当前位置:文档之家› 数学建模-----文件保存问题

数学建模-----文件保存问题

数学建模-----文件保存问题
数学建模-----文件保存问题

数学建模作业

题目:文件保存问题

【摘要】

随着人们工作、学习的需要,往往需要将一些重要的资料备份保存到外部存储设备上,如U盘、软盘上等等。根据题目所给背景,要将16个文件分别保存在不同的软盘上,使使用的,我们经过分析给出了合理的约束条件,建立了对应的模型。

假设三个软盘可以将16个文件装下,如果不能计算出结果,那么就假设四个软盘可以将16个文件装下,然后继续计算,若还不能计算出结果,继续增加软盘数量,直至得出最优解。

经过计算,得到的最佳存储方案为:只需要3张软盘,大小分别为55KB,62 KB,87KB,406 KB,851 KB的5个文件存放在一张软盘里;大小分别为46KB,108 KB,137 KB,164 KB,253 KB,364 KB,388 KB的7个文件存放在一张软盘里;大小分别为114 KB,372 KB,432 KB,461 KB的4个文件存放在一张软盘里。

1.问题重述

随着人们工作、学习的需要,往往需要将一些重要的资料备份保存到外部存储设备上,如U盘、软盘上等等。由于每个空白软盘的容量是1.44MB,你需

要保存的16个文件大小分别是:46KB 、55KB 、62 KB 、87 KB 、108 KB 、114 KB 、137 KB 、164 KB 、253 KB 、364 KB 、372 KB 、388 KB 、406 KB 、432 KB 、461 KB 、851 KB 。假定你无法使用压缩软件,但软盘的数量足够,那么应如何将这些文件分配到每一张软盘上才能使使用的软盘数目最少?

2.模型假设

由于需要备份保存的16个文件总的容量是46 KB + 55 KB + 62 KB + 87 KB +108 KB + 114 KB + 137 KB + 164 KB + 253 KB + 364 KB + 372 KB + 388 KB +406 KB + 432 KB + 461 KB + 851 KB =4300 KB 。每个空白软盘的容量是1.44MB = 1.44 X 1024 = 1474.56 KB ,取整得1474 KB ,理论上需要软盘的数目是4300 KB / 1474.56 KB = 2.92个。又由于这16个文件从最小46 KB 到最大851KB 呈现递增规律,所以至少需要3个软盘,若仅用3个软盘不能达到目的,在使用4个软盘的情况下应该足够(若依然不够依次往上加,直到满足要求为止……)。因此,问题的关键在于如何使这些文件有机的组合在一起存放在每一张软盘上的条件下使使用的软盘数量最少。因此可以提出如下假设:

1,每个文件只能存放在一个软盘里,不能多次存放在不同的软盘里。 2,每张软盘应该存储空间最大利用化。若给每张软盘编号的话,即1号、2号、3号……

3,各个文件之间有个排列组合问题。即不同的文件存放在一起虽然有多种方案,但一定有一个最优解,可以在达到假设1和2的情况下使用的软盘数量最少。

3.模型分析

决策变量:第j 个文件存到第i 个软盘上,符号为Xij ,j 的取值为1、2、3……16,i 的取值为1、2、3……Xij=0、Xij=1分别表示第j 个文件没有存放在第i 个软盘里,第j 个文件存放在第i 个软盘里,例如,X32=1表示第3个文件(大小为62KB )存放在第2个软盘里。Cj (j=1,2,3,……16)从小到大依次表示这16个文件大小。

目标函数:MIN Z=Y1+Y2+Y3

Z 是一个常数4300 KB ,但是在这里写出这个函数是为了可以有一个目标函数,使得程序可以正常运行,而正是因为Z 是一个常数,所以不会影响计算结果。 约束条件:

1,每个文件只能存放在一个软盘里,不能重复存放。

2,从1号软盘到n 号软盘,剩余存储空间越来越少,从而达到软盘的最大利用化。

∑=31i Xij

=1 (j=1,2,3,……16) (每个文件只能存放在一个软盘里)

∑=161j j Yi =Cj*Xij (i=1,2,3) (每个软盘存放文件的容量总和)

Yi>=Y(i+1)(i=1,2,)(软盘存放文件剩余空间依次递增,也即存放空间递减)

Yi<=1474

Xij={1,0}

4.结果计算

将题目所给条件代入以上模型,输入Lingo软件:

MIN=Y1+Y2+Y3;

Y1=46*X11+55*X12+62*X13+87*X14+108*X15+114*X16+137*X17+164*X18+253 *X19+364*X110+372*X111+388*X112+406*X113+432*X114+461*X115+851*X116;

Y2=46*X21+55*X22+62*X23+87*X24+108*X25+114*X26+137*X27+164*X28+253 *X29+364*X210+372*X211+388*X212+406*X213+432*X214+461*X215+851*X216;

Y3=46*X31+55*X32+62*X33+87*X34+108*X35+114*X36+137*X37+164*X38+253 *X39+364*X310+372*X311+388*X312+406*X313+432*X314+461*X315+851*X316;

Y1>=Y2;Y2>=Y3;Y1<=1474;

X11+X21+X31=1;

X12+X22+X32=1;

X13+X23+X33=1;

X14+X24+X34=1;

X15+X25+X35=1;

X16+X26+X36=1;

X17+X27+X37=1;

X18+X28+X38=1;

X19+X29+X39=1;

X110+X210+X310=1;

X111+X211+X311=1;

X112+X212+X312=1;

X113+X213+X313=1;

X114+X214+X314=1;

X115+X215+X315=1;

X116+X216+X316=1;

@bin(X11);@bin(X12);@bin(X13);@bin(X14);@bin(X15);@bin(X16);

@bin(X17);@bin(X18);@bin(X19);@bin(X110);@bin(X111);@bin(X112);

@bin(X113);@bin(X114);@bin(X115);@bin(X116);@bin(X21);@bin(X22);

@bin(X23);@bin(X24);@bin(X25);@bin(X26);@bin(X27);@bin(X28);

@bin(X29);@bin(X210);@bin(X211);@bin(X212);@bin(X213);@bin(X214);

@bin(X215);@bin(X216);@bin(X31);@bin(X32);@bin(X33);@bin(X34);

@bin(X35);@bin(X36);@bin(X37);@bin(X38);@bin(X39);@bin(X310);

@bin(X311);@bin(X312);@bin(X313);@bin(X314);@bin(X315);@bin(X316);

求解得到的结果为:

Global optimal solution found.

Objective value: 4300.000

Extended solver steps: 0

Total solver iterations: 77

Variable Value Reduced Cost Y1 1461.000 0.000000 Y2 1460.000 0.000000 Y3 1379.000 0.000000 X11 0.000000 46.00000 X12 1.000000 55.00000 X13 1.000000 62.00000 X14 1.000000 87.00000 X15 0.000000 108.0000 X16 0.000000 114.0000 X17 0.000000 137.0000 X18 0.000000 164.0000 X19 0.000000 253.0000 X110 0.000000 364.0000 X111 0.000000 372.0000 X112 0.000000 388.0000 X113 1.000000 406.0000 X114 0.000000 432.0000 X115 0.000000 461.0000 X116 1.000000 851.0000 X21 1.000000 46.00000 X22 0.000000 55.00000 X23 0.000000 62.00000 X24 0.000000 87.00000 X25 1.000000 108.0000 X26 0.000000 114.0000 X27 1.000000 137.0000 X28 1.000000 164.0000 X29 1.000000 253.0000 X210 1.000000 364.0000 X211 0.000000 372.0000 X212 1.000000 388.0000 X213 0.000000 406.0000 X214 0.000000 432.0000 X215 0.000000 461.0000

X216 0.000000 851.0000 X31 0.000000 46.00000 X32 0.000000 55.00000 X33 0.000000 62.00000 X34 0.000000 87.00000 X35 0.000000 108.0000 X36 1.000000 114.0000 X37 0.000000 137.0000 X38 0.000000 164.0000 X39 0.000000 253.0000 X310 0.000000 364.0000 X311 1.000000 372.0000 X312 0.000000 388.0000 X313 0.000000 406.0000 X314 1.000000 432.0000 X315 1.000000 461.0000 X316 0.000000 851.0000

Row Slack or Surplus Dual Price

1 4300.000 -1.000000

2 0.000000 -1.000000

3 0.000000 -1.000000

4 0.000000 -1.000000

5 1.000000 0.000000

6 81.00000 0.000000

7 13.00000 0.000000

8 0.000000 0.000000

9 0.000000 0.000000

10 0.000000 0.000000

11 0.000000 0.000000

12 0.000000 0.000000

13 0.000000 0.000000

14 0.000000 0.000000

15 0.000000 0.000000

16 0.000000 0.000000

17 0.000000 0.000000

18 0.000000 0.000000

19 0.000000 0.000000

20 0.000000 0.000000

21 0.000000 0.000000

22 0.000000 0.000000

23 0.000000 0.000000

合理性分析:3个软盘存放文件容量依次为1461KB,1460KB,1379KB,剩余

存储空间依次为13KB,14KB,95KB,在所用软盘数量最少的同时达到软盘存

空间的最大利用化,因此此分配方案十分合理。

综上,总的文件存储分配方案为:只需要3个软盘,各个软盘存放文

情况为:大小分别为55KB,62 KB,87 KB,406 KB,851 KB的5个文件存放在

一张软盘里;大小分别为46KB,108 KB,137 KB,164 KB,253 KB,364 KB,388 KB的7个文件存放在一张软盘里;大小分别为114 KB,372 KB,432 KB,461 KB的4个文件存放在一张软盘里。

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

数学建模活动策划书

数学建模活动策划方案(初稿) 一、活动背景 数学建模协会面向全校招新活动圆满完成。为了促进协会会员对数学建模的了解,增强对数学建模的认识,数学建模协会对近期一年时间策划此次活动,希望通过活动,增强新会员对数学建模协会的兴趣和认识度,是新会员对数学建模的活动、工作有一定了解和一个全新的认识。 二、活动目的及意义 为了让同学们对数学建模及竞赛有一个初步的了解,激发广大学子学习数学建模的热情,促进我校大学生课外科技活动的蓬勃开展,提高大学生的创新意识及运用数学知识和计算机技术解决实际问题的能力,推广数学建模精神,让同学们了解数学建模,接近数学建模,喜欢数学建模。活动对培养同学们应用数学知识解决实际问题的兴趣,开拓眼界等都有着十分重要的意义。活动的开展不仅为民院学子提供了一次施展才华和挑战自我的机会,也为学子创造了一个学习实践与思想交流的平台。 三、活动主题 走进数学建模 四、主办单位 社团联合会数学建模协会 五、承办单位

社团联合会数学建模协会 六、活动内容 (一)数学建模知识讲座 (二)新老会员见面交流会 (三)团队娱乐游戏活动 (四)小型数学建模大赛 七、活动步骤 (一)数学建模知识讲座 1、前期准备:邀请相关老师并协调好时间、通知协会会员及兴趣 爱好者 2、中期过程:(1)安排知识讲座时间、地点以及准备相关物品 (2)内容:数学建模思想、数学建模理论 3、后期安排:相关工作人员做工作总结 (二)新老会员见面交流会 1、前期准备:邀请相关人员为交流会做准备、通知协会会员 2、中期过程:安排见面交流会的时间、地点以及准备相关物品 3、后期安排:相关工作人员做工作总结 (三)团队娱乐游戏活动(待定) (四)小型数学建模大赛 1、前期准备:对举行小型数学建模大赛的意义进行宣传,并通知 比赛时间地点、比赛模式,邀请相关老师参与 2、中期过程:由相关老师批阅后进行表彰

数学建模优秀论文设计模版

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的 资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参 考文献中明确列出。 我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则 的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

题目(黑体不加粗三号居中) 摘要(黑体不加粗四号居中) (摘要正文小4号,写法如下) (第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点对问题 1 用······的方法解决;对问题 2 用······的方法解决;对问题3 用······的方法解决。 (第2段)对于问题1,用······数学中的······首先建立了······ 模型I。在对······模型改进的基础上建立了······模型II。对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为······,然后借助于······数学算法和······软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3 组数据(每组8 个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格) (第3段)对于问题2用······ (第4段)对于问题3用······ 如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软 件、结果、亮点详细说明。并且一定要在摘要对两个或两个以上模型进行比较, 优势较大的放后面,这两个(模型)一定要有具体结果。 (第5段)如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。要注意合理性。此推广模型可以不深入研究,也可以没有具体结果。 关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。 注:字数700-1000 之间;摘要中必须将具体方法、结果写出来;摘要写满几乎 一页,不要超过一页。摘要是重中之重,必须严格执行!。 页码:1(底居中)

全国数学建模优秀论文

上海世博会影响力的定量评估 摘要 本文主要针对世博会对上海市的发展产生的影响力进行定量评估。 在模型一中,首先我们从上海的城市基础设施建设这一侧面定量评估世博会对上海市的发展产生的影响,而层次分析法是对社会经济系统进行系统分析的有力工具。所以 我们运用层次分析法,构造成对比矩阵a ,找到最大特征值λ,运用1 n CI n λ-=-进行一致 性检验,这样对成对比矩阵a 进行逐步修正,最终可以确定权向量。再运用模糊数学的综合评价法,通过组合权向量就可以得出召开世博会比没有召开世博会对上海城市基本设施建设的影响要高出40%。 在模型二中,上海世博会的影响力直接体现在GDP 上,我们直接以GDP 这个硬性直接指标来衡量上海世博会对上海的影响。因此我们运用线性回归的模型预测出在有无上海世博会这两者情况下的GDP 的值,并将运用线性回归得到的数据与上海统计年鉴中的相关数据进行比较运算,算出误差在1.2%左右,这说明我们用线性回归得到的模型能准确地反映出世博会对上海GDP 的影响。运用公式21 1 100%Q Q Q η-=?可以计算出世博对上海GDP 的影响力的大小为1983417833 100%11.2%17833 η-= ?=。 关键词:层次分析法 模糊数学 线性回归 城市基础建设 GDP

1 问题重述 2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。 2 问题分析 对于模型一,为了定量评估2010年上海世博会的影响力,我们首先选取城市基础设施建设的投入这一个侧面,因为通过查找相关数据,我们发现,城市基础设施建设的投入在上海整个GDP的增长中占有很大的比重,对GDP的贡献占主体地位。而层次分析法是对社会经济系统进行系统分析的有力工具。为此,我们通过研究上海统计局的相关数据,使用层次分析法来评估世博会的召开对基础设施建设的投入的影响,目标层为世博会的召开对基础设施建设的投入的影响,准则层依次为电力建设、交通运输、邮电通信、公用事业、市政建设,方案层依次为没有召开世博时的影响、召开世博时的影响。首先我们通过层次分析法算出电力建设、交通运输、邮电通信、公用事业、市政建设的相对权重,然后应用模糊数学中的综合评价法对上海世博会对城市基础设施建设的影响作出综合的评价,应用综合评价法计算出没有召开世博和召开世博两种情况下的权重,从而得出上海世博会的召开对城市基础设施建设的影响。 对于模型二,直接以GDP这个硬性直接指标来衡量上海世博会对上海的影响。先根据上海没有申办世博会的GDP总额的相关数据,建立线性回归模型,由此预测不举办世博会情况下2010年上海市的GDP总额;再由2002年至2009年的GDP值用线性回归预测出举办世博会情况下2010年上海市的GDP总额,并将两种情况进行对比得出世博会对上海GDP的影响。 3 模型假设 3.1假设非典和奥运等重大事件对世博前的城市基础建设的投入影响很小,可以忽略。 3.2 假设不同时期国家的经济实力不同,对城市基础建设的投入影响很小,可以忽略。 3.3 假设我们查到的数据真实可靠。 4符号说明 CI为一致性指标; RI为随机一致性指标; CR为一致性比率; λ为成对比较矩阵的最大特征值; () 1,2,3,4,5 y i=分别为电力建设、交通运输、邮电建设、共用设施、市政建设2010 i 年各项投入金额的理论预测值;

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

数学建模论文范文[1]

利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以 上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取 消评奖资格。) 日期:2014 年9 月 15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

附录:全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介 全国大学生数学建模竞赛(China Undergraduate Mathematical Contest in Modeling,简称CUMCM)是由国家教育部高等教育司和中国工业与应用数学学会联合举办的,在全国高校中规模最大的课外科技活动之一. 其竞赛宗旨是:创新意识、团队精神、重在参与、公平竞争. 本竞赛每年9月(一般在中旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加).同学们可以向本校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系. 全国大学生数学建模竞赛章程(2008年)第一条总则 全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革. 第二条竞赛内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程.题目有较大的灵活性供参赛者发挥其创造能力.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准. 第三条竞赛形式、规则和纪律 1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行. 2.竞赛每年举办一次,一般在某个周末前后的三天内举行. 3.大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限.竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加.每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,否则按违反纪律处理. 4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,

数学建模的介绍

一、数学建模的意义 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结

数学建模

数学模型数学实验 课 程 设 计 学院: 班级: 姓名学号: 设计时间:

摘要: 本实验建立了奖学金发放方案的优化模型。为了使20万基金能永远利用下去,根据题目提供的原始数据及相关信息,首先立足于让基金得到最合理的利用,让每年发放的奖学金数额达到最大,之后采用将基金分批存入的形式让闲置的资金见到最少,鉴于此提出了四中方案并求解得: 1、部分金额以2年为期存入银行,每年可发放奖学金5565元; 2、部分金额以3年为期存入银行,每年可发放奖学金6613元; 3、(ⅰ)第四年以两年连续存入两次,每年可发奖学金5594元; (ⅱ) 第四年以3年和1年存入,每年可发奖学金6109元; 4、部分金额以5年为期存入银行, 第四年以两年连续存入两次,每年可发奖学金7102元; 第四年以3年和1年存入,每年可发奖学金7116元。 综合比较之下,将部分金额以5年为期存入银行,第四年以3年1年的形式可得最多利息,即第一年存入6960元,第二年存入6735元,第三年存入6450元,第四年存入6308元,剩余的第五年存入可使每年发放的奖学金数额达到最大。 此模型的中心在于怎样使基金得到子合理的利用,即怎样使资金能够存入银行时间更长,享利率最高。解决了这一点,此题也就迎刃而解了。

课题: 某人向学院捐款20万元设立优秀本科生奖学金,学院领导计划将这笔捐款以整存整取一年定期的形式存入银行,第二年一到期就支取,取出一部分作为当年的奖学金,剩下的继续存入银行。 请研究这个问题,向院领导写一份报告。 要求:1、分析方案的合理性 2、给出自己的方案 解: 一、分析 查存款利率可知:定期存款一年的利率为2.25% 即:将20万存入银行一年后可得利息: 200000*2.25% = 4500 (元) ①每年发奖学金不高于4500元的话,可永远持续下去,即用20万本金每年 产生的利息全作为奖学金; ②每年发奖学金高于4500元的话,设为 y , 则:第一年本金减少 ( y - 4500 ) 第二年本金减少 ( y - (200000 - (y - 4500))*2.25% ) ………… 20万本金会不断减少,最终将全部发放完毕。 结论:若每年发奖学金数额不高于4500元时,方案可行; 若每年发奖学金数额高于4500元时,本金最终将发放完毕; 考虑实际情况,每年发4500元奖学金太少,20万本金没有得到充分利用。所以此方案不可行。 二、建模: 1、假设与参数 ⑴设每年发放奖学金数额一定,设为y 元; ⑵设银行存款利率为 a ; ⑶设发放奖学金年限为:s

数学建模优秀论文模板(全国一等奖模板)

Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆ ※§等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如E xcel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义

农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-?,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分

数学建模优秀论文范文

数学建模优秀论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须

依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的 发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对 应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需 进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干 个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模 型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过 程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解 题质量,同时也体现一个学生的综合能力。 3(1提高分析、理解、阅读能力。

数学建模入门基本知识

数学建模知识 ——之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析

全国数学建模获奖论文

承诺书 我们仔细阅读了数学建模竞赛选拔的规则. 我们完全明白,在做题期间不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与选拔题有关的问题。 我们知道,抄袭别人的成果是违反选拔规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守选拔规则,以保证选拔的公正、公平性。如有违反选拔规则的行为,我们将受到严肃处理。 我们选择的题号是(从A/B/C中选择一项填写): 队员签名:1. 2. 3. 日期:年月日

2012年河南科技大学数学建模竞赛选拔 编号专用页 评阅编号(评阅前进行编号): 评阅记录(评阅时使用): 评 阅 人 评 分 备 注

C题数学建模竞赛成绩评价与预测 一、摘要 近20 年来,CUMCM 的规模平均每年以20%以上的增长速度健康发展,是目前全国高校中规模最大的课外科技活动之一。本文对数学建模竞赛成绩的评价与预测问题进行了建模、求解和相关分析。 对于问题一,首先对广东赛区各院校2008-2011年建模奖励数据进行统计分析,将决策问题分为三个层次,建立多层次模糊综合评判模型。在该模型中,将因素集{国家一等奖,国家二等奖,省一等奖,省二等奖,省三等奖}看作准则层,将2008-2011各年建模情况看作方案层,结合实际情况,给出改进综合评判模型,解得广东金融学院、华南农业大学的总体综合评定成绩分别2.9474、2.7141,排名第一、第二。 对于问题二,首先建立单年的综合评定模型,得出广州赛区各院校2008-2011年的综合评定成绩。鉴于仅有4组数据,分别采用GM(1,1)法、回归曲线最小二乘法、移动平均法进行建模,最后结合实际情况并根据结果对比以上三种模型,确定了移动平均法方案最优,最终得出广东金融学院、华南农业大学的综合评定成绩分别为0.7369、0.6785,依旧排名第一、第二,较好地解决了问题二。 对于问题三,鉴于附件2所给数据冗杂庞大,故从中抽取2008-2011年的建模数据作为样本,分别统计出本科组和专科组在这四年中每年获得国家一等奖和国家二等奖的人数;将问题一中国家一等奖、二等奖的权重进行归一化处理,建立类似问题一的特殊综合评判模型,得出本科组哈尔滨工业大学、解放军信息工程大学的综合评定成绩分别为5.5117、4.6609;专科组海军航空工程学院、太原理工轻纺与美术学院的综合评定成绩分别为1.3931、1.3095,名列各组第一、第二,问题三得到了较好解决。 对于问题四,除全国竞赛成绩、赛区成绩外,讨论了学生的能力、参赛队数、师资力量、学校的综合实力、硬件设施等因素对建模成绩评估的影响,考虑首先对因素集进行模糊聚类分析,然后用层次分析法来进行评价,用BP神经网络结合Matlab软件来进行预测,理论上问题四能够得到较好地得到解决。 关键词: 模糊综合评判模型GM(1,1)模型移动平均法综合评定成绩

数学建模课程简介

《数学建模》课程简介 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 内容简介: 本课程以物理、生态、环境、医学、管理、经济、信息技术等领域的一些典型实例为背景,阐述如何通过建立数学模型的方法来研究、解决实际问题的基本方法和技能。开设本课程的目的是,在传授知识的同时,通过典型建模实例的分析和参加建模实践活动,培养和增强学生自学能力、创新素质。参加数学建模课的学习,应自己动手解决一、二个实际问题,以求在实际参与中获取真知。 本课程包括一定学时的讨论班,学生可利用课外时间自己参与建模实践活动并自愿参加由指导教师组织的讨论班活动。选修本课程的本科生经双向选择还有机会参加全国大学生数学建模竞赛(每年约90人)和美国大学生数学建模竞赛(每年为21人)。 推荐教材或参考书: “数学建模”,杨启帆、谈之奕、何勇编著,浙江大学出版社出版,2006年7月 《数学建模》教学大纲 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 一、教学目的与基本要求: 通过典型数学模型分析和课外建模实践,使学生基本掌握运用数学知识建立数学模型来研究科研问题或实际课题的基本技能与基本技巧,本课程教学除传授知识外还要求学生在实际建模中注意培养和提高自身的能力,以便提高自己的综合素质与实际本领。 二、主要内容及学时分配: 1.数学建模概论,3学时 2.初等模型,8学时:舰艇的汇合,双层玻璃的功效,崖高的估算,经验模型,参数 识别,量纲分析法建模,方桌问题、最短路径与最速方案等 3.微分方程建模,14学时:马尔萨斯模型和罗杰斯蒂克模型,为什么要用三级火箭发 射人造卫星,药物在体内的分布,传染病模型,捕食系统的P-P模型,双种群生态 系统研究等

线性规划与数学建模简介

第十三章线性规划与数学建模简介 【授课对象】理工类专业学生 【授课时数】6学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、了解数学模型的基本概念、方法、步骤; 2、了解线性规划问题及其数学模型; 3、了解线性规划问题解的性质及图解法. 【本章重点】线性规划问题. 【本章难点】线性规划问题、线性规划问题解的性质、图解法. 【授课内容】 本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。 §1 数学建模概述 一、数学建模 数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模是一种定量解决实际问题的创新过程。 二、数学模型的概念

模型是人们对所研究的客观事物有关属性的模拟。例如在力学中描述力、 量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。 通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。 三建立数学模型的方法和步骤 建立数学模型没有固定模式。下面介绍一下建立模型的大体过程: 1.建模准备 建模准备是确立建模课题的过程。这类课题是人们在生产和科研中为了使 认识和实践过一步发展必须解决的问题。因此,我们首先要发现这类需要解决的实际问题。其次要弄清所解决问题的目的要求并着手收集数据。进行建模筹划,组织必要的人力、物力等,确立建模课题。 2.模型假设 作为建模课题的实际问题都是错综复杂的、具体的。如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的次要因素。有了这些假设,就可以在相对简单的条件下,弄清各因素之间的关系,建立相应的模型。 合理的假设是建立理想模型的必要条件和基本保证。如果假设是合理的,则模型切合实际,能解决实际问题;如果假设不合理中或过于简化,则模型与实际情况不符或部分相符,就解决不了问题,就要修改假设,修改模型。 3.构造模型

相关主题
文本预览
相关文档 最新文档