炉温测量仪表应用现状简介1

  • 格式:doc
  • 大小:137.50 KB
  • 文档页数:6

下载文档原格式

  / 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

炉温测量仪表应用现状简介

【摘要】介绍了板坯加热炉发展历史和现况,加热炉的结构和自动化系统主要功能,加热炉控制技术的国内外发展现状,自动化系统的主流解决方案,需要解决的技术难题。并对加热炉控制技术的发展提出了作者自已的观点。

【关键词】加热炉数字脉冲技术蓄热换向技术 ACC 模型

三维监控钢铁工业是工业领域的基础产业,轧钢生产是钢铁工业生产过程中一个重要环节。轧钢生产中燃料消耗主要以加热炉为最多。作为能耗大户的钢铁行业对于节能降耗问题起着举足轻重的作用。这里面占整个冶金行业能耗四分之一强的加热炉工艺设备的节能降耗问题就摆在首当其冲的位置。随着加热炉生产工艺的不断完善和优化以及加热炉生产工业自动化水平的提高和计算机技术应用的不断普及,随着钢铁工业的大型化和自动化技术的发展;深入研究轧钢加热炉热过程的控制及应用计算机技术实现优化烧钢的计算机控制,不论从轧钢生产过程节能降耗、提高产品质量和产量方面看,还是从轧钢加热炉在钢铁工业生产中的地位看,都有着十分重要的现实意义。作为从事加热炉自动化控制工作的工程师,了解加热炉控制技术的现况和新技术的应用前景,将对我们在工程设计中选择合理的控制解决方案起着一定的参考作用。

1 板坯加热炉控制技术历史和构成

1.1 板坯加热炉发展历史和现状

加热炉作为轧钢厂中的重要热能设备,其功能主要把板坯加热成温度均匀的热坯,且能满足高质量轧制要求。1967 年4 月,由美国美兰德公司设计的第一座步进梁式加热炉问世;同年5 月,由日本中外炉公司为日本名古屋钢铁厂设计的步进梁式加热炉加热炉正式投产。从此,作为加热高质量的板坯的新型加热炉克服了推钢式加热炉固有的板坯水印温差和表面磨损等确定,确定了其在连续式加热炉的中流砥柱的地位。随着能源危机的迫近,如何节能降耗日渐成为加热炉行业一个焦点问题。1858 年,William Siemens 发明了蓄热室。1982年,英国的British Gas 公司和Hot work 公司开发出世界第一套蓄热式陶瓷燃烧器(Regenerativeceramic Burner),并将其成功地应用在玻璃炉窑上,取得了良好的节能、增产效果。随后,美国的北美制造公司(North American Manufacturingcompany)购买了该专利,迅速将其运用到轧钢加热炉、热处理炉等场合。在中国国内,1998 年9 月,江西萍乡棒材公司高线加热炉,由大连北岛能源技术有限公司和萍乡高线合作,领先将蓄热式烧嘴应用在工程实践中。从此,蓄热式加热炉以其节能效果明显而深受欢迎。截止2009 年8 月份,中冶赛迪公司分别为宝钢1880mm 热轧,武钢1580mm 热轧,本钢2300mm 热轧,太钢2250mm,承钢1780mm热轧机组以工程总承包或技术总负责的方式提供了蓄热式加热炉。与此同时,为提高加热炉质量,保证热负荷降低的情况下烧嘴的火焰钢度保持不变,数字化脉冲控制技术也日渐进入加热炉人的视野,日渐为人关注。法国斯坦因(Stein Heurtey)公司在前期发

展投入了很多的精力和时间。首先斯坦因(SteinHeurtey)公司致力于宽火焰烧嘴的研发,首先将该烧嘴运用在加拿大伊利湖钢厂420t/h 的加热炉上,于2000 年3 月建成投产。此外,斯坦因(SteinHeurtey公司将脉冲技术试图应用在板坯加热炉上。于1997 年11 月,它和德国第森克虏伯公司一起研究,将杜伊斯堡钢铁厂420t/h 的加热炉上的所有下部段改用脉冲控制技术,有效地改善了中间坯的温度均匀性和钢卷的特性。为此,斯坦因(Stein Heurtey)公司提出了数字型加热炉的概念并进行了专利申报(Digit@ Ⅰfurnace)。在数字型加热炉上,对每一个单独的烧嘴,都可以进行测试和调节,取消了段流量策略和控制,替代了传统的双交叉限幅的加热炉经典控制,并在美国的谢菲尔德钢厂127t/a 加热炉得到成功的验证。在中国国内,中冶赛迪在太钢2250mm 热轧的加热炉中,成功的开发具有独立知识产权的中冶赛迪加热炉控制软件(2009 年度冶金行业工程软件一等奖),将数字化脉冲技术成功的运用到大型不锈钢加热炉和蓄热式加热炉中去,并获得成功应用。板坯加热炉名称繁杂,种类较多,可大体分为:根据燃料分为:重油加热炉;混合煤气加热炉;高炉煤气加热炉和天然气加热炉。根据板坯在炉内的运动方式:分作推钢式加热炉;步进梁式加热炉以及辊底式加热炉;根据烧嘴加热炉形式:分为普通的平焰烧嘴、调焰烧嘴的常规加热炉;单(双)蓄热加热炉;根据加热形式:分为明火式加热炉和辐射管式加热炉。根据换向烧嘴控制技术:常规的双交叉限幅控制策略;模糊控制策略,脉冲控制技术和换向控制技术。

1.2 加热炉的结构和自动化系统主要功能

加热炉结构见图1。

冷坯或者热坯经炉前辊道精确定位到加热炉装炉侧,推正后由(推钢机)装钢机送到加热炉热回收段。在加热炉内,由步进梁根据过程计算机的指令有序地将逐步加热的板坯送到加热炉的均热段。被均匀加热的板坯输送到出口激光定位的位置时,步进梁继续前行完成这个步距然后挺下来或作踏步处理。接到轧机L2 的要钢信号后,基础自动化(L1)控制出钢机将加热炉后的板坯送到炉后出炉辊道上。这样就完成了一块板坯的自动化加热过程。加热炉自动化控制系统通常分为两级,由基础自动化(Basic Automation)和过程自动化(ProcessAutomation)自动化构成。加热炉L1 级:即基础自动化系统,主要完成加热炉的顺控、装钢机和出钢机的APC 控制、步进梁控制、加热炉燃烧控制、介质的测量和控制等。加热炉L2 级:即过程控制计算机系统,主要完成加热炉的材料跟踪、燃烧设定计算和数据处理及数据通信、班管理、报表打印等功能。自动化系统满足工艺和设备的控制要求。

2 国内外研究现状

自动控制原理(经典控制理论)和现代控制理论、系统参数辨识和大系统理论是加热炉的控制技术的理论基础。从发展顺序和控制水平进行归纳,加热炉燃烧控制水平大体上经历了以下两大阶段:第1 阶段为常规燃烧控制:以提高利用效率、维持合理空燃比为目的,实现燃烧过程的基础自动化控制,达到控制加热炉炉气温度;第2 阶段为以优化钢坯加热过程为目标,实现炉温或者燃烧量的过程自动化控制(以板坯温度为控制目标);

2.1 常规燃烧控制

早在上世纪五十年代,世界各国就开始对轧钢加热炉热过程及板坯加热过程进行较为深入的研究。在以后的四十多年来,各国学者做了大量的工作,并取得一定的研究成果,但他们的关注的重点是炉内辐射换热和钢坯加热。近二十年来,控制工程师已不满足于炉内辐射换热和钢坯加热过程的离线数值计算,而是把离线模型在线化,并把他们应用到计算机控制中去。在60 年代以前,一些设备齐全的大型工业炉上配置了炉温策略热电偶,炉压测量变送器和流量测量仪表外,还设置了炉温、炉压、燃烧量、空气量等重要控制回炉的PID 调节器,以经典控制理论为依据,实现单个参数的自动调节,同时进行人工现场操作控制完成加热炉的监控。这一阶段主要体现在“以人为本”上。在国外,70 年代以前,加热炉控制的理论研究主要停留在以加热炉炉温控制为目标的燃烧控制上。即控制技术主要体现在基础自动化(L1)级别上。其标志为发展完善了经典的常规加热炉自动控制:加热炉炉温自动控制;加热炉炉压自动控制和换热器自动控制。炉温自动控制集中于炉温控制器和流量控制器构成的串级控制系统:经历了单纯比例控制的串级燃烧系统,燃料,空气的单交叉限幅控制系统(SCL),燃料,空气的双交叉限幅控制系统(DCL)。炉压