当前位置:文档之家› 555定时器的应用及其仿真

555定时器的应用及其仿真

555定时器的应用及其仿真
555定时器的应用及其仿真

1 设计要求

该集成运放综合参数测试仪是以凌阳公司SPCE061A单片机为控制核心,由检测电路、信号源、自动测试控制电路、键盘和LED显示器等组成。它能对LM741及与之引脚兼容的其他集成运放(例如μA741、F007、F741)的基本参数UIO、IIO、AVD、KCMR及BWG进行测试和数字显示,并具有语音播报、自动打印功能。利用DDS芯片AD9835产生40kHz~4MHz扫频信号以及测试仪中的5Hz信号。程序设计采用C语言与汇编语言相结合的方式,在unSP IDE 1.16.1软件环境中编程实现。

2 总体方案设计与选择

2.1 主控制器的方案选择

方案一:采用89C51单片机。89C51 I/O端口较少,与微型打印机、信号源、键盘与显示电路、A/D转换电路的接口电路比较复杂;若需要语音功能,还需增加专门的语音芯片,外围电路比较烦琐。

方案二:采用凌阳SPCE061A单片机。该单片机内置A/D转换模块,在32

个I/O口中,有8个端口可以作为模拟量输入端口(其中1路为音频信号输入口),能满足对模拟信号输入的要求,简化外围电路设计;具有两路DAC、14个中断源等丰富的硬件资源;其集成开发环境中还配有语音播放函数,实现语音播放功能极为简单。另外,该芯片内置了在线仿真、编程接口,可方便地实现在线调试。经过比较后采用方案二。

2.2 信号源的方案选择

根据题目要求,测试用的信号源应输出5Hz、有效值为4V的正弦波信号,频率与电压误差绝对值均小于1%。要求扫频信号源输出频率范围是40kHz~

4MHz,频率误差绝对值小于1%,输出电压的有效值为2V±0.2V。

方案一:利用单片集成的函数发生器MAX038可产生正弦波﹑方波﹑三角波,通过调整外部元件可改变输出频率。但采用该芯片,其参数与外部元件相关,在外接电阻、电容等的影响下,产生的频率信号稳定度差﹑精度低,且低频信号失真较大。由于其采用模拟控制方式,如果要实现扫频信号输出,不但需要加高精度D/A转换电路,而且由于频率变化范围宽,还需要增加量程切换电路和相应控制电路和软件;步长精度难以保证;制作成本较高。

方案二:采用直接数字频率合成(DDS,Direct Digital FrequenSynthesizer)技术。DDS技术是根据奈奎斯特(Nyquist)抽样定律及数字处理技术,把事先对模拟周期信号抽样得到的一系列数字信号存入存储器中,再通过DAC转换成模拟信号来完成频率合成的。由于DDS采用全数字方式实现频率合成,直接对参考正弦波时钟进行抽样和数字化,然后通过数字计算技术进行频率合成,因此具有模拟频率合成技术无法比拟的优点。DDS不仅频率转换速率快、频率分辨率高、相位噪声低、输出相位可连续变化,而且易编程,体积小、功耗低。DDS直接频率合成器件的诸多优点使其逐渐成为未来信号源发展方向。方案拟采用DDS专用集成芯片AD9835。它的串行控制方式,使电路简单、编程方便;内部有一个32位相位累加器,用于存放频率控制字,可实现1Hz的频率调节。

综上所述,采用DDS专用芯片不仅可实现精密正弦信号发生器的优化设计,

而且给调试工作带来极大的方便,经反复论证,本设计采用方案二。

3 集成运算放大器简易测试仪的设计

本系统框图如图1所示。系统以SPCE061A为控制核心,外接键盘与显示模块、单位增益带宽测试电路、运放参数测试电路、由AD9835构成的DDS信号源以及打印机等。系统硬件连接图如图2。

图1集成运放综合参数测试仪的系统框图

图2系统硬件连接图

3.1 电路设计

1、单片机系统设计

采用凌阳公司的单片机开发系统--SPCE061A精简开发板(61板)。61板上集成了基本的外围电路,并引出了必要的一些口例如I/O口,电源插口等,可以很方便地和其他模块连接。

LED显示器采用串行工作方式,8片74HC595型高速COMS串/并行输出芯片工作在静态显示模式。

2、运放参数测试电路

输入失调电压、失调电流等参数的测试原理如图3所示。

图3运放参数测试电路原理图

(1)输入失调电压UIO

由于运放电路参数的不对称,使得两个输入端都接地时输出电压不为零,称之为放大器的失调。为使输出电压回到零点,必须在输入端加一个纠偏电压来补偿这种失调,这个纠偏电压就叫运算放大器的输入失调电压UIO。因此,UIO的定义为使输出电压为零时,在两个输入端之间加的直流补偿电压。输入失调电压的测量原理如图3所示,此时应将S1、S2闭合,将S3、S4均拨到左边位置(接地)。通常Ri值不超过100Ω,因此Rf>>Ri。这时若测得辅助运放A的输出电压为ULO,利用题目要求的公式即可推算出输入端的失调电压。

(2)输入失调电流IIO

IIO的定义为补偿失调电压后,使输出电压为零时,流入运算放大器两输入端的电流差值。测试原理仍用图3,将S3、S4均拨到左边位置。测试分两步进行:第一步是将S1、S2闭合,测得输出电压为ULO,这时的电路与测试输入失调电压完全相同。第二步是将S1、S2都断开,此时运放的两个输入端上除失调电压UIO之外,还有输入电流在电阻上所产生的电压,只要测得辅助运放的输出电压为UL1,利用题目要求的公式即可根据公式计算出输入失调电流值。

(3)交流差模开环电压增益AVO

开环电压增益是指放大器在无反馈时的差模电压增益,其数值等于输出电压的变化量ΔUo与输入电压的变化量ΔUI之比。由于Avo很大,输入信号很小,而且输入电压与输出电压之间还存在相位差,很容易引起较大的测试误差,因此在测试开环电压增益时都采用交流开环、直流闭环的方法。测试原理如图3所示,应将S3拨到左边位置,S4拨到右边位置,将S1、S2均断开。设信号源输出电压为US,测得辅助运放输出电压为UL0,利用题目要求的公式即可用公式计算交流差模开环电压增益。

(4)交流共模抑制比KCMR

共模抑制比(KCMR)定义为差模电压增益AVD与共模电压增益AVC之比,即

KCMR=∣AVD/AVC∣。KCMR的大小不仅与频率有关,还与输入信号大小和波形有关,因此测量频率不宜太高,信号不宜过大。其测试原理如图3所示,将S3拨到右边位置,S4拨到左边位置,将S1、S2均断开。设信号源输出电压为US,测得辅助运放输出电压为UL0,利用题目要求的公式即可算出交流共模抑制比。

3、DDS信号源

DDS信号源由相位累加器、余弦存储器(即余弦ROM表)、数/模转换器等组成,其框图如图4所示。参考时钟由一个高稳定度的50MHz晶体振荡器来产生,用它来同步整个合成器的各个组成部分。

图4DDS信号源的框图

DDS芯片AD9835的典型应用电路如图5所示。单片机与AD9835串行连接时,三个端口(IOA1~IOA3)分别作为时钟端、数据输入端和片选端,由单片机向AD9835写入控制字和数据,最终实现产生正弦信号的目的。

图 5AD9835的典型应用电路

4、单位增益带宽测试电路

运放的单位增益带宽(BWG)是使开环增益Aod下降到零分贝(亦即Aod=1,运放失去电压放大能力)时的信号频率。单位增益带宽测试电路由待测运放和电压比较器这两部分电路组成,如图6所示。其中VD1、C1、R1与VD2、C2、R2

组成两个峰值检波电路。由DDS产生的正弦信号UIN经过被测运放进行放大,形成信号UC。运放的增益是随信号的频率变化而变化的,即输入信号的频率越低,其增益越高。UIN的频率较低时UC的值比UIN高很多,UIN与UC经过峰值检波、比较器比较之后,使输出端为低电平。随着输入信号频率的升高,运放的增益逐渐减小,UC的幅值也随之减小,当Aod下降到零分贝时,比较器的两个输入信号UA=UB,比较器就输出一个电压正跳变,经过稳压管稳压后在输出端形成一

个+5V的高电平,送至单片机,此时的频率即为被测运放的单位增益带宽。由于集成运放的Aod比较大,为便于测试,应当给被测运放引入适当的负反馈。

图6单位增益带宽测试电路

3.2 软件设计

在主程序中,主要根据键值做相应的处理。主程序流程图如图7所示。

图7主程序流程图

4 测试说明

4.1 UIO、IIO、AVD、KCMR的测试方法

从电路中引出一条模拟信号输出线(即辅助运放输出端)与SPCE061A的IOA0端口相连,将模拟信号转换成所需要的数字信号。具体方法如下:对输入的低频模拟信号进行1kHz的采样,每500个抽样点为一组,每两个相邻抽样点之间进行信号跳变处理,取完五百个抽样点进行比较,取该组中最大值存于数组中,这样连续取16组,并取数组中数据的平均值。即可得到辅助运放输出端电压的峰-峰值。然后利用题目要求中的公式即可计算出输入失调电压、输入失调电流、交流差模开环电压增益、交流共模抑制比等参数值。

4.2 测试数据

测试UIO 、IIO 、AVD 、KCMR 的数据见表1。测量值与标准值的误差比较见表2,这里的标准值是由专用集成运放测试仪测得的。

表1 测试UIO 、II0、AVD 、KCMR 的数据

次数

测 量 值

计 算 值

U L0 /V U LI /V U L0 /V U L0 /V U IO /mV I I0 /nA A VD /dB K CMR /dB

1 0.623 2.2

2 0.602 1.42 0.52

3 1.332 106.0 98.5 2 0.628

2.31 0.614 1.41 0.522 1.301 105.8 98.6 3 0.624 2.31 0.620 1.49 0.520 1.322 105.7 98.1 4 0.636 2.18 0.610 1.48 0.523 1.299 105.9 98.2 5

0.621

2.14

0.618

1.44

0.524

1.298 105.8

98.4

表3 信号源的输出

标准频率/Hz

实测频率/Hz

误差/(%)

有效值/V 1 0.999 0.01 2.1 100 99.9 0.1 2.1 1k 0.994k 0.6 2.0 10k 9.98k 0.2 2.0 100k 100 k 0 1.8 1M 1M 0 1.9 4M

4M

1.8

增益带宽的测量数据见表4。

表4 增益带宽的测量数据

5 总结

(1)该集成运放参数测试仪能对UIO、IIO、AVD、KCMR四项基本参数进行准确测试。其中UIO的测试范围是0~40mV,误差绝对值小于2%。II0的测试范围是0~4μA,误差绝对值小于2%。AVD的测试范围是60~120dB,误差绝对值小于3dB。KCMR的测试范围是60~120dB,误差绝对值小于3dB。

(2)DDS信号源能输出频率为5Hz、有效值为4V的正弦信号,误差绝对值满足小于1%的设计要求。扫描信号源的频率输出范围是1Hz~5MHz,频率误差小于0.8%。输出电压有效值为2V±0.2V。用示波器观察输出波形无明显失真。

(3)测量单位增益带宽的范围是100kHz~5MHz,测量时间小于10s,频率分辨率为1kHz。

(4)该仪器还能自动打印并用语音准确播报测量结果。

参考文献

[1] 康华光.电子技术基础数字部分( 第四版) [ M] .高等教育出版社, 2000-

06.

[2] 余孟尝.数字电子技术基础简明教程( 第二版) [ M] .高等教育出版社,

1999- 10.

[3] 江晓安.数字电子技术[ M] .西安电子科技大学出版社,2002- 05.

[4] 童诗白.模拟电子技术基础[M].北京:高等教育出版社,2001.5

[5] 许小军.电子技术试验与课程设计指导[M].南京:东南大学出版社,2004.12

[6] 彭介华.电子技术课程设计指导[M].北京:高等教育出版社,1997.3

[7] 吴有仓.电工实用电子制作[M].北京:国防工业出版社,2005.13.

555定时器的典型应用电路

555定时器的典型应用电路 单稳态触发器 555定时器构成单稳态触发器如图22-2-1所示,该电路的触发信号在2脚输入,R和C是外接定时电路。单稳态电路的工作波形如图22-2-2所示。 在未加入触发信号时,因u i=H,所以u o=L。当加入触发信号时,u i=L,所以u o=H,7脚内部的放电管关断,电源经电阻R向电容C充电,u C按指数规律上升。当u C上升到2V CC/3时,相当输入是高电平,5 55定时器的输出u o=L。同时7脚内部的放电管饱和导通是时,电阻很小,电容C经放电管迅速放电。从加入触发信号开始,到电容上的电压充到2V CC/3为止,单稳态触发器完成了一个工作周期。输出脉冲高电平的宽度称为暂稳态时间,用t W表示。 图22-2-1 单稳态触发器电路图 图22-2-2 单稳态触发器的波形图 暂稳态时间的求取: 暂稳态时间的求取可以通过过渡过程公式,根据图22-2-2可以用电容器C上的电压曲线确定三要素,初始值为u c(0)=0V,无穷大值u c(∞)=V CC,τ=RC,设暂稳态的时间为t w,当t= t w时,u c(t w)=2 V CC/3时。代入过渡过程公式[1-p205]

几点需要注意的问题: 这里有三点需要注意,一是触发输入信号的逻辑电平,在无触发时是高电平,必须大于2 V CC/3,低电平必须小于 V CC/3,否则触发无效。 二是触发信号的低电平宽度要窄,其低电平的宽度应小于单稳暂稳的时间。否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。此时单稳态触发器成为一个反相器。 R的取值不能太小,若R太小,当放电管导通时,灌入放电管的电流太大,会损坏放电管。图22-2-3是555定时器单稳态触发器的示波器波形图,从图中可以看出触发脉冲的低电平和高电平的位置,波形图右侧的一个小箭头为0电位。 图22-2-3 555定时器单稳态触发器的示波器波形图 [动画4-5] 多谐振荡器 555定时器构成多谐振荡器的电路如图22-2-4所示,其工作波形如图22-2-5所示。 与单稳态触发器比较,它是利用电容器的充放电来代替外加触发信号,所以,电容器上的电压信号应该在两个阈值之间按指数规律转换。充电回路是R A、R B和C,此时相当输入是低电平,输出是高电平;当电容器充电达到2 V CC/3时,即输入达到高电平时,电路的状态发生翻转,输出为低电平,电容器开始放电。当电容器放电达到2V CC/3时,电路的状态又开始翻转。如此不断循环。电容器之所以能够放电,是由于有放电端7脚的作用,因7脚的状态与输出端一致,7脚为低电平电容器即放电。

实验4指导书 555定时器电路设计

实验4 555定时器电路设计 预习内容 阅读《电工电子实验教程》第6.5节中555集成定时器应用的内容。 预习实验的内容,自拟实验步骤和数据表格,完成理论设计,画出原理电路,选择所用元件名称、数量,熟悉元件引脚,手写预习报告。 一、实验目的 1.熟悉集成定时器555的工作原理及应用。 2.熟悉时钟信号产生电路的设计方法。 3.掌握使用定时器555设计多谐振荡器的方法。 二、知识要点 时钟信号在电子电路中有着非常重要的作用,而生成周期时钟信号的方法也有多种。比较常用的方法就是使用555定时器构成多谐振荡器。此电路广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。 555定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为555,用CMOS工艺制作的称为7555。555定时器的电源电压范围宽,可在4.5V~16V 工作,7555可在3~18V工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。 图5-1 555定时器的结构图和引脚分布图 1脚-GND,接地脚; 2脚-Trigger,低电平触发端; 3脚-Output,输出端; 4脚-Reset,复位端,低电平有效; 5脚-Control V oltage,电压控制端; 6脚-Threshold,阈值输入端; 7脚-Discharge,放电端; 8脚-V CC,电源端。 三、实验内容 题目:时钟信号发生电路设计 设计一个电路,能够产生时钟信号,要求信号频率可调,设计范围不小于500Hz~1000Hz,

基于555定时器闪光电路设计及制作

基于555定时器闪光电路设计与制作 我们主张,电子初学者要采用万能板焊接电子制作作品,因为这种电子制作方法,不仅能培养电子爱好者的焊接技术,还能提高他们识别电路图和分析原理图的能力,为日后维修、设计电子产品打下坚实的基础。 本文介绍555定时器的结构、引脚功能以及构成单稳态触发器、多谐振荡器、施密特触发器等电路,进一步掌握集成电路的使用方法,并利用多谐振荡器产生的脉冲信号控制二个发光二极管实现闪光电路。 一、基于555定时器闪光电路功能介绍 每辆车上电子装置在整个汽车制造成本中所占的比例由16%增至23%以上,目前电子技术的应用几乎已经深入到汽车所有的系统。汽车上的左、右闪光灯就是最普通的电子产品,今天我们就来学习如何使用555定时器设计闪光电路。 本制作套件就是利用555定时器设计的多谐振荡器,进而构成闪光电路,如图1所示。 图1 基于555定时器闪光电路成品图

二、基于555定时器闪光电路原理图 图2 基于555定时器闪光电路原理图 三、基于555定时器闪光电路工作原理 1、可调电阻的特性及用法 可调电阻也叫可变电阻,是电阻的一类,其电阻值的大小可以人为调节,以满足电路的需要。可以逐渐地改变和它串联的用电器中的电流,也可以逐渐地改变和它串联的用电器的电压,还可以起到保护用电器的作用。

图3 可调电阻100K可调范围 电位器是可调电阻的一种,通常是由电阻体与转动或滑动系统组成,即靠一个动触点在电阻体上移动,获得部分电压输出。 电位器的电阻体有两个固定端,通过手动调节转轴或滑柄,改变动触点在电阻体上的位置,则改变了动触点与任一个固定端之间的电阻值,从而改变了电压与电流的大小。

实验三++555定时器的应用仿真实验

电子技术仿真实验报告实验题目: 3 555定时器的应用仿真实验 班级: 姓名: 学号: 实验日期: 实验成绩:

实验三 555定时器的应用仿真实验 一、实验目的: 1、熟悉555定时器的工作原理。 2、掌握555定时器的典型应用。 3、掌握基于multisim 10.0的555定时器应用仿真。 二、实验原理: 555定时器是一种常见的集数字与模拟功能于一体的集成电路。通常只要外接少量的外围元件就可以很方便地构成施密特触发器、单稳态触发器和多谐振荡器等多种电路。其中: (1) 构成施密特触发器,用于TTL 系统的接口,整形电路或脉冲鉴幅等; (2)构成多谐振荡器,组成信号产生电路; (3)构成单稳态触发器,用于定时延时整形及一些定时开关中。 555应用电路采用这3种方式中的1种或多种组合起来可以组成各种实用的电子电路。 U1 LM555CM GND 1DIS 7OUT 3 RST 4VCC 8THR 6CON 5 TRI 2 GND ——1脚,接地;TRI ——2脚,触发输入;OUT ——3脚,输出;RES ——4脚,复 位(低电平有效);CON ——5脚,控制电压(不用时一般通过一个0.01F 的电容接地);THR ——6脚,阈值输入;DIS ——7脚,放电端;VCC ——8脚,+电源

1、 由555定时器构成多谐振荡器 (1) 接通电源时,设电容的初始电压0=c V ,此时TR V \TH V 均小于1/3Vcc ,放电截止, 输出端电压为高电平,Vcc 通过1R 和2R 对C 充电,Vc 按照指数规律逐步上升。 (2) 当Vc 上升到2/3Vcc 时,放电管导通,输出端电压为低电平,电容C 通过2R 放电,Vc 按照指数规律逐步下降。 (3) 当Vc 下降到1/3Vcc 时,放电管截止,输出端电压由低电平翻转为高电平,电容C 又开始充电。当电容C 充到Vc=2/3Vcc 时,又开始放电,如此周而复始,在输出端即可产生矩形波信号。 矩形波信号的周期取决于电容器充、放电回路的时间常数,输出矩形脉冲信号的周期 C R R T )2(7.021+≈ 2、 施密特触发器是脉冲波形整形和变换电路中经常使用的一种电路。其具有两个稳定 状态,两个稳定状态的维持和相互转换取决于输入电压的高低和,属于电平触发,具有两个不同的触发电平,存在回差电压。由555定时器构成的施密特触发器将555定时器的THR 和TRI 两个输入端连在一起作为信号输入端即可得到施密特触发器。 (1) 当Vi<1/3Vcc 时,输出Vo 为高电平。随着Vi 的上升,只要Vi<2/3Vcc ,输出 信号将维持原状态不变,设此状态为第一稳定状态。 (2) 当Vi 上升到Vi ≥2/3Vcc 时,输出Vo 为低电平。电路由第一稳定状态翻转为第 二稳定状态,电路的正向阈值电压为+T V =2/3Vcc 。随着Vi 上升后又下降的情况,只要Vi 〉1/3Vcc ,电路将维持在第二稳定状态不变。 (3) 当Vi 下降到Vi ≤1/3Vcc 时,电路又翻转到第一稳态,电路的负向阈值电压为 -T V =1/3Vcc 。 三、实验内容: 1、555定时器构成多谐振荡器仿真实验

555定时器的典型应用电路

令狐采学创作 555定时器的典型应用电路 令狐采学 单稳态触发器 555定时器构成单稳态触发器如图22-2-1所示,该电路的触发信号在2脚输入,R和C 是外接定时电路。单稳态电路的工作波形如图22-2-2所示。 在未加入触发信号时,因ui=H,所以uo=L。当加入触发信号时,ui=L,所以uo=H,7脚内部的放电管关断,电源经电阻R向电容C充电,uC按指数规律上升。当uC上升到2 VCC/3时,相当输入是高电平,555定时器的输出uo=L。同时7脚内部的放电管饱和导通是时,电阻很小,电容C经放电管迅速放电。从加入触发信号开始,到电容上的电压充到2VCC/3为止,单稳态触发器完成了一个工作周期。输出脉冲高电平的宽度称为暂稳态时间,用tW表示。 图22-2-1 单稳态触发器电路图 图22-2-2 单稳态触发器的波形图 暂稳态时间的求取: 暂稳态时间的求取可以通过过渡过程公式,根据图22-2-2可以用电容器C上的电压曲线确定三要素,初始值为uc(0)=0V,无穷大值uc(∞)=VCC,τ=RC,设暂稳态的时间为t w,当t= tw时,uc(tw)=2 VCC/3时。代入过渡过程公式[1-p205]

几点需要注意的问题: 这里有三点需要注意,一是触发输入信号的逻辑电平,在无触发时是高电平,必须大于 2 VCC/3,低电平必须小于 VCC/3,否则触发无效。 二是触发信号的低电平宽度要窄,其低电平的宽度应小于单稳暂稳的时间。否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。此时单稳态触发器成为一个反相器。 R的取值不能太小,若R太小,当放电管导通时,灌入放电管的电流太大,会损坏放电 管。图22-2-3是555定时器单稳态触发器的示波器波形图,从图中可以看出触发脉冲的低电平和高电平的位置,波形图右侧的一个小箭头为0电位。 图22-2-3 555定时器单稳态触发器的示波器波形图 [动画4-5] 多谐振荡器 555定时器构成多谐振荡器的电路如图22-2-4所示,其工作波形如图22-2-5所示。 与单稳态触发器比较,它是利用电容器的充放电来代替外加触发信号,所以,电容器上的电压信号应该在两个阈值之间按指数规律转换。充电回路是RA、RB和C,此时相当输入是低电平,输出是高电平;当电容器充电达到2 VCC/3时,即输入达到高电平时,电路的状态发生翻转,输出为低电平,电容器开始放电。当电容器放电达到2VCC/3时,电路的状态又开始翻转。如此不断循环。电容器之所以能够放电,是由于有放电端7脚的作用,因7脚的状态与输出端一致,7脚为低电平电容器即放电。 图22-2-4 多谐振荡器电路图图22-2-5 多谐振荡器的波形 震荡周期的确定: 根据uc(t)的波形图可以确定振荡周期,T=T1+T2 先求T1,T1对应充电,时间常数τ1=(RA+RB)C,初始值为uc(0)= VCC/3,无穷大值u c(∞)=VCC,当t= T1时,uc(T1)=2 VCC/3,代入过渡过程公式,可得 T1=ln2(RA+RB)C≈0.7(RA+RB)C 求T2,T2对应放电,时间常数τ2=RBC,初始值为uc(0)=2 VCC/3,无穷大值uc(∞) =0

555定时器简单的电路

每辆车上电子装置在整个汽车制造成本中所占的比例由16%增至23%以上。一些豪华轿车上,使用单片微型计算机的数量已经达到48个,电子产品占到整车成本的50%以上,目前电子技术的应用几乎已经深入到汽车所有的系统。汽车上的左、右闪光灯就是最普通的电子产品,今天我们就来学习如何使用555定时器设计闪光电路。 555定时器可方便地构成单稳态触发器,多谐振荡器,施密特触发器等电路,闪光电路一般是利用多谐振荡器产生的脉冲信号控制而成。 一、电路图如下:

闪光电路原理图1引脚原理图2 分析工作原理的时候,可以对照图1所示,这是一个典型的利用555设计的多谐振荡器,调节可变电阻可以改变输出的振荡信号的频率,信号从3脚输出一个高低电平,控制D1和D2。 当输出高电平的时候,D2亮,D1不亮。当输出低电平的时候,D2不亮,D1亮。总的效果看起来就是闪烁了。

需要制作实物的朋友可以对照图2制作,像这么一个比较简单的电路,可以购买少量的元件,用万能板(洞洞板)焊接而成,当然焊接的时候,需要一定的焊接技术,如果焊接技术不行的朋友,一定要练习焊接技术,我们比较提倡在电子制作过程中采用拖焊技术,具体实物产品,可以参照图3和图4。 二、元件清单如下: 需要制作的朋友,可以到电子市场购买以上元器件,都是非常常用的元器件,容易购买。笔者建议去网上购买,初步估计所有的材料加在一起,价格在5元以内。 三、闪光器实物图 图3 闪光器实物图

图4闪光器背面走线图 在制作的时候,一定要注意555定时器的引脚功能,比如1脚接地,8脚接电源,和普通的DIP集成电路有些不一样,当制作完成的时候,如果LED灯不闪烁,就要检测了,首先检测1脚和8脚电压是否正常,然后再检测4脚电压是否正常,2脚和6脚是否已经连在一起来,如果这些都正常了,故障基本会被排除了。

555定时器的基本应用及使用方法

555定时器的基本应用及使用方法 我们知道,555电路在应用和工作方式上一般可归纳为3类。每类工作方式又有很多个不同的电路。在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。这样一来,电路变的更加复杂。为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。方便大家识别、分析555电路。下面将分别 介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是: “RT-6.2-CT”和“CT-6.2-RT”。

第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带 有一个RC微分电路。 第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。图中列出了2个常用电路。

双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。 555双稳电路可分成2种。 第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。 第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。

555定时器多谐波电路Multisim仿真

数字电子技术仿真实验报告 实验名称:555定时器 学生姓名:刘佳璇学号:20152523 指导教师:金丹 院系:电气工程学院班级:201502D 2017 年11 月29 日

555定时器 一、实验目的 1、学会使用 MULTISIM 软件进行数字电子实验仿真。 2、学习了解555定时器的工作原理。 二、实验内容 多谐振荡器 三、实验原理 555定时器的内部电路图及引脚排列见下图,功能表见下表。

555定时器的功能主要由两个比较器决定。两个比较器的输出电压控制RS 触发器和放电管的状态。在电源与地之间加上电压,当5脚悬空时,则电压比较器C1的同相输入端的电压为3/2CC V ,C2的反相输入端的电压为VCC 若触发输入端TR 的电压小于3/CC V ,则比较器C2的输出0,可使RS 触发器置1,使输出端OUT=1。如果阈值输入端TH 的电压大于3/2CC V ,同时TR 端的电压大于3/CC V ,则C1的输出为0,C2的输出为1,可将RS 触发器置0,使输出为0电平。

多谐振荡器又称为无稳态触发器,它没有稳定的输出状态,只有两个暂稳态。在电路处于某一暂稳态后,经过一段时间可以自行触发翻转到另一暂稳态。 两个暂稳态自行相互转换而输出一系列矩形波。多谐振荡器可用作方波发生器。电路如图。 四、 实验设计与仿真 构建仿真电路如图所示,其中Ω=k R 21,Ω=k R 12,F C μ1.0=。接通V 5电源,用示波器观察c u 和o u 的波形。

波形如下图: 仿真结果与实验结果一致。 五、实验小结

这次的仿真实验是 555 定时器(多谐振荡器)电路,实验连线较简单,但是原理并不简单,通过实验我更加深刻的理解了555定时器的工作原理。

555定时器温度控制电路设计要点

内容摘要 在日常的生产与生活中,温度是一个非常重要的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形、结晶以及空气流动等物理和化学过程。所以人们需要用到良好的温度检测及控制装置系统来解决这些问题。本文介绍了采用A/D转换、555定时器、AT89C51芯片以及DS1620温度传感器等组成的温度控制系统的设计方法和工作原理。能够通过传感器对温度的感应自动调节加热功率的大小,并且在解决温度检测的基础上,通过555定时器完成对温度的特殊控制。 本设计应用性比较强,设计系统可以作为温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统等等。课题主要任务是完成环境温度检测,利用单片机实现温度调节并通过计算机实施温度监控。设计后的系统具有操作方便,控制灵活等优点。 本设计系统包括温度传感器,A/D转换模块,温度传感器模块,和555定时器,AT89C51芯片等。文中对每个部分功能、实现过程作了详细介绍。整个系统的核心是以555定时器进行温度监控,完成了课题所有要求。 索引关键词:自动控制系统温度传感器 MCS-51 555定时器

目录 第一章绪论 (1) 1.1研究温度控制系统的意义 (1) 1.2 温度控制系统中传感器 (1) 1.3 温度控制系统设计要点 (1) 1.4 温度控制系统设计内容 (1) 第二章硬件系统的构成 (2) 2.1 AT89C51概况 (2) 2.2功能特性概述 (2) 2.3引角功能说明 (2) 2.4时钟振荡器 (4) 2.5空闲节电模式 (4) 2.6掉电模式 (4) 2.7传感器概述 (4) 第三章数字温度测控芯片DS1620的应用 (4) 3.1 概述 (4) 3.2 引脚功能说明 (5) 3.3 操作和控制 (6) 3.4 DS1620有两种操作模式 (6) 3.5 555定时器概述 (8) 3.6 电路图 (10) 后记 (11) 参考文献 (12)

振荡电路及555定时器应用设计报告

振荡电路设计报告设计课题:自激多谐与单稳态 专业班级:12电信卓越班 学生姓名:万松 学号:120802034 指导教师:许老师 设计时间:2013-12-25

自激多谐与单稳态 一、设计任务与要求 1.用非门设计构成多谐振荡器,振荡频率为6KHz ;用非门设计构成晶振振荡器,晶振为4MHz ;555时基电路构成多谐振动器; 2.用555 时基电路构成单稳态触发器,具有可重复触发特性; 二、方案设计与论证 任务一:多谐振荡器 1. 方案一、非门构成对称型多谐振荡器 对称型多谐振荡器原理: (1) 静态(未振荡)时应是不稳定的 此电路是由两个反相器及滑动变阻器经耦合电容C1连接起来的正反馈振荡电路,并设法使反相器工作在放大状态,即给他们设置适合的偏置电压,这个偏置电压可以通过在反相器的输出端与输出端之间接入反馈电阻来得到。 方案二、非门构成非对称型多谐振荡器 非对称型多谐振荡器原理: 开始放电。 开始充电,电路进入第一个暂稳态迅速跳变为高。 迅速跳变为低,而使,则有: 有微小由于“扰动”使212122!11, )2(C C V V V V V V V O O O I O I I ↑↓→↓→↑→↑开始放电。 开始充电,电路进入第二个暂稳态迅速跳变为低。 迅速跳变为高,而使将起引起如下正反馈:时,再充至当122111222,)3(C C V V V V V V V V O O O I O I TH I ↑↓→↓→↑→↑

在方案一的电路中反相器G1输入端串接一个足够大的保护电阻R ,则G1的输入电流可以忽略不计,即R 远大于R(N)和R(P),非对称型多谐振荡器的输出波形是不对称的,当用TTL 与非门组成时,输出脉冲宽度tw1═RC ,tw2═1.2RC T═2.2RC ,调节 R 和C 值,可改变输出信号的振荡频率,通常用改变C 实现输出频率的粗调,改变电位器R 实现输出频率的细调。 通过分析,结合设计电路性能指标、器件的性价比,本设计电路选择方案二。 三、单元电路设计与参数计算 非对称式多谐振荡器由反相器,电阻和电容构成,非对称式多谐振荡器的组成框图3-1所示。 参数计算: 振荡周期为: 取频率为6KHz,电容值为0.1uf ,可根据上述公式可得电阻阻值为750Ω 图3-1 四、总原理图及元器件清单 T=2.2R F C

555定时器及基本应用论文

毕业论文 论文题目 555定时器及其基本应用 系别物电系 专业物理教育 班级 10级物理教育班 学号 131009008 姓名蒲永峰 指导教师袁乐民 二O一二年十二月十日

555定时器及基本应用 摘要:555定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为555,用CMOS工艺制作的称为 7555,除单定时器外,还有对应的双定时器556/7556。555定时器的电源电压范围宽,可在5~16V工作,最大负载电流可达200mA,7555可在3~18V工作,最大负载电流可达4mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。 关键词:555定时器,施密特触发器,多谐振荡器,单稳态触发器 引言:随着电子技术的发展,尤其是消费类电子的日益普及,555定时器的使用量也在飞速增长。在购买和使用555定时器时,人们对555定时器的性能要求也逐渐提高。555定时器最重要的两个性能为电池的容量和电池的内阻,电池容量与电池内阻存在密切的关系。一般而言, 电池的容量越大, 内阻就越小。电池内阻的大小及其变化可反应电池内部的变化。电池内阻大,电池放电电压平台低,电池输出功率小,电池充电时电压高,高倍率快速充电时,电池会产生大量的热,使充电效率降低,降低电池性能。可见电池内阻的大小是衡量电池性能好坏的重要指标, 准确测量电池内阻具有重要意义。目前,测量电池内阻的方法主要有加载降压法、短路电流法、电桥法、交流电流法、双量程测量法、电位差计法等。这些方法各有利弊, 普遍问题是测量步骤较繁琐, 有些测量方法存在着不可忽视的测量误差, 甚至某些测量方法(因电池放电时间过长等)对电池的寿命有一定影响。本文将以论证的方式介绍一种较容易、准确测量电池内阻和电池容量的方法。 一、 555定时器简介 555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现 多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作 为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。555 定 时器的内部电路框图和外引脚排列图分别如图 2.9.1 和图 2.9.2 所示。它内

555定时器的典型应用

555定时器的典型应用及OrCAD/PSpice仿真 时间:2009-12-05 01:00来源:本站整理作者:admin 点击:129次 555定时器的典型应用及OrCAD/PSpice仿真 滕政胜,黄铭(1.百色学院科研处广西百色;2.云南大学信息学院云南昆明) 引言 555定时器是一种将模拟功能与数字(逻辑)功能紧密结合在一起的中小规模单 片集成电路。它功能多样,应用广泛,只要外部配上几个阻容元器件即可构成单稳态触发器、施密特触发器、多谐振荡器等电路,是脉冲波形产生与变换的重要元器件,广泛应用于信号的产生与变换、控制与检测、家用电器以及电子玩具等领域。 OrCAD/PSpice作为国际上著名的电子设计自动化软件之一,具有仿真速度快、精度高等优点,不仅可以用于电路分析和优化设计,与印制版设计软件配合使用,还可实现电子设计自动化,被公认是通用电路模拟程序中最优秀的软件之一。例如:基于该软件,Essakhi等人提出了一种微波整流天线的时域模型;Du等人提出了一种从三维时域场分析提取S参数的方法;Zhang等人仿真了E类功率放大器的特性,并进行了实验证实;Sakuta等人分析了低相位噪声振荡器的特性,并计算了有载Q值;Hayahara等人设计了△-∑A/D转换器,并对其信噪比进行了仿真;Brecl等人提出了一维、二维薄膜模型,并模拟了其接触电阻。这些表明,软件OrCAD/PSpice是现代电子电路设计的有利工具。 本文以OrCAD/PSpice 10.5为工具,对555定时器构成的三种典型电路进行仿真分析,得出了一些有价值的结论。 1555定时器组成框图及工作机理 555定时器的图形符号及管脚图如图1所示,其中管脚1是公共端,管脚2为触发端,管脚3为输出端,管脚4为复位端,管脚5是控制电压输入端,管脚6 为阈值端,管脚7是内部三极管的放电端,管脚8是电源端。

数电课程设计 555定时器

课程设计说明书 名称555定时器声光报警电路 2011年12月12日至2011年12月16日共1 周 院系 班级 姓名 系主任 教研室主任 指导教师

目录 第一章绪论 (2) 第二章主要元器件原理及相关计算 (3) 2.1 测量值 (3) 2.2.主要元器件介绍 (3) 2.2.1 555定时器 (3) 2.2.2 555定时器的电路结构及其功能 (4) 2.2.3 555定时器的应用分类 (5) 2.3电位器 (5) 2.3.1电位器的作用及特点 (5) 2.4蜂鸣器 (6) 2.4.1蜂鸣器的结构原理 (6) 2.5 发光二极管 (6) 2.6 相关性能指标计算 (7) 第三章 555定时器声光报警电路设计 (8) 3.1 硬件组成 (8) 3.2 电路原理图 (8) 3.3 印刷板电路图 (8) 3.4 555定时器声光报警电路原理 (9) 3.5 性能指标要求 (9) 第四章焊接及调试过程和注意点 (10) 4.1安装及焊接步骤 (10) 4.1.1查找资料 (10) 4.1.2焊接 (10) 4.2调试及调试的波形 (11) 4.2.1焊接好后的成品图 (11) 4.2.2实验波形 (12) 第五章心得体会 (13) 参考文献 (13)

第一章绪论 555定时器是一种结构简单、使用方便灵活、用途广泛的多功能电路。只要外部配接少数几个阻容元件便可组成施密特触发器、单稳态触发器、多谐振荡器等电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。555定时器是美国Signetics公司1972年研制的用于取代机械式定时器的中规模集成电路,因输入端设计有三个5kΩ的电阻而得名555定时器的电压范围宽,双极型555定时器为5~16 V,CMOS 555定时器为3~18 V。可提供与TTL及CMOS数字电路兼容的接口电平。555定时器还可以输出一定的功率,可驱动微电机、指示灯、扬声器等。它在脉冲波形的产生与变换、仪器与仪表、测量与控制、家用电器与电子玩具等领域都用着广泛的应用。 TTL单定时器型号的最后3位数为555,双定时器的为556;CMOS但定时器的最后4位数为7555,双定时器的为7556.它们的逻辑功能和外部引线排列完全相同。 555定时器可以说是模拟电路与数字电路结合的典范。 555定时器声光报警电路是一种防盗装置,在有情况时它通过指示灯闪光和蜂鸣器鸣叫,同时报警的一种装置。 555定时器声光报警电路是利用两个555定时器组成的振荡电路,实现异步工作,使两个振荡器间隙振荡,这样蜂鸣器就会发出间隙的声响,发光二极管闪烁。

最新555定时器及基本应用汇总

555定时器及基本应 用

毕业论文 论文题目 555定时器及其基本应用 系别物电系 专业物理教育 班级 08级物理教育班 学号 130809066 姓名李小沙 指导教师袁乐民 二O一一年五月一日

555定时器及基本应用 摘要:555定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为555,用CMOS工艺制作的称为 7555,除单定时器外,还有对应的双定时器556/7556。555定时器的电源电压范围宽,可在5~16V工作,最大负载电流可达200mA,7555可在3~18V工作,最大负载电流可达4mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。 关键词:555定时器,施密特触发器,多谐振荡器,单稳态触发器引言:随着电子技术的发展,尤其是消费类电子的日益普及,555定时器的使用量也在飞速增长。在购买和使用555定时器时,人们对555定时器的性能要求也逐渐提高。555定时器最重要的两个性能为电池的容量和电池的内阻,电池容量与电池内阻存在密切的关系。一般而言, 电池的容量越大, 内阻就越小。电池内阻的大小及其变化可反应电池内部的变化。电池内阻大,电池放电电压平台低,电池输出功率小,电池充电时电压高,高倍率快速充电时,电池会产生大量的热,使充电效率降低,降低电池性能。可见电池内阻的大小是衡量电池性能好坏的重要指标, 准确测量电池内阻具有重要意义。目前,测量电池内阻的方法主要有加载降压法、短路电流法、电桥法、交流电流法、双量程测量法、电位差计法等。这些方法各有利弊, 普遍问题是测量步骤较繁琐, 有些测量方法存在着不可忽视的测量误差, 甚至某些测量方法(因电池放电时间过长等)对电池的寿命有一定影响。本文将以论证的方式介绍一种较容易、准确测量电池内阻和电池容量的方法。 一、 555定时器简介

基于555定时器的电子琴设计

电子电路CAD课程设计 学生姓名:学号: 学校: 专业年级: 题目:基于555定时器的电子琴设计指导老师: 2011年12月24日

1 设计要求与任务 (1)学习调试电子电路的方法,提高实际动手能力; (2)了解由555定时器构成简易电子琴的电路及原理。 2 设计方案 本实验采用两个555集成定时器组成简易电子琴。整个电路由主振荡器,颤音振荡器,扬声器和琴键按钮等部分组成。 主振荡器由555定时器,七个琴键按钮S1~S7,外接电容C1、C2,外接电阻R8以及R1~R7等元件组成,颤音振荡器由555定时器,电容C5及R9、R10等元件组成,颤音振荡器振荡频率较低为64Hz,若将其输出电压U连接到主振荡器555定时器复位端4,则主振荡器输出端出现颤音。 按图接线后闭合不同开关即可令喇叭发出不同频率的声响,从而模拟出电子琴的工作。 3 实验器材 555定时器是一种中规模集成电路,外形为双列直插8脚结构,体积很小,使用起来方便。只要在外部配上几个适当的阻容元件,就可以构成史密特触发器、单稳态触发器及自激多谐振荡器等脉冲信号产生与变换电路。它在波形的产生与变换、测量与控制、定时电路、家用电器、电子玩具、电子乐器等方面有广泛的应用。

4 系统设计 4.1 总体框图 该电路包括按钮开关,定值电阻,555振荡器和扬声器三部分组成。 (1)输入端:由八个按钮开关与各自的定值电阻串联在并联组成输入端;(2)频率产生端:根据定值电阻的不同输入,由555产生不同的信号频率;(3)扬声器端口:接受信号频率发出特定的频率。 4.2 开关输入端 逻辑功能:八个开关与经计算出来的固定电阻串联后再其并联,给555震荡器产生不同的信号,从而产生不同的频率。

555定时器_电子课程设计解析

目录 摘要 (2) 1. Multisim软件的简介 (4) 2. 系统设计总体方案 (5) 2.1 设计基本思路 (5) 2.2 设计总流程图 (6) 3. 555定时器,CD4518和CD4011介绍 (7) 3.1 555定时器 (7) 3.2 CD4518 (10) 3.3 CD4011引脚图 (12) 4. 数字逻辑控制,脉冲信号产生,计数器计数和数码管显示模块电路图 (14) 4.1 数字逻辑控制模块 (14) 4.1.1 数字逻辑控制模块电路图 (14) 4.1.2 数字逻辑控制模块原理 (14) 4.2 脉冲信号产生模块 (15) 4.2.1 脉冲信号产生模块电路图 (15) 4.2.2 冲信号产生模块原理 (16) 4.3 计数器计数模块 (17) 4.3.1 计数器计数电路图 (17) 4.3.2 计数器计数模块原理 (18) 4.4 显示器模块 (18) 5. 电路的总体设计与调试 (19)

5.1 总体电路原理图 (19) 5.2 总电路工作原理 (19) 6. 课程设计收获与体会 (20) 7. 参考文献 (21) 摘要 本次课程设计利用555定时器以及数字逻辑芯片和数码管实现数字电子计时器功能,计时器显示0~99计数,在实际生活中应用很广。根据日常生活中观察,数字式计时器设计成型后供扩展的方面很多,例如自动报警、按时自动打铃等。因此,与机械式时钟相比具有更高的可视性和精确性,而且无机械装置,具有更长的使用寿命,所以研究数字钟及扩大其应用,有着非常现实和实际的意义。目前,数字计数器的功能越来越强,并且有多种专门的大规模集成电路可供选择。但从知识储备的角度考虑,本设计是以中小规模集成电路设计数字钟的一种方法。数字计数器包括组合逻辑电路和时序电路。

基于555定时器的函数信号发生器设计

2013-2014学年度第二学期电子技术基础课程 调 研 报 告 课题名称:基于555定时器的 信号发生器设计 专业:物理学 学号:********* 姓名:** ** ** 成绩:

1、调研任务与要求 设计一个信号发生器,独立完成系统设计,要求能实现以下功能: (1)能产生方波、三角波、正弦波 2、调研目的 (1)进一步巩固熟悉简易信号发生器的电路结构及电路原理并了解波形的转变方法;(2)学会用简单的元器件及芯片制作简单的函数信号发生器,锻炼动手能力; (3)学会调试电路并根据结果分析影响实验结果的各种可能的因素 3、设计方案论证 信号发生器一般由一个电路产生方波或者正弦波,通过波形变换得到其他几种波形。考虑到RC震荡产生正弦波的频率调节不方便且可调频率范围较窄,本设计采用先产生方波,后变换得到其他几种波形的设计思路。 采用555组成的多谐振荡器可以在接通电源后自行产生矩形波,再通过积分电路将矩形波转变为三角波,再经积分网络转变为正弦波。 4、555定时器的电路结构与工作原理

555 定时器的功能主要由两个比较器决定。两个比较器的输出电压控制 RS 触发器 和放电管的状态。在电源与地之间加上电压,当5脚悬空时,则电压比较器 C1 的同相输入端的电压为 2VCC /3,C2 的反相输入端的电压为VCC若触发输入端TR 的电压小于VCC /3,则比较器 C2 的输出为0,可使 RS 触发器置1,使输出端 OUT=1。如果阈值输入端 TH 的电压大于2VCC/3,同时TR 端的电压大于VCC /3,则 C1 的输出为 0,C2 的输出为1,可将 RS 触发器置0,使输出为0电平。 它的各个引脚功能如下: 1脚:外接电源负端VSS或接地,一般情况下接地。 8脚:外接电源VCC,双极型时基电路VCC的范围是4.5 ~ 16V,CMOS型时基电路的范围为3 ~ 18V。一般用5V。 3脚:输出端Vo 2脚:低触发端 6脚:TH高触发端 4脚:是直接清零端。当此端接低电平,则时基电路不工作,此时不论TR、TH处于何电平,时基电路输出为“0”,该端不用时应接高电平。 5脚:VC为控制电压端。若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰。 7脚:放电端。该端与放电管集电极相连,用做定时器时电容的放电。 在1脚接地,5脚未外接电压,两个比较器A1、A2基准电压分别为的情况下,555 时基电路的功能表如表1示。 表1

555定时器声光报警器设计

555定时器声光报警电路 学院名称计算机科学学院 专业计算机科学与技术 班级 2012级计算机科学与技术本科班 甘肃政法学院 2013年12 月3日

目录 绪论 (1) 第1章原理分析 (2) 1.1 原理图 (2) 1.2 能指标要求 (2) 1.3 电路整体分析 (2) 1.4 多谐振荡器电路 (3) 1.4.1电路构成 (3) 1.4.2 电路的工作原理 (3) 第2章器件说明与分析 (4) 2.1 555定时器 (4) 2.1.1结构图和管脚排列图 (4) 2.1.2组成 (5) 2.1.3 各个引脚功能 (6) 2.1.4逻辑功能 (6) 2.2 电位器 (7) 2.3 发光二极管 (7) 2.4 蜂鸣器 (7) 第3章焊接及成果 (8) 3.1 安装及焊接步骤 (8) 3.2 调试 (8) 3.3 焊接注意点 (9) 第4章实验总结......................................................................................... 错误!未定义书签。附录 .. (9) 参考文献......................................................................................................... 错误!未定义书签。

绪论 555定时器是美国Signetics公司1972年研制的用于取代机械式定时器的中规模集成电路,因输入端设计有三个5kΩ的电阻而得名。此电路后来竟风靡世界。目前,流行的产品主要有4个:BJT两个:555,556(含有两个555);CMOS两个:7555,7556(含有两个7555)。555定时器可以说是模拟电路与数字电路结合的典范。 555 定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为 555,用 CMOS 工艺制作的称为 7555,除单定时器外,还有对应的双定时器 556/7556。555 定时器的电源电压范围宽,可在 4.5V~16V 工作,7555 可在 3~18V 工作,输出驱动电流约为 200mA,因而其输出可与 TTL、CMOS 或者模拟电路电平兼容。 555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。 555定时器声光报警电路是一种防盗装置,在有情况时它通过指示灯闪光和蜂鸣器鸣叫,同时报警的一种装置。 555定时器声光报警电路是利用两个555定时器组成的振荡电路,实现同步工作,使两个振荡器同步振荡,这样蜂鸣器就会发出间隙的声响,发光二极管同时闪烁。

2021年555定时器的典型应用电路

*欧阳光明*创编 2021.03.07 555定时器的典型应用电路 欧阳光明(2021.03.07) 单稳态触发器 555定时器构成单稳态触发器如图22-2-1所示,该电路的触发信号在2脚输入,R和C是外接定时电路。单稳态电路的工作波形如图22-2-2所示。 在未加入触发信号时,因ui=H,所以uo=L。当加入触发信号时,ui=L,所以uo=H,7脚内部的放电管关断,电源经电阻R向电容C充电,uC按指数规律上升。当uC上升到2VCC/ 3时,相当输入是高电平,555定时器的输出uo=L。同时7脚内部的放电管饱和导通是时,电阻很小,电容C经放电管迅速放电。从加入触发信号开始,到电容上的电压充到2VCC/3为止,单稳态触发器完成了一个工作周期。输出脉冲高电平的宽度称为暂稳态时间,用tW 表示。 图22-2-1 单稳态触发器电路图 图22-2-2 单稳态触发器的波形图 暂稳态时间的求取: 暂稳态时间的求取可以通过过渡过程公式,根据图22-2-2可以用电容器C上的电压曲线确定三要素,初始值为uc(0)=0V,无穷大值uc(∞)=VCC,τ=RC,设暂稳态的时间为tw,当t= t w时,uc(tw)=2 VCC/3时。代入过渡过程公式[1-p205]

几点需要注意的问题: 这里有三点需要注意,一是触发输入信号的逻辑电平,在无触发时是高电平,必须大于2 VCC/3,低电平必须小于 VCC/3,否则触发无效。 二是触发信号的低电平宽度要窄,其低电平的宽度应小于单稳暂稳的时间。否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。此时单稳态触发器成为一个反相器。 R的取值不能太小,若R太小,当放电管导通时,灌入放电管的电流太大,会损坏放电管。图22-2-3是555定时器单稳态触发器的示波器波形图,从图中可以看出触发脉冲的低电平和高电平的位置,波形图右侧的一个小箭头为0电位。 图22-2-3 555定时器单稳态触发器的示波器波形图 [动画4-5] 多谐振荡器 555定时器构成多谐振荡器的电路如图22-2-4所示,其工作波形如图22-2-5所示。 与单稳态触发器比较,它是利用电容器的充放电来代替外加触发信号,所以,电容器上的电压信号应该在两个阈值之间按指数规律转换。充电回路是RA、RB和C,此时相当输入是低电平,输出是高电平;当电容器充电达到2 VCC/3时,即输入达到高电平时,电路的状态发生翻转,输出为低电平,电容器开始放电。当电容器放电达到2VCC/3时,电路的状态又开始翻转。如此不断循环。电容器之所以能够放电,是由于有放电端7脚的作用,因7脚的状态与输出端一致,7脚为低电平电容器即放电。 图22-2-4 多谐振荡器电路图图22-2-5 多谐振荡器的波形 震荡周期的确定: 根据uc(t)的波形图可以确定振荡周期,T=T1+T2 先求T1,T1对应充电,时间常数τ1=(RA+RB)C,初始值为uc(0)= VCC/3,无穷大值uc(∞) =VCC,当t= T1时,uc(T1)=2 VCC/3,代入过渡过程公式,可得 T1=ln2(RA+RB)C≈0.7(RA+RB)C 求T2,T2对应放电,时间常数τ2=RBC,初始值为uc(0)=2 VCC/3,无穷大值uc(∞) =0V,当t= T2时,uc(T2)= VCC/3,代入过渡过程公式,可得T2=ln2RBC≈0.7RBC 振荡周期 T= T1+T2=≈0.693(RA+2RB)C

相关主题
文本预览
相关文档 最新文档