当前位置:文档之家› 数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)
数值计算方法习题答案(第二版)(绪论)

AHA12GAGGAGAGGAFFFFAFAF

数值分析

(p11页)

4 试证:对任给初值x 0,

0)a >的牛顿迭代公式

112(),0,1

,2,......k a

k k x x x k +=+= 恒成立下列关系式:

21

12(1)(,0,1,2,....

(2)1,2,......

k

k k x k x x k x k +-=

-=≥=

证明:

(1

)(2

1122k k k k k k

x a x x x x +??-=+-==

? ??

(2) 取初值00>x ,显然有0>k

x ,对任意0≥k ,

a a x a x x a x x k k k k k ≥+???

? ??-=???? ??+=+2

12121

6 证明:

若k x 有n 位有效数字,则n k x -?≤

-1102

1

8, 而

()

k

k k k k x x x x x 28882182

1-=-????

??+=-+ n

n

k k x x 21221102

1

5.22104185

.28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。

AHA12GAGGAGAGGAFFFFAFAF

8 解:

此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:

(设x 的近似数*x 可表示为m n a a a x 10......021*?±=,如果*x 具有l 位有效数字,则其相对误差限为()11

*

*1021

--?≤

-l a x x x ,其中1a 为*x 中第一个非零数)

AHA12GAGGAGAGGAFFFFAFAF

则7.21=x ,有两位有效数字,相对误差限为

025.0102

21

111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为

025.0102

21

122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:

00025.0102

21

333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x

∴其相对误差限为

00678.07

.20183

.011≈<-x e x 同理对于71.22=x ,有

003063.071

.20083

.022≈<-x e x 对于718.23=x ,有

00012.0718

.20003

.033≈<-x e x

备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较

AHA12GAGGAGAGGAFFFFAFAF

好的误差限估计,但计算稍复杂。

(2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。

11. 解:

......142857.3722≈,.......1415929.3113255≈ 2102

1

722-?≤-∴

π,具有3位有效数字

AHA12GAGGAGAGGAFFFFAFAF

6102

1

113255-?≤-π,具有7位有效数字

9.解:有四舍五入法取准确值前几位得到的近似值,必有几位有效数字。

令1x ,2x ,3x 所对应的真实值分别为*1x ,*2x ,*3x ,则 ① ∣1x -*1x ∣≤2

1?l -110=2

1?210-

∣1x -*1x ∣/∣1x ∣<2

1?210-/2.72<0.00184

② ∣2x -*2x ∣≤2

1?l -110=21?510-

∣2x -*2x ∣/∣2x ∣<2

1?510-/2.71828<0.00000184 ③ ∣3x -*3x ∣<2

1?l -110=2

1?410-

∣3x -*3x ∣/∣3x ∣<2

1?410-/0.0718<0.000697

12.解:

⑴ x 211+-x

x

+-11=)

1)(21(22

x x x ++ ⑵ 1-cosx=x x

cos 1sin 2+=22

sin 2x

⑶ 1-x

e ≈1+x+!22x +…+!n x n -1=x+!22

x +…+!

n x n

13.解:⑴

x

x 1

+

-

x

x 1-

=

x

x x

1x 1x /2-

++

AHA12GAGGAGAGGAFFFFAFAF

⑵ dt t x x

?++1

2

11

=)1arctan(+x -x arctan 设)1arctan(+x =a ,x arctan =b,则 )tan(b a - =

b

a b a tan tan 1tan tan ?+-=

)1(11

++x x

∴)1arctan(+x -x arctan =)

1(11arctan

++x x

AHA12GAGGAGAGGAFFFFAFAF

)1ln(2--x x =1

1ln

2-+x x =)1ln(1ln 2-+-x x =-)1ln(2-+x x

习题一(54页) 5.证明:

利用余项表达式(11)(19页),当)(x f 为次数≤n 的多项式时,由于

)

(1x f n +=0,于是有)(x R n =

)

(x f -)(x P n =0,即

)(x P n =)(x f ,表明其

n 次插值多项式)(x P n 就是它自身。

9.证明:

由第5题知,对于次数≤n 的多项式,其n 次插值多项式就是其自身。

于是对于)(x f =1,有)(2x P =)(x f 即,)

(0x l )(0x f +)(1x l )(1x f +)(2x l )(2x f =)(x f

则,)(0x l +)(1x l +)(2x l =1 11.分析:

由于拉格朗日插值的误差估计式为

)

(x f -

)(x P n =

)!

1)()1(++n f n (ξ∏=-n

k k

x x 0

)(

AHA12GAGGAGAGGAFFFFAFAF

误差主要来源于两部分)!1)

()1(++n f n (ξ和∏=-n

k k x x 0

)(。

对于同一函数讨论其误差,主要与∏=-n

k k x x 0

)(有关。

在(1)中计算x=0.472的积分值,若用二次插值,需

取三个节点,由于0.472在1,2两个节点之间,所以应选1,2为节点,在剩下的两个点中,0x 与0.472更靠近,所以此题应选0x ,1x ,2x 为节点来构造插值多项式。

1202201

010210121022120()()()()

(1)()()()()()

()()

0.4955529

()()

x x x x x x x x p x y y x x x x x x x x x x x x y x x x x ----=

+------+

=--

15.证明:

由拉格朗日插值余项公式有 ︱)(x f -)(x p ︱≤∏=-102)(!2)(k k

x x f ξ≤2

1

︱))((10x x x x --︱1

max

x

x x ≤≤︱)(2x f ︱

AHA12GAGGAGAGGAFFFFAFAF

由于201)(x x -=201)(x x x x -+-=))((201x x x x --+21)(x x -+20)(x x -

≥))((401x x x x -- ∴︱

)(x f -)(x p ︱≤8

)(2

01x x -10max x x x ≤≤︱)(2x f ︱

20.证明:

当n=1时,),(10x x F =0

101)()(x x x F x F --=C ·

101)

()(x x x f x f --=C ),(10x x f

假设当n=k 时,结论成立,则有 ),...,(0k x x F = C ),...,,(10k x x x f ; ),...,(11+k x x F = C ),...,,(121+k x x x f ; 那么,当n=k+1时,

),...,,(110+k x x x F =0

1011),...,(),...,(x x x x F x x F k k k --++

=C

1011)

,...,(),...,(x x x x f x x f k k k --++= C ),...,,(110+k x x x f

证明完毕。(类似的方式可证明第一个结论)

21.解:

由定理4(26页)可知: ),...,,(10n x x x f =

!)

()(n f n ξ,其中n

i i x x ≤≤∈ξξ0]max ,[m in 当n>k 时,)()(x f n =())(n k x =0;

AHA12GAGGAGAGGAFFFFAFAF

当n=k 时,)()(x f n =())(k k x =!k ; ∴

),...,,(10n x x x f =???=>时

当时

当k n k n ,1,0

13.解:

由题意知,给定插值点为

0x =0.32,0y =0.314567;1x =0.34,1y =0.333487;2x =0.36,2y =0.3

52274

由线性插值公式知线性插值函数为 )(1x P =

0101y x x x x --+1010y x x x x --=314567.002.034.0?--x +333487.002

.032.0?-x

AHA12GAGGAGAGGAFFFFAFAF

当x=0.3367时,

3367.0sin ≈)3367.0(1P ≈0.0519036+0.2784616≈0.330365 其截断误差为

︱)(1x R ︱≤2

2M ︱))((10x x x x --︱,其中2M =1

0max x

x x ≤≤︱)(2x f ︱

)(x f =)sin(x ,

∴)(2x f =-)sin(x ,∴2M =︱34.0sin ︱≈0.333487 于是︱)3367.0(1R ︱≤2

1×0.333487×0.0167×0.0033≤

0.92×510-

若用二次插值,则得 )(2x P =

0201021))(()

)((y x x x x x x x x ----+1210120))(())((y x x x x x x x x ----+2120210)

)(())((y x x x x x x x x ----

3367.0sin ≈)3367.0(2P ≈0.330374 其截断误差为

︱)(2x R ︱≤6

3M ︱)))((210x x x x x x ---(

︱ 其中3M =2

max x x x ≤≤︱)(x f '''︱=2

max x

x x ≤≤︱x cos ︱=32.0cos <0.950

于是︱)3367.0(2R ︱≤6

1×︱0.950×0.0167×0.0033×

0.0233︱<0.204×610-

17解:

差商表为

AHA12GAGGAGAGGAFFFFAFAF

———————————————————————————————

i x )(x f 一阶差商 二阶差商 三阶差商 四阶差商 五阶差商

———————————————————————————————

1 -3

2 0 3

3 15 15 6

4 48 33 9 1

5 105 57 12 1 0

6

192 87 15 1 0 0

由差商形式的牛顿插值公式,有

)(x P =)(0x f +))(,(010x x x x f -+))()(,,(10210x x x x x x x f --

+))()()(,,,(2103210x x x x x x x x x x f ---

=-3+3)1(-x +6)2)(1(--x x +)

3)(2)(1(---x x x

AHA12GAGGAGAGGAFFFFAFAF

23题:

解:由于0)1()1()0(1===P P P ,则 设2

)

1()(-=x Cx x P

由1)12(2C ,1)2(2=-??=得P ,则 2

1=C

所以2

)

1(2

1)(-=x x x P

24.解:

由于3)3(,2)2(,1)1(,0)0(====P P P P 可设

)3)(2)(1()(---+=x x x Cx x x P

由0)2(1=P 得

0)32)(12(21)(1=--??+=C P α,有:2

1=

C 所以 )3)(2)(1(2

1)(---+=x x x x x x P

26.解:由泰勒公式有

3

03200

"00'0)(!

3)()(!2)())(()()(x x f x x x f x x x f x f x f -+-+-+=ξ设

30200"00'

0)()(!

2)

())(()()(x x C x x x f x x x f x f x P -+-+-+=

其满足 )()(00x f x P j j =, 其中 2,1,0=j

AHA12GAGGAGAGGAFFFFAFAF

)

()(11x f x P =,得

)

()

()()()(),(010"2

00'20110x x x f x x x f x x x x f C -----=

代入(*)式既可得 )(x P .

33.解: 由于[]2,0)(2

C x S ∈,故在1=x 处有)

1(),1(),1("'S S S 连续,即:

??

?-=+=+1

21

c b c b 解得:

AHA12GAGGAGAGGAFFFFAFAF

?

??=-=32

c b 34、解:首先确定求解过程中涉及到的一些参数值。

3,1,0,13210===-=x x x x ? 2,1,1210===h h h

21

1001=+=

h h h μ , 3

12112=+=h h h μ

21

111=

-=μλ , 3

2122=-=μλ

()

24),(6

'0100

0-=-=

f x x f h d

0)

()

(6),,(62

2

02101=-==∑

∏=≠=k k

j j j k

k x x

x f x x x f d

2),,(63212-==x x x f d

()

0),(632'

32

3=-=

x x f f h d

于是得到关于3210,,,M M M M 的方程组:

?

???

?

???????--=?????????????????????

???0202421222121221123210M M M M (三对角方程)

?

????

???????--=????????????????????????????????????0202410207172102

11203312140314721023210M M M M (追赶法)

AHA12GAGGAGAGGAFFFFAFAF

?

???????=-==-=1

24143210M M M M 解方程求出3210,,,M M M M ,代入

)

6

()6(6)(6)()(12

1211331+++++--+--+-+-=i i i i i i i i i i i i i i i i M h f h x x M h f h x x M h x x M h x x x S

AHA12GAGGAGAGGAFFFFAFAF

即得满足题目要求的三次样条函数

[][][]2,11,00,14

1419474112123)(232323∈∈-∈????

???-+-+++-+++=x x x x x x x x x x x x x S

习题二

2.解:判断此类题目,直接利用代数精度的定义 当1)(=x f 时, 左 = 111

01

0==??x dx

右 = 114

114

3=?+?,左 = 右

x x f =)(时, 左 = 2

1

2

1

1

02=

=

??x dx x

右 = 2

11413143=?+?,左 = 右

2)(x x f =时, 左 = 3

131

031

02

==??x dx x

右 = 3

114

1)3

1(432=?+? ,左 =

3)(x x f =时, 左 = 4

141

041

03

==??x dx x

右 = 18

5

141)3

1(433=

?+? ,左 ≠ 右

AHA12GAGGAGAGGAFFFFAFAF

所以求积公式的代数精度为2.

3.解: ⑴ 求积公式中含有三个待定参数,即:

210,,A A A ,因此令

求积公式对2,,1)(x x x f =均准确成立,则有

???

?

???

=+=+-=++32220

202103202h h A h A h A h A h A A A 解得:h A h A A 3

4,3

1120===

所求公式至少有2次代数精度。

又由于 当3)(x x f =时, 左 = 0

AHA12GAGGAGAGGAFFFFAFAF

右 = 0)(3230=?+-?h A h A 当4)(x x f =时, 左 = 55

2h

=

左≠=

+5

42403

2h h A h A 所以求积公式只有3次代数精度。

⑵、⑶类似方法得出结论。

6.解: 因要求构造的求积公式是插值型的,故其

求积系数可表示为

21)34(2143)(1010

1

1000=--=--==???

dx x dx x x x x l A

2

1)14(21)(1010

1

01011=-=--==???

dx x dx x x x x x l A

故求积公式为:

??

?

???+≈?

)43()41(21)(1

f f dx x f

下面验证其代数精度: 当 1)(=x f 时, 1,110===右左x

x x f =)(时,2

1

,2121

02===

右左x

AHA12GAGGAGAGGAFFFFAFAF

2

)(x x f =时,左右左≠===16

5,3131

03x

所以其代数精度为1。

7.证明:

⑴若求积公式⑷对)(x f 和)(x g 准确成立,则有

?

∑==b

a

n

k k k x f A x f 0

)()( 及 ?∑==b

a

n

k k k x g A x g 0

)()(

[])

)()(()()()()()()(0

∑∑∑?

??===+=+=+=+n k k k k n

k k k n

k k k b

a

b

a b a

x g x f A x g A x f A dx

x g dx x f dx x g x f βαβαβαβα

所以求积公式对)()(x g x f βα+亦准确成立。

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

数值计算方法学习指导书内容简介

数值计算方法学习指导书内容简介 数值计算方法学习指导书内容简介《数字信号处理学习指导》是浙江省高等教育重点建设教材、应用型本科规划教材《数字信号处理》(唐向宏主编,浙江大学出版社出版,以下简称教材)的配套学习指导书,内容包括学习要求、例题分析、教材习题解答、自测练习以及计算机仿真实验等。学习指导书紧扣教材内容,通过例题讲解,分析各章节的学习重点、难点以及需要理解、掌握和灵活运用的基本概念、基本原理和基本方法。全书共有66例例题分析、121题题解、2套自测练习和6个mat1ab计算机仿真实验。 数值计算方法学习指导书目录绪论 第1章离散时间信号与系统 1.1 学习要点 1.2 例题 1.3 教材习题解答 第2章离散系统的变换域分析与系统结构 2.1 学习要点 2.2 例题 2.3 教材习题解答 第3章离散时间傅里叶变换

3.1 学习要点 3.2 例题 3.3 教材习题解答 第4章快速傅里叶变换 4.1 学习要点 4.2 例题 4.3 教材习题解答 第5章无限长单位冲激响应(iir)数字滤波器的设计5.1 学习要点 5.2 例题 5.3 教材习题解答 第6章有限长单位冲激响应(fir)数字滤波器的设计6.1 学习要点 6.2 例题 6.3 教材习题解答 第7章数字信号处理中的有限字长效应 7.1 学习要点 7.2 例题 7.3 教材习题解答 第8章自测题 8.1 自测题(1)及参考答案 8.2 自测题(2)及参考答案 第9章基于matlab的上机实验指导 9.1 常见离散信号的matlab产生和图形显示

9.2 信号的卷积、离散时间系统的响应 9.3 离散傅立叶变换 9.4 离散系统的频率响应分析和零、极点分布 9.5 iir滤波器的设计 9.6 fir滤波器的设计 数值计算方法学习指导书内容文摘第1章离散时间信号与系统 1.1 学习要点 本章主要介绍离散时间信号与离散时间系统的基本概念,着重阐述离散时间信号的表示、运算,离散时间系统的性质和表示方法以及连续时间信号的抽样等。本章内容基本上是“信号与系统”中已经建立的离散时间信号与系统概念的复习。因此,作为重点学习内容,在概念上需要明白本章在整个数字信号处理中的地位,巩固和深化有关概念,注意承前启后,加强葙关概念的联系,进一步提高运用概念解题的能力。学习本章需要解决以下一些问题: (1)信号如何分类。 (2)如何判断一个离散系统的线性、因果性和稳定性。 (3)线性时不变系统(lti)与线性卷积的关系如何。 (4)如何选择一个数字化系统的抽样频率。 (5)如何从抽样后的信号恢复原始信号。 因此,在学习本章内容时,应以离散时间信号的表示、离散时间系统及离散时间信号的产生为主线进行展开。信号的离散时间的表示主要涉及序列运算(重点是卷积和)、常用序列、如何判

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值计算方法教学大纲

《数值计算方法》教学大纲 课程编号:MI3321048 课程名称:数值计算方法英文名称:Numerical and Computational Methods 学时: 30 学分:2 课程类型:任选课程性质:任选课 适用专业:微电子学先修课程:高等数学,线性代数 集成电路设计与集成系统 开课学期:Y3开课院系:微电子学院 一、课程的教学目标与任务 目标:学习数值计算的基本理论和方法,掌握求解工程或物理中数学问题的数值计算基本方法。 任务:掌握数值计算的基本概念和基本原理,基本算法,培养数值计算能力。 二、本课程与其它课程的联系和分工 本课程以高等数学,线性代数,高级语言编程作为先修课程,为求解复杂数学方程的数值解打下良好基础。 三、课程内容及基本要求 (一) 引论(2学时) 具体内容:数值计算方法的内容和意义,误差产生的原因和误差的传播,误差的基本概念,算法的稳定性与收敛性。 1.基本要求 (1)了解算法基本概念。 (2)了解误差基本概念,了解误差分析基本意义。 2.重点、难点 重点:误差产生的原因和误差的传播。 难点:算法的稳定性与收敛性。 3.说明:使学生建立工程中和计算中的数值误差概念。 (二) 函数插值与最小二乘拟合(8学时) 具体内容:插值概念,拉格朗日插值,牛顿插值,分段插值,曲线拟合的最小二乘法。 1.基本要求 (1)了解插值概念。 (2)熟练掌握拉格朗日插值公式,会用余项估计误差。 (3)掌握牛顿插值公式。 (4)掌握分段低次插值的意义及方法。

(5)掌握曲线拟合的最小二乘法。 2.重点、难点 重点:拉格朗日插值, 余项,最小二乘法。 难点:拉格朗日插值, 余项。 3.说明:插值与拟合是数值计算中的常用方法,也是后续学习内容的基础。 (三) 第三章数值积分与微分(5学时) 具体内容:数值求积的基本思想,代数精度的概念,划分节点求积公式(梯形辛普生及其复化求积公式),高斯求积公式,数值微分。 1.基本要求 (1)了解数值求积的基本思想,代数精度的概念。 (2)熟练掌握梯形,辛普生及其复化求积公式。 (3)掌握高斯求积公式的用法。 (4)掌握几个数值微分计算公式。 2.重点、难点 重点:数值求积基本思想,等距节点求积公式,梯形法,辛普生法,数值微分。 难点:数值求积和数值微分。 3.说明:积分和微分的数值计算,是进一步的各种数值计算的基础。 (四) 常微分方程数值解法(5学时) 具体内容:尤拉法与改进尤拉法,梯形方法,龙格—库塔法,收敛性与稳定性。 1.基本要求 (1)掌握数值求解一阶方程的尤拉法,改进尤拉法,梯形法及龙格—库塔法。 (2)了解局部截断误差,方法阶等基本概念。 (3)了解收敛性与稳定性问题及其影响因素。 2.重点、难点 重点:尤拉法,龙格-库塔法,收敛性与稳定性。 难点:收敛性与稳定性问题。 3.说明:该内容是常用的几种常微分方程数值计算方法,是工程计算的重要基础。 (五) 方程求根的迭代法(4学时) 具体内容:二分法,解一元方程的迭代法,牛顿法,弦截法。 1.基本要求 (1)了解方程求根的对分法和迭代法的求解过程。 (2)熟练掌握牛顿法。 (3)掌握弦截法。 2.重点、难点 重点:迭代法,牛顿法。

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

数值计算方法试题

数值计算方法试题 重庆邮电大学数理学院 一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收 敛 2、迭代过程(k=1,2,…)收敛的充要条件是 2、已知y=f(x)的数据如下 ,,, x 0 2 3 3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,, 4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5) 3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过 。 4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,, ,

5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算 y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式 三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定 积分近似计算的抛物线公式 具有三次代数精度至少具有,,,次代 数精度. 7、插值型求积公式的求积 2、若,证明用梯形公式计算积分所 系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。 参考答案: T8、 ,为使A可分解为A=LL, 其中L一、填空题 1、局部平方收敛 2、< 1 3、 4 为对角线元素为正的下三角形,a的取值范围, 4、

5、三阶均差为0 6、n 7、b-a 9、若则矩阵A的谱半径(A)= ,,, 8、 9、 1 10、二阶方法 10、解常微分方程初值问题的梯形二、计算题 格式 1、是,,,阶方法 二、计算题(每小题15分,共60分) 修德博学求实创新 李华荣 1 重庆邮电大学数理学院 2、 右边: 3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度 4、y(0.2)?0.01903 A卷三、证明题

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-= -=≥= 证明: (1 )(2 1122k k k k k k x a x x x x +-??-=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ? ?+=-+ n n k k x x 212211021 5.22104185 .28--+?=??<-∴>≥Θ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数*x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相 对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数)

则7.21=x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为 00678.07 .20183 .011≈<-x e x 同理对于71.22=x ,有 003063.071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 2102 1 722-?≤-∴ π,具有3位有效数字

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

数值计算方法教学大纲(本)

数值计算方法教学大纲(本) 本着“崇术重用、服务地方”的办学理念和我校“高素质应用型人才”的培养目标,特制定了适合我校工科专业本科生的新教学大纲。 一、课程计划 课程名称:数值计算方法Numerical Calculation Method 课程定位:数学基础课 开课单位:理学院 课程类型:专业选修课 开设学期:第七学期 讲授学时:共15周,每周4学时,共60学时 学时安排:课堂教学40学时+实验教学20学时 适用专业:计算机、电科、机械等工科专业本科生 教学方式:讲授(多媒体为主)+上机 考核方式:考试60%+上机实验30%+平时成绩10% 学分:3学分 与其它课程的联系 预修课程:线性代数、微积分、常微分方程、计算机高级语言等。 后继课程:偏微分方程数值解及其它专业课程。 二、课程介绍 数值计算方法也称为数值分析,是研究用计算机求解各种数学问题的数值方法及其理论的一门学科。随着计算科学与技术的进步和发展,科学计算已经与理论研究、科学实验并列成为进行科学活动的三大基本手段,作为一门综合性的新科学,科学计算已经成为了人们进行科学活动必不可少的科学方法和工具。 数值计算方法是科学计算的核心内容,它既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程.主要介绍插值法、函数逼近与曲线拟合、线性方程组迭代解法、数值积分与数值微分、非线性方程组解法、常微分方程数值解以及矩阵特征值与特征向量数值计算,并特别加强实验环节的训练以提高学生动手能力。通过本课程的学习,不仅能使学生初步掌握数值计算方法的基本理论知识,了解算法设计及数学建模思想,而且能使学生具备一定的科学计算能力和分析与解决问题的能力,不仅为学习后继课程打下良好的理论基础,也为将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 科学计算是21世纪高层次人才知识结构中不可缺少的一部分,它潜移默化地影响着人们的思维方式和思想方法,并提升一个人的综合素质。

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1 -+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(2 110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。 4、)(,),(),(1 x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当 2 ≥n 时 = ++∑=)()3(20 4 x l x x k k n k k ( )。 5、设1326)(2 4 7 +++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[1 n x x x f 和=?0 7 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0 )(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0 =x ?,则 ?= 1 4 )(dx x x ? 。 8、给定方程组?? ?=+-=-2 21121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ?? ? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设?? ?? ? ?????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。 二、 选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ?∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , x 0 0.5 1 1.5 2 2.5

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ,则=( ) A . B . C . D . 3. 通过点 的拉格朗日插值基函数满足( ) A . =0, B . =0, C .=1, D . =1, 4. 设求方程 的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 作第一次消元后得到的第3个方程( ). A . B . C . D . π()()2 1 121 1()(2)636f x dx f Af f ≈ ++? A 1613122 3()()0011,,,x y x y ()()01,l x l x ()00l x ()110l x =() 00l x ()111 l x =() 00l x ()111 l x =() 00l x ()111 l x =()0 f x =12312312 20 223332 x x x x x x x x ++=?? ++=??--=?232 x x -+=232 1.5 3.5 x x -+=2323 x x -+=

单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分) 1. 设, 则 , . 2. 一阶均差 3. 已知时,科茨系数 ,那么 4. 因为方程 在区间 上满 足 ,所以 在区间内有根。 5. 取步长,用欧拉法解初值问题 的计算公 式 . 填空题答案 230.5 1.5 x x -=-T X )4,3,2(-==1||||X 2||||X =()01,f x x = 3n =()()() 33301213,88C C C === () 3 3C =()420 x f x x =-+=[]1,2()0 f x =0.1h =()211y y y x y ?'=+?? ?=?

吉林大学 研究生 数值计算方法期末考试 样卷

1.已知 ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0 .8329,试用线性插值和抛物插值计算.ln2.1的值并估计误差 2.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值 3. 分别求满足习题1和习题2 中插值条件的Newton插值 (1) (2)

3()1(2)(2)(3) 310 N x x x x x x x =+--+--4. 给出函数f(x)的数表如下,求四次Newton 插值多项式,并由此计算f(0.596)的值 解:

5.已知函数y=sinx的数表如下,分别用前插和后插公式计算sin0.57891的值

6.求最小二乘拟合一次、二次和三次多项式,拟合如下数据并画出数据点以及拟合函数的图形。 (a) (b)

7.试分别确定用复化梯形、辛浦生和中矩形 求积公式计算积分2 14dx x +?所需的步长h ,使得精度达到5 10 -。 8.求A 、B 使求积公式 ?-+-++-≈1 1)] 21()21([)]1()1([)(f f B f f A dx x f 的 代数精度尽量高,并求其代数精度;利用 此公式求? =2 1 1dx x I (保留四位小数)。 9.已知 分别用拉格朗日插值法和牛顿插值法求

) (x f 的三次插值多项式)(3 x P ,并求)2(f 的近 似值(保留四位小数)。 10.已知 求)(x f 的二次拟合曲线)(2 x p ,并求)0(f 的近似值。 11.已知x sin 区间[0.4,0.8]的函数表

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

相关主题
文本预览
相关文档 最新文档