关系矩阵M R = 。 5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ; A 上既是对称的又是反对称的关系R= 。 6、设代数系统,其中A={a ,b ,c}, 则幺元是 ;是否有幂等 性 ;是否有对称性 。 7、4阶群必是 群或 群。 8、下面偏序格是分配格的是 。

9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。 10、公式R Q P Q P P ?∧∨?∧∧?∨)(())(( 的根树表示为 。 二、选择 20% (每小题2分) 1、在下述公式中是重言式为( ) A .)()(Q P Q P ∨→∧; B .))()(()(P Q Q P Q P →∧→??; C .Q Q P ∧→?)(; D .)(Q P P ∨→ 。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为( )。 A .0; B .1; C .2; D .3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A .3; B .6; C .7; D .8 。 4、 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A .4; B .5; C .6; D .9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为

2022电子科技大学考研专业简章

根据教育部《电子科技大学关于选拔普通高校优秀考生进入研究生阶段学习的通知》文件精神,结合学校实际,对普通高校毕业生进入硕士阶段学习提出如下要求。 一、报考事项安排 1.每年报考我校的考生很多,要早复习,早准备。按照考试范围复习。 2.我校考生,到学校考试中心,办理内部试卷。 3.每年有很多考生,不知道考试重点范围,不知道考试大纲要求,盲目复习,浪费时间和精力,复习效果很差,影响考试。 4.每年有很多考生,选择错误的复习资料,解题思路及讲解答案都是错误的,具有误导性,不利于复习。 5.学校为考生正确复习,印刷内部试卷。 6.内部试卷:包含考试范围、历年真题、考试题库、内部复习资料。 7.专业课,学校出题。一定要按照内部试卷复习,每年都有原题出现。 8.内部试卷联系QQ363.916.816张老师。学校安排邮寄,具体事项联系张老师。 二、选拔对象条件 1.普通高校本科毕业生,主干课程成绩合格,在校学习期间未受到任何纪律处分。 2.身体健康状况符合国家和学校规定的体检要求。 三、招生专业计划 1.招生要求和专业,详见《教育部选拔普通高等学校本科毕业生进入硕士阶段学习招生及专业总表》。 2.学校计划招收全日制硕士研究生和非全日制硕士研究生,《硕士学位研究生招生专业目录》公布的拟招生人数(含推免生),实际招生人数将根据国家下达我校招生计划、各专业生源情况进行适当调整。我校部分专业将另设计划用于接收调剂生,具体事项及拟招生人数将在初试成绩公布后另行通知。 四、报名资格审核 1.报考考生按照《教育部选拔普通高等学校优秀毕业生进入研究生阶段学习专业对照及考试课程一览表》以下简称《专业对照及考试课程一览表》选择报考专业,并填写《教育部普通高等学校毕业生进入研究生阶段

电子科大图论答案

图论第三次作业 一、第六章 2.证明: 根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4; (2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明: ∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明: (1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ, 由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4. (3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。 5.证明: 假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。 6.证明: (1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5. (2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5. 二、第七章 2.证明: 设n=2k+1,∵G 是Δ正则单图,且Δ>0, ∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.

图论及其应用第三章答案电子科大

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通,而 在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从u 与到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G 连通,若G 不是块,则G 中存在着割点u ,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u 在每一条(x,y)的路上,则与已知矛盾,G 是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v 是单图G 的割点,则G ?v 有两个连通分支。现任取x,y ∈V(G ?v), 如果x,y 不在G ?v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,x,与y 在G ?v 的补图中连通。若x,y 在G ?v 的同一分支中,则它们在G ?v 的补图中邻接。所以,若v 是G 的割点,则v 不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

集合论图论 期中考试试题及答案

08信安专业离散数学期中考试试题 1.设A, B, C, D为4个集合. 已知A?B且C?D.证明: A∪C?B∪D; A∩C?B∩D . (15分) 2.化简以下公式: A∪((B―A)―B) (10分) 3.设R是非空集合A上的二元关系.证明:R∪R-1是包含R的 最小的对称的二元关系. (15分) 4.设A={1,2,…,20},R={|x,y∈A∧x≡y(mod 5)}.证 明:R为A上的等价关系. 并求商集A/R. (15分) 5.给出下列偏序集的哈斯图,并指出A的最大元,最小元,极 大元和极小元. A={a,b,c,d,e},?A= I A∪{,, ,,,,} (15分) 6.设g:A→B, f:B→C.已知g f是单射且g是满射,证明:f 是单射. (10分) 7.设S={0,1}A, 其中A={a1,a2,…,a n}.证明:P(A)与S等势. (10分) 8.证明:任何一组人中都存在两个人,他们在组内认识的人 数恰好相等(假设,若a认识b,则a与b互相认识). (10分)

期中考试试题解答 1.证明: ?x, x∈A∪C x∈A∩C ?x∈A∨x∈C ?x∈A∧x∈C ?x∈B∨x∈D (A?B,C?D) ?x∈B∧x∈D (A?B,C?D) ?x∈B∪D ?x∈B∩D ∴A∪C?B∪D ∴A∩C?B∩D 2.解: A∪((B―A)―B) =A∪((B∩∽A)∩∽B) =A∪(∽A∩(B∩∽B)) =A∪(∽A∩φ) =A∪ф =A . 3.证明:首先证R∪R-1是对称关系. ?, ∈R∪R-1 ?∈R∨∈R-1 ?∈R-1∨∈R ?∈R-1∪R ?∈R∪R-1

集成电路技术应用专业简介

集成电路技术应用专业简介 专业代码610120 专业名称集成电路技术应用 基本修业年限三年 培养目标 本专业培养德、智、体、美、劳全面发展,具有良好职业道德和人文素养,掌握微电子工艺和集成电路设计领域相关专业理论知识,具备微电子工艺管理、集成电路设计及应用等能力,从事微电子制造和封装测试工艺维护管理、集成电路辅助逻辑设计、版图设计和系统应用等方面工作的高素质技术技能人才。 就业面向 主要面向半导体制造、集成电路设计等企事业单位,在微电子工艺技术员、集成电路逻辑和版图设计助理工程师、系统应用工程师等岗位,从事微电子工艺制造和封装测试、集成电路逻辑设计、版图设计、FPGA开发与应用、芯片应用方案开发等工作。主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.掌握半导体器件、集成电路的基础理论知识; 3.具备微电子工艺加工及相关设备操作能力; 4.具备集成电路逻辑设计及仿真能力; 5.具备集成电路版图设计与验证的能力;

6.具备FPGA开发与应用的能力; 7.具备芯片应用方案开发能力。 核心课程与实习实训 1.核心课程 半导体器件物理、集成电路制造工艺、半导体集成电路、VerilogHDL应用、集成电路版图设计技术、系统应用与芯片验证。 2.实习实训 在校内进行集成电路制造工艺、半导体集成电路项目、项目化版图设计与验证等实训。 在集成电路企业及相关科研院所进行实习。 衔接中职专业举例 电子与信息技术电子技术应用 接续本科专业举例 电子科学与技术微电子科学与工程 声明:此资源由本人收集整理于网络,只用于交流学习,请勿用作它途。如有侵权,请联系,删除处理。

电子科技大学研究生专业介绍

目录 电子科技大学概况 0 电子科技大学博士、硕士学位授权点一览表 (3) 信息与通信工程一级学科博士研究生专业 (5) 材料科学与工程一级学科博士研究生专业 (8) 计算机科学与技术一级学科博士研究生专业 (10) 马克思主义基本原理学科博士研究生专业 (12) 思想政治教育学科博士研究生专业 (14) 应用数学学科博士研究生专业 (16) 等离子体物理学科博士研究生专业 (18) 凝聚态物理学科博士研究生专业 (20) 光学学科博士研究生专业 (22) 无线电物理学科博士研究生专业 (24) 机械电子工程学科博士研究生专业 (26) 光学工程学科博士研究生专业 (28) 测试计量技术及仪器学科博士研究生专业 (30) 物理电子学学科博士研究生专业 (32) 电路与系统学科博士研究生专业 (34) 微电子学与固体电子学学科博士研究生专业 (36) 电磁场与微波技术学科博士研究生专业 (38) 电子信息材料与元器件学科博士研究生专业 (40) 通信与信息系统学科博士研究生专业 (42)

信号与信息处理学科博士研究生专业 (44) 信息获取与探测技术学科博士研究生专业 (46) 信息安全学科博士研究生专业 (48) 检测技术及自动化装置学科博士研究生专业 (50) 生物医学工程学科博士研究生专业 (52) 管理科学与工程学科博士研究生专业 (54) 新兴技术管理学科博士研究生专业 (56) 信息管理与电子商务学科博士研究生专业 (58) 金融工程学科博士研究生专业 (60) 企业管理学科博士研究生专业 (62) 信息与通信工程一级学科硕士研究生专业 (64) 电子科学与技术一级学科硕士研究生专业 (67) 材料科学与工程一级学科硕士研究生专业 (69) 数学一级学科硕士研究生专业 (71) 计算机科学与技术一级学科硕士研究生专业 (73) 区域经济学学科硕士研究生专业 (76) 金融学学科硕士研究生专业 (78) 数量经济学学科硕士研究生专业 (80) 宪法学与行政法学学科硕士研究生专业 (82) 国际政治学科硕士研究生专业 (84) 马克思主义基本原理学科硕士研究生专业 (86) 思想政治教育学科硕士研究生专业 (88)

图论及其应用 答案电子科大

习题三: ● 证明:是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意及, G 中的路必含. 证明:充分性: 是的割边,故至少含有两个连通分支,设是其中一个连通分支的顶点集,是其余分支的顶点集,对12,u V v V ?∈?∈,因为中的不连通,而在中与连通,所以在每一条路上,中的必含。 必要性:取12,u V v V ∈∈,由假设中所有路均含有边,从而在中不存在从与到的路,这表明不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 : 是块,任取的一点,一边,在边插入一点,使得成为两条边,由此得到新图,显然的是阶数大于3的块,由定理,中的u,v 位于同一个圈上,于是 中u 与边都位于同一个 圈上。 : 无环,且任意一点和任意一条边都位于同一个圈上,任取的点u ,边e ,若在上,则三个不同点位于同一个闭路,即位于同一条路,如不在上,由定理,的两点在同一个闭路上,在边插入一个点v ,由此得到新图,显然的是阶数大于3的块,则两条边的三个不同点在同一条路上。 : 连通,若不是块,则中存在着割点,划分为不同的子集块,,,无环,12,x v y v ∈∈,点在每一条的路上,则与已知矛盾,是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图的割点。 证明:是单图的割点,则有两个连通分支。现任取, 如果不在的

同一分支中,令是与 处于不同分支的点,那么,与在的补图中连通。若在的同一分支中,则它们在的补图中邻接。所以,若是的割点,则不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给 出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)} ()25G κ= 最小点割{6,7,8,9,10} 2()5G λ= 最小边割{(2,7)…(1,6)} ● 13.设H 是连通图G 的子图,举例说明:有可能k(H)> k(G). 解: 通常. 整个图为,割点左边的图为的的子图, ,则. e H

相关主题
文本预览
相关文档 最新文档