当前位置:文档之家› 计算古典概型高阶原点矩的新方法

计算古典概型高阶原点矩的新方法

计算古典概型高阶原点矩的新方法
计算古典概型高阶原点矩的新方法

古典概型解题技巧

古典概型解题技巧 摘要 概率论是数学学科中从数量的侧面来研究部分随机现象的规律性方面,其理论和方法渗透到了自然科学的各个领域,而古典概型是古典概率论的主要研究内容之一,也是概率论的研究中的一个经典的研究概型。古典概型的主要研究对象是等可能事件,深入研究古典概型有助于我们更好地理解概率论中一些基本的概念,掌握概率论中的基本规律,有助于我们提高分析问题和解决问题的能力。本文主要研究古典概型中的摸球问题,分球入盒问题,随机取数问题等几种模型,分析其解题思路,总结解题技巧以及思考其应用范围。 关键词:古典概型;分球入盒;摸球问题 Title Abstract Keywords:

1 古典概型简介 随机现象,是现实生活中非常常见,非常普遍的一种现象。事件的发生或者是其走向,都是由随机决定的。而这些随机性的事件都可以用概率模型来进行一定的分析,以求得相对准确的期望值。随机性虽然容易给人们生活带来一定的烦恼,但同时也是最公平的象征。在模拟计算,统计运筹中都有运用概率论的思想以及方法,所以,概率论有着明显的现实意义以及数学应用范畴。 在概率论的发展过程中,数学家们根据不同的问题,从各个不同的角度,给与了概率不同的定义和计算的方法。但是这些定义或者计算的方法往往针对的是非常具体类型的事件和情况,所以多数都有一定的缺点,常常只是经验公式。而经过长期的发展,概率论先后给出了古典概率,几何概率,统计概率,最后才给出了概率的数学定义。 在所有的随机事件中,有一类随机事件有两个明显的特点:第一,只有有限个可能的结果;第二,每个结果发生的可能性相同。这类随机事件是概率论初期的研究对象,我们也把这类事件叫做古典概型。 2 古典概型的计算 我们可以根据古典概型的等可能性和有限性的特点,得出模型下的概率。古典概型的概率计算过程可以分解为三个步骤:第一,确定所研究的对象为古典概型;第二,计算样本点数;第三,利用公式计算概率。 如果本次随机事件只有有限个可能的结果,并且每一个可能的结果出现的可能性相同,则可以确定该事件为古典概型问题。假设Ω是一个古典概型的样本空间,则对事件A:P(A)=A中的样本点数/Ω中的样本点数=m/n。在计算m 和n时,经常使用排列与组合计算公式。在确定一个实验的每个基本事件发生的可能性相同的时候,往往依据问题本身所具有的某种对称性,即利用人们长期积累的关于对称性的实际经验,认为某些基本事件发生的可能性没有理由偏大或者偏小。【1】曾宏伟古典概型的概率计算方法与应用 3.1 分球问题 分球问题一般为将n个球分别放到N个盒子中去,这需要考虑各种不同的情况,比如,这n个球是否可辨,每个盒子是否有储存球的上线。而根据这些情况的不同,解题的方法与技巧也有所不同,得到的结论更是相差巨大。所以计算时需要仔细理解该题目的各项条件。例题如下: 四个可分辨的球,随机的投入到三个不同的盒子中,试求三个盒子都不空的概率。【2】安永红古典概型问题的推广 这一类题目可以从2种不同的角度去思考: 第一种从多余球的角度,有四个不同的球,而有三个盒子,那么基本

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

原点矩和中心矩

k阶原点距和k阶中心距各是说明什么数字特征 在数学的概率领域中有一类数字特征叫矩.(X^k为X的k次方) 原点矩: 对于正整数k,如果E|X^k|<无穷,称Vk=E(X^k) 为随机变量X的k阶原点矩.X的数学期望是X的一阶原点矩,即E(x)=v1. k阶矩定义:设X为随机变量,c为常数,k为正整数,如果E[|X-c|^c]<无穷大,则称E[(X-c)^k]为X关于点c的k阶矩. c=0时,称其为X的k阶原点矩; c=E[X]时,称为k阶中心矩. 原点矩顾名思义,是随机变量到原点的距离(这里假设原点即为零点)。中心矩则类似于方差,先要得出样本的期望即均值,然后计算出随机变量到样本均值的一种距离,与方差不同的是,这里所说的距离不再是平方就能构建出来的,而是k次方。这也就不难理解为什么原点矩和中心矩不是距离的“距”,而是矩阵的“矩”了。仅凭本人目前的所学,我认为通过随机试验得出的各种结果虽然都假定为实值单值函数,但它们完全有可能是空间分布,即不在一个平面上。那么这是的距离就类似于一个向量的模了,于是在空间的范围内也能比较出大小来了。我们都知道方差源于勾股定理,这就不难理解原点矩和中心矩了。还能联想到力学中的力矩也是“矩”,而不是“距”。力矩在物理学里是指作用力使物体绕着转动轴或支点转动的趋向。力矩也是矢量,它等于力乘力臂。由此可见数学和物理关系非同一般! 二阶中心距,也叫作方差,它告诉我们一个随机变量在它均值附近波动的大小,方差越大,波动性越大。方差也相当于机械运动中以重心为转轴的转动惯量。(The moment of inertia.) 三阶中心距告诉我们一个随机密度函数向左或向右偏斜的程度。 在均值不为零的情况下,原点距只有纯数学意义。 A1,一阶矩就是 E(X),即样本均值。具体说来就是A1=(西格玛Xi)/n ----(1) A2,二阶矩就是 E(X^2)即样本平方均值 ,具体说来就是 A2=(西格玛Xi^2)/n-----(2) Ak,K阶矩就是 E(X^k)即样本K次方的均值,具体说来就是 Ak=(西格玛Xi^k)/n,---

计算N阶行列式若干方法

网上搜集的计算行列式方法总结, 还算可以. 计算n 阶行列式的若干方法举例 闵 兰 摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。 关键词:n 阶行列式 计算方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100200 10 000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式n ij D a =的元素满足

,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明 由ij ji a a =-知ii ii a a =-,即 0,1,2, ,ii a i n == 故行列式D n 可表示为 1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a =

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

第10讲 原点矩与中心矩 协方差与相关系数

第10讲 原点矩与中心矩 协方差与相关系数 教学目的:掌握矩、协方差及相关系数的概念、性质及计算。 教学重点:矩、协方差及相关系数的概念和性质。 教学难点:矩、协方差及相关系数的概念。 教学学时:2学时 教学过程: 第三章 随机变量的数字特征 §3.3 原点矩与中心矩 随机变量的数字特征除了数学期望和方差外,为了更好的描述随机变量分布的特征,有时还要用到随机变量的各阶矩(原点矩与中心矩),它们在数理统计中有重要的应用。 定义1 设X 是随机变量,若),2,1)(( =k X E k 存在,则称它为X 的k 阶原点矩,记作)(X v k ,即 )()(k k X E X v =, ,2,1=k 显然,一阶原点矩就是数学期望,即)()(1X E X v =。 定义2 设随机变量X 的函数),2,1()]([ =-k X E X k 的数学期望存在,则称 })]({[k X E X E -为X 的k 阶中心矩,记作)(X k μ,即 })]({[)(k k X E X E X -=μ, ,2,1=k 易知,一阶中心矩恒等于零,即0)(1≡X μ;二阶中心矩就是方差,即 )()(2X D X =μ。不难证明,原点矩与中心矩之间有如下关系: 2 122v v -=μ 3 1213323v v v v +-=μ

4 12121344364v v v v v v -+-=μ 等。 定义3 设X 和Y 是随机变量,若),2,1,)(( =l k Y X E l k 存在,则称它为X 和Y 的 l k +阶混合矩。若),2,1,}()]([)]({[ =--l k Y E Y X E X E l k 存在,则称它为X 和Y 的l k +阶混合中心矩。 §3.4 协方差与相关系数 1.协方差与相关系数的定义 二维随机变量的数字特征中最常用的就是协方差与相关系数。 定义 3 设有二维随机变量),(Y X ,如果)]()][([Y E Y X E X E --存在,则称 )]()][([Y E Y X E X E --为随机变量X 与Y 的协方差,记作),cov(Y X ,即 =),cov(Y X )]()][([Y E Y X E X E -- 而 ) () (),cov(Y D X D Y X 称为随机变量X 与Y 的相关系数,记作),(Y X R ,即 ) () (),cov(),(Y D X D Y X Y X R =) ()() ,cov(Y X Y X σσ= 显然,协方差),cov(Y X 是X 和Y 的二阶混合中心矩。 当0),cov(=Y X ,通常称随机变量X 与Y 是不相关的。 2.协方差的性质 (1) =),cov(Y X ),cov(X Y ,)(),cov(X D X X = 由定义知性质(1)是显然的。 (2) =),cov(Y X )()()(Y E X E XY E - 证 =),cov(Y X )]()()()([Y E X E X YE Y XE XY E +-- )()()()()()()(Y E X E Y E X E Y E X E XY E +--= )()()(Y E X E XY E -=

n阶行列式的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1定义法 (1) 2利用行列式的性质 (23) 化三角形行列式 (3) 4行列式按一行(列)展开 (4) 5 升阶法 (5) 6 递推法 (6) 7 范德蒙德行列式 (7) 8 拉普拉斯定理 (7) 9 析因法 (8) 小结 (10) 参考文献 (11)

n阶行列式的计算方法 学生姓名:孙中文学号:20120401217 数学与计算机科学系数学与应用数学专业 指导老师:王改霞职称:讲师 摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征. 关键词:行列式;定义;计算方法 Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method. Keywords: Determinant ;Definition ;Calculation method 引言 行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法. 1定义法 n阶行列式计算的定义:

浅谈行列式的计算方法x

浅 一、 特殊行列式法 1.定义法 当行列式中含零元较多时,定义法可行. 例1 计算n 级行列式 α β βαβαβα000000 0000 00 =D . 解:按定义,易见121,2,,,n j j j n === 或 1212,3,,,1n n j j j n j -==== . 得 11(1)n n n D αβ-+=+- 2.三角形行列式法 利用行列式性质,把行列式化成三角形行列式. nn a a a a a a 000n 222n 11211=nn n n a a a a a a 212212110 0112233nn a a a a = 例2 计算n 级行列式1231 131 211 2 3 1 n n x n D x n x +=++ 解: 将n D 的第(2,3,,)i i n = 行减去第一行化为三角形行列式,则 1230 1000 0200 1 (1)(2)(1) n n x D x x n x x x n -=--+=---+

3.爪形行列式法 例3 计算行列式 0121 1 220 0000n n n a b b b c a D c a c a = ()0,1,2,,i a i n ≠= 解: 将D 的第i +1列乘以(i i a c - )都加到第1列()n i ,2,1=,得 10 12 120000000 00n i i n i i n bc a b b b a a D a a - =∑= =011()n n i i i i i i b c a a a ==-∑∏ 4. 范德蒙行列式法 1 2 3 2 2221 2 3 11111 2 3 1111n n n n n n n a a a a D a a a a a a a a ----= 1()i j j i n a a ≤<≤= -∏ 例4 计算n 级行列式 2 2221233 333 1 2 3 12 3 11 1 1 n n n n n n n x x x x D x x x x x x x x = 解:利用D 构造一个1n +阶范德蒙行列式 12222 212121111()n n n n n n n x x x x g x x x x x x x x x = 多项式()g x 中x 的系数为3(1)n D +-,而()g x 又是一个范德蒙行列式,即 1 ()() n i i g x x x ==-∏∏≤<≤-n i j j i x x 1)(

古典概型的特征和概率计算公式

《古典概型的特征和概率计算公式》说课稿(1) 《古典概型的特征和概率计算公式》说课稿 一、教材分析: 《古典概型的特征和概率计算公式》是北师大版普通高中课程标准试验教科书数学必修3第三章第二节第一小节的内容。本节课内容是在学生已经学习了随机事件概率的概念基础上的延续和拓展。古典概型是一种特殊的数学模型,它的引入避免了大量的重复试验,而且得到的是概率的精确值。它也为后面学习几何概型在思路上做了一个铺垫,在教材中起着承前启后的作用。同时,学习本节课的内容,能够大大激发学生学习数学、应用数学的兴趣。因此本节知识在概率论中占有相当重要的地位。 由于在这节课之前,教材中并没有安排排列组合知识,所以这节课的重点我认为不是“如何计算”,而是让学生通过生活中的实例与数学模型,来理解古典概型的两个特征,让学生初步学会把一些实际问题转化为古典概型。所以我设计了这节课的重点和难点为: 1.重点:理解古典概型及其概率计算公式 2.难点:古典概型的判断 二、教学目标分析: 基于上述我对教材的地位和内容的剖析,根据新课程标准中发展学生数学应用意识的基本理念,结合学生已有的知识结构与心理特征,我制定了以下的教学目标: 知识与技能: 1.通过试验理解基本事件的概念和特点; 2.在数学建模过程中,抽象出古典概型的两个基本特征,推导概率的计 算公式; 3.掌握用列举法和分类讨论法解决概率的计算问题。 过程与方法: 通过模拟试验让学生理解古典概型的特征,观察类比各个试验,让学生归纳总结出古典概型公式。 情感态度与价值观:

1.用现实意义的实例,激发学生的学习兴趣,培养学生勇于探索、善 于发现的创新精神,发展学生的数学应用意识; 2.经历公式的推导过程,体验由特殊到一般的归纳推理的数学思想方 法,在探究活动中形成锲而不舍的钻研精神和科学态度; 3.培养学生“理论来源于实践并应用于实践”的辩证思想。 三、教法与学法分析: 数学是一门培育人的思维,发展人的思维的主要学科,因此,在教学中,基于这节课的特点我主要采用引导发现法和问题式教学法教学,运用多媒体等手段构造数学模型,激发学生学习兴趣,引导学生进行观察讨论、归纳总结。鼓励学生自做自评。 五、教学过程分析: (一)提出问题,引入新课 课前,老师已布置学生分组完成2个试验: ① 掷一枚质地均匀的硬币试验 ② 掷一枚质地均匀的骰子的试验。 各组学生展示模拟试验方法,并汇总试验结果,教师汇总并提出问题: ①两个试验的结果分别有几个? 设计意图:引出基本事件的概念。 ②在掷骰子的试验中,随机试验“出现偶数点”可以由哪些基本事件 组成? 设计意图:这一环节主要采用学生思考讨论,教师引导和学生归纳的方法,鼓励学生用自己的语言描述基本事件的特点。一方面激发学生的学习兴趣,另一方面,通过分析,加深对事件与基本事件关系的认识,为引出古典概型定义做好铺垫。 (二)思考交流,形成概念 例1.从字母a、b、c、d中任意取出两个不同的字母, ①在这个试验中,有哪些基本事件?(ab、ac、ad、bc、bd、 cd)

古典概型教学设计

1文档收集于互联网,已整理,word 版本可编辑. 3.2.1古典概型(教学设计) 宁夏彭阳县第一中学 张有花 一、 教材分析 (一) 教材地位、作用 《古典概型》是高中数学人教A 版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时。是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。 (二)教材处理: 学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。 教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。对典型例题进行分析,以巩固概念,掌握解题方法。 二、三维目标 知识与技能目标: (1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等; (2)理解古典概型的概率计算公式 :P (A )=总的基本事件个数 包含的基本事件个数A (3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

n阶行列式的计算方法

n阶行列式的计算方法 姓名: 学号: 学院: 专业: 指导老师: 完成时间:

n阶行列式的计算方法 【摘要】 本文主要针对行列式的特点,应用行列式的性质,提供了几种计算行列式的常用方法。例如:利用行列式定义直接计算法,根据行列式性质化为三角形列式法,按一行(列)展开以及利用已知公式法,数学归纳法与递推法,加边法,利用多项式性质法,拉普拉斯定理的应用。但这几种方法之间不是相互独立,而是相互联系的.一个行列式可能有几种解法,或者在同一个行列式的计算中将同时用到几种方法以简便计算。这就要求我们在掌握了行列式的解法之后,灵活运用,找到一种最简便的方法,使复杂问题简单化。 【关键词】 n阶行列式行列式的性质数学归纳法递推法加边法

Some methods of an n-order determinant calculation 【Abstract】In this paper, considering the characteristics of determinant, it provides several commonly used methods to calculate the determinant by applying the properties of the determinant . For example :The direct method of calculation by using the determinant definition . The method of changing the determinant into a triangular determinant According to the properties of the determinant. The method of expanding the determinant by line (column) .using the known formula , the mathematical induction, recursive Method , adding the edge method, using the properties of polynomial , the application of Laplace theorem. These methods are not independent of each other ,but interrelated. There is probably that a determinant has several solutions, or in the calculation of the same determinant there will be used several methods to calculate simply. This requires us to grasp several solution of the determinant,and to find the easiest ways after, so simplify complex issues . 【Key words】n-order determinant the property of the determinant the mathematical induction adding the edge method

行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100 200 100 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n n n a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质T A A =,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

n阶行列式的计算方法

n 阶行列式的计算方法 1.利用对角线法则 “对角线法则”: (1)二、三阶行列式适用“对角线法则”;(2)二阶行列式每项含 2 项,三阶行列式每项含 3 项,每项均为不同行、不同列的元素 的乘积;(3)平行于主对角线的项为正号,平行于副对角线的项为负号。 例 1 计算二阶行列式 D = 1 3 。 2 4 解: D = 1 3 = 1? 4 ? 3 ? 2 = ?2 2 4 例 2 计算三阶行列式 D = 1 2 0 4 ? 3 8 。 0 ?1 2 解: D = 1 2 0 4 ? 3 8 = 1? (?3) ? 2 + 2 ? 8 ? 0 + 0 ? 4 ? (?1) ? 0 ? (?3) ? 0 ? 2 ? 4 ? 2 ?1? 8 ? (?1) 0 ?1 2 = ?14 2.利用 n 阶行列式的定义 a 11 a 12 ? a 1 n n 阶行列式 D = a 21 a 22 ? a 2 n =∑ (?1) τ a 1 p 1 a 2 p 2 ? a np n ? ? ? ( p 1 p 2 ? p n ) a n 1 a n 2 ?a nn 其中 τ = τ( p 1 p 2 ? p n ) , 求和式中共有 n ! 项。 显然有 a 11 a 12 ? a 1 n 上三角形行列式 D = a 22 ?a 2 n = a 11 a 22 ? a nn ? ? a nn a 11 下三角形行列式 D = a 21 a 22 ? = a 11 a 22 ? a nn ? ? a n 1 a n 2 ?a nn

概率论与数理统计:矩与协方差矩阵的概念

矩与协方差矩阵的概念 §4.4 矩与协方差矩阵 数学期望和方差可以纳入到一个更一般的概念范畴之中,那就是随机变量的矩。 4.4.1 矩与协方差矩阵的概念 定义4.7 设X 和Y 为随机变量. 若)(k X E (1,2, )k =存在,称它为X 的k 阶原点矩,简称k 阶矩. 若{[()]}k E X E X -(1,2, )k =存在,称它为X 的k 阶中心矩. 若)(l k Y X E (,1,2,)k l =存在,称它为X 和Y 的l k +阶混合矩. 若})]([)]({[l k Y E Y X E X E --(,1,2,)k l =存在,称它为X 和Y 的l k +阶混合中 心矩. 注:①X 的数学期望)(X E 是X 的一阶原点矩. ②X 的方差)(X D 是X 的二阶中心矩. ③协方差Cov(,)X Y 是X 和Y 的二阶混合中心矩. 定义4.8 设二维随机变量),(21X X 的四个二阶中心矩都存在,记为 2111112112221221122222{[()]}, {[()][()]}, {[()][()]}, {[()]}, c E X E X c E X E X X E X c E X E X X E X c E X E X =-=--=--=- 称矩阵 ???? ??22211211c c c c 为),(21X X 的协方差矩阵. 类似地,可定义n 维随机变量),,,(21n X X X 的协方差矩阵. 若 ()Cov(,){[()][()]},1,2,,ij i j i i j j c X X E X E X X E X i j n ==--=都存在,则称矩阵 111212122212 n n n n nn c c c c c c c c c ?? ? ?= ? ??? C 为随机变量),,,(21n X X X 的协方差矩阵.

关于古典概型的计算(摸球问题)

关于古典概率的计算(抽签问题) 1. 两种抽样方法 在古典概率的计算中,将涉及到两种不同的抽取方法,我们以例子来说明:设袋内装有n 个不同的球,现从中依次摸球,每次摸一只,就产生两种摸球的方法。 (1) 每次摸出一只后,仍放回原袋中,然后再摸下一只,这种摸球的方法称为有放 回的抽样。显然,对于有放回的抽样,依次摸出的球可以重复,且摸球可无限 地进行下去。 (2) 每次摸出一球后,不放回原袋中,在剩下的球中再摸一只,这种摸球的方法称 为无放回的抽样。显然,对于无放回的抽样,依次摸出的球不出现重复,且摸 球只能进行有限次。 2. 计算古典概型的基本原则 初学者往往对于一些古典概率的计算望而生畏,究其原因,大都是没有掌握好计算古典概率的基本原则。拿到一个问题,首先应该分清问题是否与顺序有关?元素是否允许重复?如问题与顺序有关,元素不允许重复,那么应考虑用排列的工具,如此等等,计算 当然,我们并不排除对于某些问题用特殊的方法去解决。 3.例1 (抽签问题)袋中有a 根红签,b 根白签,它们除颜色不同外,其它方面没有差别, 现有a+b 个人依次无放回的去抽签,求第k 个人抽到红签的概率。 解:这是一个古典概型问题,问题相当于把一根一根抽出来,求第k 次抽到红签的概率。如 考虑把签一一抽 排成一列,问题与顺序有关,是一个排列问题,就产生以下几种解法: 记A k =“第k 个人抽到一根红签”。 (1) 把a 根红签和b 根白签看作是不同的(例如设想把它们编号),若把抽出的 签依次排成一列,则每个排列就是试验的一个基本事件,基本事件总数就 等于a+b 根不同签的所有全排列的总数为(a+b )! 事件A k 包含的基本事件的特点是:在第k 个位置上排列的一定是红签,有 a 种排法;在其它a+b-1个位置上的签的排列种数为(a+b-1)!,所以A k 包 含的基本事件数为a.(a+b-1)!,所求概率为: P A k =a . a +b?1 ! a + b !=a a + b (1≤k ≤a +b ) (2) 把a 根红签、b 根白签均看作是没有区别的,仍把抽出的签依次排列成一 列,这是一个含有相同元素的全排列,每一个这样的全排列就是一个基本 事件,基本事件总数就等于(a+b )根含有相同签的全排列总数为 a +b ! a !. b !。 事件A k 可看成在第k 个位置上放红签,只有一种放法,在其余的a+b-1个 位置上放余下的a+b-1根签,其中a-1根是没有区别的红签,b 根是没有区 别的白签,共有 a +b?1 ! a?1 !b !种放法,所以A k 包含的基本事件数为 a +b?1 ! a?1 !b !,

四阶行列式的计算

四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

浅谈古典概型及其解题方法

海南大学 毕业论文(设计) 题目:浅谈古典概型及其解题方法 学号:201116153100047 姓名:覃怀森 年级:12 级 学院:信息科学技术学院 系别:数学系 专业:数学与应用数学专业 指导教师:刘金容

摘要(是对论文内容的概括总结) 古典概型在概率论中占据着极为重要的地位。它既是概率论的基础入门,又是学习概率论过程的难点所在,因为其直白简洁的概念和计算公式,让我们更难掌握精准的解题方法。 古典概型之所以难以理解是因为:首先,古典概型涉及到的实际问题千变万化,需要敏锐的洞察力和深人细致的分析,才能解决古典概型问题;其次,古典概型的计算涉及到诸如加法原理、乘法原理、排列、组合等数学知识,特别是加法原理、乘法原理的应用很容易混淆,而排列与组合则更难,都可能导致错误的计算结果。古典概型本身尽管复杂有关,但更重要的是:对古典概型的理解不深、不透彻,从而思考问题不得要领。(第二段可以简写) 对古典概型及其解题方法的研究,能系统地加深对概率论的理解和应用。本文通过系统的学习古典概型的概念和解题方法,达到更深层次对古典概型的的理解和更好的运用。(对论文干了什么工作可以写更详细点)在概率论中我们最先学到的知识就是古典概型,古概型是概率论的起源,是一切概率问题的基础,如何看清古典概型的本质是需要研究的问题,我们要让让古典概型这个既熟悉又陌生的名字,努力使之成为懂的人爱之越深,不懂的人不再一脸茫茫然。在此,需要我们系统的去深入学习和理解。 关键词:古典概型,样本空间,基本事件,解题方法

Abstract做相应修改 Classical probability plays a very important role in the theory of probability. It is not only the basis of probability theory, but also is learning probability on the process difficulty, because the concept and formula of the straightforward and simple, let us have more difficulty to grasp accurate method of solving problems. Classical probability type because it is difficult to understand .the reasons: first, classical probability relates to a kaleidoscope of practical problems and need keen insight and deep and careful analysis, in order to solve the classical type of probability; secondly, the classical probability calculations related to such as the addition principle, the principle of multiplication, permutation and combination, mathematical knowledge, especially it is easy to get confused about the application of the principle addition and multiplication, and arranged and combination is more difficult and may lead to incorrect results. , classical probability itself although complex, but more important is: on the classical probability type understanding is not deep, not thorough and think to no avail. The understanding and application of the theory of probability can be systematically studied by the research of the classical model and its solution method. In this paper, through the systematic study of the concept of classical concept and problem-solving methods, to achieve a deeper understanding of the classical model and better use of. In probability theory, we first learn the knowledge is the classical type of probability, the ancient probability is probability theory origin, is the basis of all probability problems, how to see the essence of classical probability is a need to study the problem, we must let the classical type of probability that both familiar and unfamiliar names, efforts to become people who understand the love more deep, do not understand the people no longer look blankly. Here, we need to go deep into the system to learn and understand. keywords:Classical probability model, Sample space, Basic event, Symmetry .

相关主题
文本预览
相关文档 最新文档