当前位置:文档之家› 热量表设计选型及安装使讲解

热量表设计选型及安装使讲解

热量表设计选型及安装使讲解
热量表设计选型及安装使讲解

热量表设计选型及安装使用相关问题探讨

供热分户计量收费的改革工作已经启动。随着推广工作的大面积展开,热表的选型、安装问题将逐步暴露出来。根据欧洲的热量计量工作经验,许多问题都是由于热表安装和使用不当造成的。在德国70年代末和90年代初两个热表安装的高峰期内,各有约30%的热表在安装方面存在问题。一些热表的温度传感器安装不合格,由此造成供热部门5%~20%的收费损失,也增加了用户与热力公司的纠纷。由此可见,热表的安装问题非常重要,我们应该从起始阶段就予以足够的重视,以免在出现大量问题后再回过头来修正,造成人力、物力的浪费;同时,也避免由于对技术、管理上的细节问题处理不当而使人们对热量计量失去信心,进而影响到整个供热收费改革的进程。

以下就热表的设计选型及安装使用中的注意事项作一简单介绍,并就有关配套管理规定提出建议。

1 设计中应注意的问题

1.1设计选型

在设计选型时,应根据供热系统的运行条件及环境状态来确定热表的型式、尺寸、准确度及环境等级等参数。其中涉及许多的因素,主要应注意考虑以下几点。

1.1.1热表型式

热表包括3部分:流量传感器、配对温度传感器和计算器。常见的热表有机械式、电磁式、超声波式、振荡式等等。一般来说采用机械式流量计量的热表的价格会比采用非机械式流量计量的热表低;但非机械式热表的精度及长久稳定性要比机械式的好,相应的故障率及运行维护成本也就比机械式的低。选用时应综合考虑一次投资及维护保养等成本。

1.1.2系统压力

供热采暖系统中一般采用的系统压力有PN10,PN16和PN250热表的设计制造也是按此分级进行的,可根据系统压力选用相应额定压力的热表。如果管道内的压力波动超过1.5倍额定压力的话,热表的流量测量元件有可能会受到损坏。

1.1.3介质温度

介质温度涉及供回水的最高、最低温度及最大、最小温差。如果介质温度及供回水温差超出热表的使用范围,有可能导致测量误差超标或造成热表的损坏。

1.1.4流量及管径

系统流量是热表选型的最重要参数之一。通常,管径与管内流量是相互对应的。对于一个设计合理的系统而言,其管道直径与热表的口径可能非常接近或相同。但二者并不一定等同。一些设计人员习惯于按系统管径来选用热表,这是错误的。因为,选用热表的主要参数是系统流量而不是系统管径,应该按照流量大小来确定热表的型号。

热表的流量参数包括额定流量及最大、最小流量。一般最大流量为额定流量的2倍,最小流量为额定流量的1/50或1/1000为了保证热表的正常工作及测量精度,必须使热表的额定流量与系统管道中最可能的运行流量相近,同时还应注意使热表的最小流量小于系统管道的最小流量、热表的最大流量大于系统管道的最大流量。

鉴于工程设计中通常计算的是最大负荷状态下的流量,而在实际运行中多数情况F的流量都远远小于这个流量,所以,有时按照最大设计流量的80%来确定热表的额定流量往往更符合实际运行要求。国内以往设计时采用的系统管内流速较低,管径偏大,所以按流量方式选择的热表的口径往往会比系统管道口径小。在这种情况下,建议采用变径措施。因为如果采用与管径相同的大口径热表,热媒通过流量计量装置的流速过低,有可能影响到计量精度。此外,热表口径越大,价格越高,有时热表口径大一号,其售价会高很多,所以应尽量避免不必要地增大热表口径。

1.1.5电源

热表的供电方式有电池供电和外接电源供电两类。电池方式一般采用鲤电池,寿命6~12年不等;外接电源包括AC230V,24V及配24V等。应根据具体工程项目情况来确定热表的电源配置。在国内,由于市电电网掉电比较频繁,建议采用电池供电方式,小型户用热表尤为如此。对于电源有保障的项目,也可采用市电供电方式。在一些设有楼宇自控系统的项目上,采用与自控系统相同的24V外接电源也不失为一种好的选择,可以节省布线费用。对于换热站内的大口径热表,如果采用外接市电电源,应考虑掉电保护措施。

1.2系统布置

在系统设计阶段还需认真考虑热表的安装位置及其它安装要求,以便于热表的安装施工及日后的使用和维护管理。

1.2.1安装位置

根据流量传感器与计算器是否可以分离,热表分为组合式及整体式两种型式。整体式热表的计算器与流量传感器合为一体,不可分离,只能随流量传感器安装在管路上。而组合式热表的计算器则既可固定在管路上,也可安装在墙上或仪表箱内。热表的参数显示在计算器面板上,所以在确定安装位置时,必须注意保证能够方便读数;同时,也应注意给热表(特别是计算器)提供一个较为温和、干净及安全的工作环境。对于管内水温高于90℃的情况,热表的计算器必须安装在墙面或仪表盘上。

热表属于精密仪表,工作时需进行采样、信号传输、数据计算及存储等,为减少外界对数据信号的干扰,应注意使其尽可能避开具有强电

磁场的环境。计算器应与其它机电设备保持一定距离。

在国外热表的流量传感器一般都建议安装在回水管上,这主要是从热表的工作条件考虑的,有时也会考虑一些参数的设定、修正等。如果要安装在供水管上的话,可以事先提出要求。在国内,为了防止盗热现象,一些热力公司或物业管理公司希望把热表安装在供水管道上。在这种情况下,要注意厂家对安装位置的规定,如果需要,应在订货时就予以明确说明,以免发生差错。

热表的配对温度传感器分别安装在供/回水管内。对于户用的小热表,一些厂家提供一种把回水温度传感器集成在流量传感器上的产品,

可以减少位置空间及安装工作量。另外还提供一种可以直接插入温度探头的球阀,不但方便安装,还可以避免为了更换探头而必须将整个管路

排空,具有很大的便利性。

为了确保计量精度,热表各部分之间的连线长度都是精心设计的,

不可随意更换或延长。为此,在设计热表安装位置时,还必须考虑供、回水管路的相对间距,以保证供/回水温度传感器的连接。在计算器表盘与流量传感器分体安装时,其允许连接长度问题也应有所考虑。

如果热表安装在两个供热环路(例如一套住宅内的供暖及生活热水)的公共回水管上的话,安装位置应距三通接头有足够远的距离(10倍管

径长),以使两个回路的热水能够充分混合。

1.2.2安装方向

热表的流量传感器一般都对安装方向有所要求,这种要求的严格程度与热表的型式有关。一般来说,旋翼式的机械式热表最好水平安装;螺翼式的可以水平或垂直安装;超声波热表的要求较为宽松,水平或垂直

安装均可。设计中应注意厂家样本上对安装方向的规定。

1.2.3直管段

为了使热媒较为均匀地通过热表的流量传感器,机械式热表要求表前有8~10倍管径长的直管段及表后有6~8倍管径长的直管段;超声波及振荡式热表对此元要求。

1.2.4配套部件

热表是一种计量器具,为了便于日后标定检测或更换热表,在流量

传感器前后应各设一个关断阀门。

热表对水质有一定的要求,其中机械式的热表受水质的影响较大,

所以必须在表前配过滤器。相对而言,非机械式的热表对水质的要求较低,但鉴于国内二次网的水质较差,建议最好考虑设置过滤器。

1.3 连网通讯

热表一般都设有数据通讯接口,以便于实现远程读数和集中计费。目前常用的通讯接口及系统包括光电接口、M一总线、脉冲输出、无线通讯等。

M-总线系统是欧洲标准的计费系统,具有简单、经济、可靠等特点,在中国也有成功的应用;无线通讯方式避免了大量的室内布线,特别适用于|日建筑内的系统改造;脉冲输出也是常见的方式,可以很方便地与各种楼宇控制系统集成。目前的趋势是越来越多地采用连网通讯系统。这样不但可以节省计费读数的工作量、减少人为误差,同时还可避免人室读数对住户的干扰。但是,设置连网通讯系统必将增加技资,所以不可盲目攀比,一味追求高级配置。应根据项目条件考虑是否采用集中计费系统。

2 安装过程中应注意的问题

2.1安装前的准备

必须在系统管道安装完毕并彻底清洗后方可安装热表。管道施工阶段及冲洗过程中建议采用管段替代热表(厂家有供,也可自己加工)。在热表安装过程中及安装后,不得再在管路上进行焊接或类似工作。

2.2流量传感器的安装

安装流量传感器前应注意检查两端连接管的对中情况,避免流量传感器受到扭曲或剪切应力的作用。流量传感器有流向的要求,必须注意使热水的流动方向与流量传感器上的箭头指向一致。对于一些大口径的热表,其流量测量装置的重量有可能较大,应注意对其或对管道采取相

应的支撑措施。

2.3温度传感器的安装

热表上的供/回水温度传感器必须经过测量选择配对,这是保证热

表精度的必要条件。所以在安装过程中,切,忌将厂家配套提供的配对温度传感器拆散混用。更不得将厂家预装的传感器电缆劈开、缩短或延长。

应选择管内水温比较均匀的位置安装温度传感器。施工中应注意使供/回水温度传感器具有相同的安装条件。另外,还应注意温度传感器不宜安装在管路上的高凸段,以避免管内集气影响测量。

通常,温度传感器可以安装在T型接头、球阅或套管内。应根据温度传感器敏感元件型式、长度及管道口径大小来确定温度传感器的安装方法及插入深度。具体安装方法及要求见图10热表厂家一般都有完整的安装配件可供选用,建议尽量采用厂家配套的保护套管及安装配件,

这样不但可简化安装,还可保证安装位置及热传导的质量,有利于热表

的精确运行。

2.4计算器的安装

计算器的安装应便于读数与操作,可水平(从上面读数)或垂直(从

前面读数)安装。注意液晶显示数据应始终保持水平正向。如果字符朝下,不仅影响查看,还会缩短电池寿命。

计算器上配用的电源及通讯模块一般都是即插式的,不需内部接线,也不需特别设定。

如果热表采用外接电源或连网通讯,必须严格按照说明书的要求进行外部接线。一般不需要额外的屏蔽、接地等保护措施,但对雷击多发区应注意热表外的防雷击措施。采用230V外接电源时,外接电源上必须设有相应的熔断保护,熔断器的负载大小应按厂家规定选取。

2.5整定与铅封

热表安装后,应将热表前后的关断阀门完全打开对系统进行彻底的排气,避免热表流量、温度测量部件内集存空气。然后检查热表的温度及流量测量值是否大致与现场实际相符,必要时可相应调节系统流量。

一般来说,热表的各种参数都是预先设定好了的,不需、同时也不应随意改动。只有在一些特殊的情况下才需要进行一些整定,例如对采用外接电源的热表整定当前实际时间,对连网通讯的热表设定地址或用户代码等。整体热表安装过程中,有可能因某些信号暂时中断而使热表d

垂直安装给出故障显示,应清除故障显示,使计算器上的显示屏返回到

用户显示层。

在热表正式投人使用前,一定要对所有可能影响计量的可拆卸部件进行封印保护。需要进行封印的部位一般包括温度传感器/流量传感器与管道的连接,计算器的接线端口、电源模块及外部连接,某些整定按钮或触点以及热表的面板等。

最后,要记录下热表目前的热量、流量累计读数及运行时数等。

2.6 保温

对于有保温要求的系统,安装热表温度/流量传感器的管段也应按照系统管路的保温要求进行保温处理。

3 运行维护申应注意的问题

总的说来,热表是免维护的。大多数热表都具有自诊断功能,能够自动检测并发现温度测量、流量测量及电源等故障并作出相应记录及显示。这些故障通常包括两类:一类是暂时性的,热表只记录故障代号,计量累计工作仍在继续进行;另一类是功能性的(例如热表部件遭到人为破坏),在此情况下,热表无法继续进行计量累计工作。热表将在计算器非易失存储器内记录下故障类型及发生时间,以供日后考虑采用替代计算方法估算故障期间所耗热量时参考。在出现功能性故障的情况下,必须首先排除故障,然后通过服务按钮清除错误显示,使热表回到正常运行/显示状态。与普通自来水表相比,热表的工作条件较恶劣(水温高、

水质差),而且是持续运行,难免会出现故障。所以供热公司或物业部门有必要制定相应的维护检查制度,加强热表的检查维护。

通常的例行检查除安装条件及环境状态外,还应包括检查所有封印是否完好;热表工作状态是否正常;带有远程读数系统时,应核对热表就地显示的累计值是否与远传计费中心读取的数据相同,热表地址、密码是否正确;同时记录热表读数。此外还应检查,并在需要时清理或更换过滤网。

对于无法继续正常工作的热表,必须立即更换。更换前应注意从现场查找故障原因,因为一旦拆下热表,许多故障原因往往无法再被识别。

在日常维护保养中还应注意以下几点:

①热表所带的组电池一般是不可再充电的,到期必须更换。更换电池时应注意只有在所有显示字符完全消失后方可装入新电池。废旧电池的处理应考虑环保的要求。

②有关的标定标牌或封印不得损坏或取下。否则标定失效。各种用户封印只能由有授权的人员在需要的情况下开启,随后必须再次铅封。

③如果需要拆下流量传感器,只能在拆卸前关闭流量传感器前后的阀门,以避免因高温引起热表内压力过高。

4 有关配套政策问题

为使以上技术要求得以贯彻实施,必须要有相应的规章制度来保证。目前,有关部门正在制定热表标准及检测规程,有关热量价格及结算收费的政策亦在讨论之中。笔者认为,除了这些政策、规程外,目前还急需制定或完善以下几个方面的规定:①制定严格的水质标准;②供暖设计规范中增加分户热计量内容;③制订热表安装及维护规程。

5 小结

供热收费改革是一项复杂的系统工程,涉及方方面面的因素。热表的选用及安装是其中的一个重要环节,必须予以足够的重视。否则,将会导致使用中出现问题,造成供/用热方之间的矛盾,进而影响到整个供热分户计量收费改革的进程。

超声波热量表的施工安装要点及相关技术要求

超声波热量表的施工安装要点及相关技术要求 超声波流量传感器是通过波在介质中的传输速度在顺水流和逆水流方向的差异,而求出介质流速的方法来测量流量。按传感器水流通道方式,超声波流量传感器分单通道式和U 形管式。 超声波式热量表选用主要控制参数为:公称直径DN、常用流量、最大流量、最小流量、额定压力、最大压力损失、温度范围、温差范围等。超声波热量表的初期投资相对较高,仪表的流量传感器具有精度高、压损小、不易堵塞等特点,但流量传感器的管壁锈蚀程度、水中杂质含量、管道振动等因素将影响流量计的精度。 超声波热量表施工安装要点 1. 当使用分体式热量表时,积分仪与流量传感器的距离不宜超过10M。 2. 气泡对准确测量干扰很大,不能安装在管道最高处。 3.安装时远离交流电和高频输射源,避开高温辐射源、阳光直射。 流量传感器的安装 1) 热量表的流量传感器必须安装在一次网的供水管道上。 2) 热量表的流量传感器应安装在直径等于其公称直径的管道上,并且在前、后端分别留有规定长度的直管段(以厂家产品技术说明书为准,一般表前为公称直径10倍的直管段,表后为公称直径5倍的直管段,直管段范围内无其它任何测温、测压、过滤器、阀门等元件)。 3) 在安装流量传感器时应考虑留出便于读数和维修的空间,强烈建议在表体下游满足直管段后安装管道伸缩器,便于热量表的安装及校验。 4) 安装时必须按照流量计管段上水流指示箭头方向安装,并建议在流量传感器前后安装阀门,便于检修。 5) 热量表可以水平、垂直安装,但水平安装时两换能器应在同一水平面上,防止供水沉淀后的淤泥沉积于低处换能器影响信号传输,垂直安装时水流方向必须为从下而上;流量传感器前端应安装过滤器(必须满足表体的前直管段要求)。 温度传感器的安装 1)温度传感器必须安装在流量传感器规定的直管段以外;安装温度传感器管道处的水温须均匀。在安装与流量传感器处于同一根管上(供水管或回水管)的温度传感器时,最好将它安装在流量传感器的后端(下游)。 2)温度传感器不宜安装在管道较高的位置上(可能不充满液体),安装时要与管道中心轴面相垂直。 3)确定温度传感器插入管道的长度,应以使其中热敏元件位于管道中心并偏下的位置为原则。 4)在不影响热计量精度的前提下,建议在同一管道上安装双金属玻璃温度计或其它现场温度计。 热量积分仪的安装 1)积分仪所处位置的环境温度不能超过生产厂家标明的使用环境温度范围。

采暖、空调系统中组合式冷热量表的安装

采暖、空调系统中组合式冷热量表的安装 组合式冷热量表目前在采暖、空调供热(冷)工程中已普遍使用,但施工安装还没有统一的国家规范和标准,文章阐述了目前常见的冷热量表形式、组成、安装方法和注意事项。 组合式冷热量表已普遍使用在新建和扩建工程供热、供冷或冷共用管网的热(冷)量分户计量中,目前施工和安装还没有统一的规范和标准,常因安装不当造成计量不准确,本文就组合式冷热量表的安装谈一些实践经验。 1 冷热量表的形式和组成 组合式冷热量表主要由流量计、温度传感器、计算仪等三部分组成,这三个部可以看成是三个独立的部件。流量计安装在供水或回水管道上,输出信号用于反映管内流体流量,常见的流量计有机械式、电磁式、超声波式、振荡式等多种;温度传感器是配对的两支铂电阻温度探头,分别安装在供水、回水管道上,采集供水、回水温度并发出信号;计算仪(计算器、积分仪)用来接收来自流量计和温度传感器的信号,并进

行处理、计算、显示出所消耗的热量(或冷量),可通过切换显示出流经管道累积水流量和累积工作时间、供水和回水温度等参数。 组合式冷热量表按流量计、温度传感器、计算仪三部分的组合不同可分为一体型、分离型和半分离型。一体型冷热量表是把流量计、供水回水温度传感器和计算仪做成一个整体;分离型冷热量表是把流量计、供水温度传感器、回水温度传感器、计算仪全部分开安装;半分离型(紧凑型)是将流量计和进水温度传感器做成一体,计算仪单独安装或与流量计固定在一起,回水温度传感器单独安装。 2 冷热量表的安装 图1所示是组合式冷热量表的几种安装方式,其中图 1a是一体型冷热量表的安装,只需将供、回水管,按冷热量表上的接口标识分别接好即可,安装简单,无需调试,可减少位置空间和安装工程量,其掩埋式的温度传感器避免了“窃能”的可能。现仅对分离型和半分离型各组成部分的安装作一介绍。

如何选购热计量表的种类及其型号

如何选购热计量表的种类及其型号 一、热计量表主要由流量传感器、配对温度传感器和计算器三部分组成,如果三个部分是不可分开的,称之为一体式热量表,反之则称之为组合式热量表。按流量传感器形式的不同,热量表还分为叶轮式、超声波式和电磁式三种型式,以下分别介绍: 1. 叶轮式热量表 叶轮式热量表是通过叶轮的转速测量热水的。按内部结构由易到优又分为单流束式、多流束式和标准机芯型多流束式三种。叶轮热量表在规格上从小口径到大口径已形成系列化,能满足不同使用范围的要求。因为叶轮式中有可动部件,所以对供热介质的要求较高,通常在安装上要求配套过滤器,以防备杂质对表的损伤。但因其测量原理和结构相对简单,所以价格较低。是适合我国国情的首选热量表。 2. 超声波式热量表 超声波式热量表是通过超声波射线的方法测量絷不的流量,其测量腔体内部没有任何可动部件,所以对介质的成份或杂质含量没有要求。其使用寿命可达20年以上,是当今最先进的热量表。但它的可测量范围不是很大(通常不大于DN65),所以它非常适用于小口径的采用老式供暖设施(铁管、铸造铁暖气片)中含铁锈水和杂质含量高的场合。 3. 电磁式热量表 电磁式热量表是按法拉第定律测量热水的流量,与超声波一样其内部也没有任何可动部件。唯一不同之处是它对供热介质的电导率有要求(>10uS/cm,较洁净的水可达到要求)。因其结构原理复杂、价格较高,所以通常不适于用户计量,而广泛应用于大口径的楼宇或工业计量上。 二、热量表的选型 1. 规格 热量表具体选用规格大小不应简单地仅从管道口径的大小来进行,而应根据表的工作能力的大小来选取。这样一方面可使表工作在一个准确的范围内,另外也可降低因采购不准而引起的购表费用。具体可从二个步骤进行: 1)功率我国民用住宅或办公楼的供暖功率通常按80~100kW/m2设计,所以可按实际面积的大小首先计算出所需多大功率的热量表。 2)公称流量根据上步计算出的功率值,求出应选用表的公称流量值:根据计算公称流量值选取对应规格热量表。 2. 压力损失 热量表引起的管网压力损失量与流量的大小成反比,表质量的好坏具体现出压损值的大小。按标准要求,在公称流量下压损值不得大于0.025MPa,好的进口表此值通常不大于0.01 MPa,所以因采用口径较小的表不会给管网压力带来影响。

超声波热量表

超声波热量表 使 用 说 明 书 地址:唐山市路北区创业服务中心211号 电话: 传真: 网址: E-mail:

一、概述 超声波热量表是参考欧洲标准EN1434 和OIML-R75号国际规程开发设计的高性能、低功耗电子式测量仪表,用来测量和显示载热(冷)液体流经冷热交换系统释放(吸收)热量。 超声波热量表由流量传感器、微处理器和配对温度传感器组成。微处理器通过流量传感器得到流量信号,从测温电路得到出口和入口水温信号,根据标准热量计算公式计算出系统交换的能量。 用户可选用具有M-BUS通信接口或无线传输通信接口的RLB-C型超声波热量表,超声波热量表可和采集器、集中器以及配套软件组成远传抄表管理系统,管理部门可以随时抄取表中数据,方便对用户用热量的管控。 超声波热量表符合国家建设部颁布的CJ128-20XX《热量表》产品标准。M-BUS接口或无线接口通讯协议符合建设部CJ/T188-20XX《户用计量仪表数据传输技术条件》的要求;无线数传模块符合工信部无[20XX]423号《微功率(短距离)无线电设备的技术要求》。 二、性能特点 1、低电压报警。 2、自动数据纠错技术。 3、温度传感器断路和短路报警。 4、高清晰度宽温度型LCD显示。 5、流量分8段校准,准确度高。 6、超低功耗(静态功耗小于7uA)。 7、管段为直通一体结构采用锻压工艺制造而成。 8、测量机构无运动部件,永无磨损,计量精度不受使用周期影响。

9、具备光电接口,采用红外工具可以实现抄表。 10、安装极为方便,水平或垂直安装。 11、数据传输采用M-BUS或无线传输通信接口,通信距离远。 三、使用方法 1、超声波热量表一直循环显示: 累积热量:累积 XXX kW·h 累积流量:累积 XXX。XX m3 瞬时流量:瞬时 XXX。XXX m3/h 温度:入口 XX。X 出口 XX。X ℃ 温差:温差X。X K 累积工作时间:累积 XXX h 2、数据通讯(不带数据通讯的仪表无此功能) 用户可选用具有M-BUS通信接口或无线传输通信接口的RLB-C型超声波热量表,配合采集器、集中器、管理软件等可实现远程抄表。不同数据通讯接口的仪表选配相应采集器。使用前在上位机建立地址档案,表地址出厂时已设定(仪表ID号为12位数字编码),由热量表、集中器、采集器、上位机等组成的集中抄表系统组建完成后,管理部门就可以随时抄取表中数据。

换能器及热量表的原理及设计

换能器及热量表的原理及设计 今天为大家介绍一项国家发明授权专利——一种换能器及热量表。该专利由杭州三花研究院有限公司申请,并于2017年7月11日获得授权公告。 内容说明本发明涉及热交换领域,更具体的说,涉及一种换能器及热量表。 发明背景超声波热量表是利用超声波换能器发射与接收超声波,通过测量超声波在顺、逆流的时间差计算流速的。超声波换能器是超声波热量表的一级传感器,超声波换能器的好坏直接决定了超声波热量表的质量。 一般情况下,超声波换能器是采用压电陶瓷片的压电效应和逆压电效应将电信号转换为超声波信号,经过管段中流动的水后,再将超声波信号转换为电信号。压电陶瓷片的工作环境是高温、高压、浸泡在水中,不经过封装的压电陶瓷裸片,无法在这样的工作环境中正常工作。现有技术中,都是将压电陶瓷片封装上外壳。 超声波换能器的性能参数,如谐振频率,机电耦合系数,机械品质因数、阻抗特性、指向性等,都与压电陶瓷片/的封装工艺有关。不同的封装会导致这些电性能参数不同程度的偏移,进而影响发射与接收效率。另外,压电陶瓷片的封装外壳要保证压电陶瓷片工作在高温、高压、浸泡在水中等恶劣的工作环境中正常使用,不会损坏。因此,压电陶瓷片的封装工艺对超声波热量表的测量精度和正常使用至关重要。 换能器一般采用圆柱形的薄片压电陶瓷片,正反两面分别是正、负电极。现有的压电陶瓷片封装方式是用导电胶将压电陶瓷片与薄膜外壳粘合。现有的换能器技术存在的缺点:压电陶瓷片因长期浸泡在水中或在湿度较大的环境中工作,且容易受外界环境的高温、高压以及静电的影响,信号准确率低且寿命较短。 发明内容本发明的目的之一在于:为解决上述现有技术所述的缺陷提供一种换能器;本发明的目的之二在于:解决上述现有技术所述的缺陷提供一种换能器的封装工艺;本发明的目的之三在于:为解决上述现有技术所述的缺陷提供一种超声波热量表。 本发明为解决上述现有技术的缺陷,提供了一种换能器,包括压电陶瓷片和封装所述压电陶瓷片的外壳和底座,所述外壳为一端开口的壳体,所述壳体内侧底部涂有粘胶,所述压

超声波热量表安装原则

一、管段式超声热量表安装原则 1.直管段要求 热量表的安装位置、被测管道的状态均对测量精度有影响,因此选择满足下列条件的场所。 ?上游侧10D,下游侧5D以上的直管段;若安装管道遇到缩管、扩管、弯头等阻流连接件时,请选择合适的安装位置。 ?上游侧30D以内,确保无扰动流动的因素(泵、阀、节流孔等)。 最短直管段长度表(D为公称直径)

2.建议安装位置 ?首选液体向上(或斜向上)流动的竖直管道,其次是水平管道,尽量避开液体向下(或斜向下)流动的管道,防止液体不满管。 ?安装位置不要选在管道走向的最高点,防止管道内因有气泡聚集而造成测量不正常(如下图所示)。 安装位置示意图 ?热量表在水平管道上安装时,仪表面板要保持水平,特殊情况需要倾斜时,倾斜角度不超过30°。 ?管段式超声热量表具体安装方法因热表种类而有区别,热表及热表温度传感器具体安装方法可参考热表厂家说明书。

二、户用超声热量表安装原则 1.户用超声热量表安装在液体向上(或斜向上)流动的竖直管道,其次是水平管道,尽量避开液体向下(或斜向下)流动的管道,防止液体不满管。 2.安装位置不要选在管道走向的最高点,防止管道内因有气泡聚集而造成测量不正常。 3.传感器在水平管道上安装时,仪表面板要保持水平,特殊情况需要倾斜时,倾斜角度不超过30°。 4.安装时注意管道水流方向与表具上的箭头指示方向一致。 5. 表具进水口前必须安装过滤器及表前阀门;过滤器必须定期进行清洗维护,以避免杂质堵塞影响正常使用。 6.注意表具的供水口必须保证不小于管径10倍长度的直管道,回水口必须有不小于管径5倍长度的直管道。

热量表的安装

参考医学 超声波热量表、电动温控阀安装 超声波热量表的安装及注意事项 配置:超声波热量表、测温球阀、电动温控阀、热量表配套活接、过滤器、手动球阀(或锁闭阀)(1)热量表、测温球阀、电动温控阀安装示意图 (2)施工条件 A)系统及过滤器杂质排除干净,管道系统中无杂质; B)安装热量表的环境中无漏水情况,相对空气湿度不超过85%。 C)超声波热量表调试,必须要从过滤器排污,排污时将热量表用塑料袋套住, 防止排污泄水导致热量表进水损坏。 (3)热量表安装 1?安装位置:热量表按设计安装在进水管(供水管)。电动温控阀安装在回水管测温 球阀后。 A,热量表要安装在合适的位置,以便于操作、读取与维护维修 B,热量表上的铅封不能损坏。如损坏生产厂商将不再承担质量和准确度保证。 参考医学 C,安装时应严格要求,谨慎操作,防止人为损坏。

D,超声波热量表可水平或垂直安装,垂直安装时,应使进水方向由下进水; E ,热量表禁止安装在管道的最上端,防止局部管道集气造成计量不准; F,安装热量表前,应先确认区分供、回水管以及水流方向;热量表壳体上箭头所指方向为水流方向,不得装反; 2.安装环境: a.热量表要求使用环境相对干燥,湿度较低为宜. b.安装在管道井内,管道井地面应有防水处理; c.热量表安装时应避免在表的上方有各种供回水管道,防止漏水造成热量表损坏; d.同一个管井安装多块热量表时,应使热量表安装位置在垂直方向错开(相互平行或并排),避免上下叠加的安装方式造成上面漏水下面进水的结果; 3.热量表的搬运及拿放: 热量表属于比较贵重精密仪表,拿起放下时必须小心 a.轻拿轻放,避免碰撞; b.禁止提拽表头、传感器线;禁止挤压测温探头; c.严禁靠近较高温度热源如电气焊,防止电池爆炸伤人以及损坏仪表; 4.热量表温度传感器的安装方式: 热量表的温度传感器共有两只(进水和回水),安装时应将红色标签的温度传感器安装在进水管上(通常在表体测温孔内),另一只兰色标签的温度传感器安装在回水管上,安装温度传感器的步骤为: a)取下温度传感器上的防水胶圈塞进侧温座孔内; 参考医学 b)再将温度传感器装进测温座孔并上紧(以防止漏水或未经许可的人员打开);

热量表选型---面积估算常用流量

根据面积粗略估算常用流量及口径的方法如下两种: 一、根据面积估算常用流量: 1、为保持室温16℃~18℃,通常每小时需要向室内散入80大卡/m2(或0.33*106焦耳/ m2) 的热量; 2、热量单位换算: 1大卡=4.184*103焦耳; 1kW?h=3.6*106焦耳 3、如果房间为140m2,那么每小时需要散热46.2*106焦耳(或12.8 kW?h); 根据瞬时热量计算公式: 瞬时热量=瞬时流量×温差×热系数 假定进回水温差为5℃(热能表要求的温差范围为3~70℃,所以在此选用5℃的温 差为参考值基本能得到最高的常用流量),那么 12.8 kW=瞬时流量×5℃×1.1 (粗略计算时可认为热系数≈1.1) 瞬时流量=12.8 kW/(5℃×1.1)≈2.32m3/h 如果按2.32m3/h作为常用流量,应选用常用流量为2.5m3/h的DN25口径的热能表; 4、如果房间为200m2,那么每小时需要散热66*106焦耳(或18.3 kW?h); 根据瞬时热量计算公式: 瞬时热量=瞬时流量×温差×热系数 假定进回水温差为7℃,那么 18.3 kW?h=瞬时流量×6℃×1.1 (粗略计算时可认为热系数≈1.1) 瞬时流量=18.3 kW?h/(6℃×1.1)≈2.77m3/h 如果按2.77m3/h作为常用流量,也可选用常用流量为2.5m3/h的DN25口径的热能表; 二、流量估算公式: Qn=0.080×A/(T进-T回) 其中,Qn —房屋中实际流量(单位:m3/h) A—房屋的面积(单位:m2) T进—进水温度(单位:℃) T回—回水温度(单位:℃) 这个公式是把《暖通、空调设计手册》中引用的一些复杂的参数简化而得来的。 根据公式:如果房间为140m2(温差为5℃): Qn=0.080×A/(T进-T回)=0.08×140/5=2.24m3/h(常用流量为2.5m3/h的 DN25口径的热能表) 如果房间为200m2(温差为6℃): Qn=0.080×A/(T进-T回)=0.08×200/6≈2.67 m3/h(常用流量为2.5m3/h的 DN25口径的热能表) 综上所述: 房间为140m2:选用常用流量为2.5m3/h的DN25口径的热能表; 房间为200m2:选用常用流量为2.5m3/h的DN25口径的热能表;

基于超低功耗无线模块RFM64的无线远传水表、远传电表、远传燃气表、远传热量表设计方案

基于超低功耗无线模块RFM64的无线远传水表设计方案 概述 随着社会和经济的进步,住宅商品化发展迅速,住宅水、电、气、热表的抄表和收费问题日益突出。如何有效解决入户抄表收费的技术问题,提供一个合理、完整、系统的实施管理方案,需要企业、科研和公用事业管理部门共同努力。目前,住宅水、电、气、热表远程抄表系统形式多样,但市场比较混乱,技术上尚不成熟,没有一个被市场认可的完整系统实施管理方案。传统的有线抄表系统布线复杂、可靠性差、维护困难,难以实现管理升级,不能满足旧楼系统改造的市场要求;而新兴GPRS、短信GSM网络抄表方式使用成本昂贵,不适宜大面积推广。 RFM64是华普推出的一款超低功耗高性能的无线收发模块,最大发射功率10db以上,可工作在315/433MHz ISM的频点,故无需申请。RFM64经过优化具有非常低的接收功耗,典型接收电流为 2.6mA, 远小于同类收发器的接收电流。工作电压为 2.1-3.6V,最大发射功率+12.5dBm, RFM64集成度非常高,其包含了射频功能和逻辑控制功能的集成电路,内部集成压控振荡器、锁相环电路、功率放大电路、低噪声放大电路、调制解调电路、变频器、中放电路等。此外它整合了基带调制解调器的数据传输速率高达150Kbps数据处理功能包括一个64字节的FIFO,包处理,自动CRC生成和数据白化。它的高度集成的架构允许最少的外部元件数量,同时保持设计的灵活性。所有主要的射频通讯参数可编程,其中多数可动态设置。 基于超低功耗无线模块RFM64的设计,其具有传输距离相对远,接收的灵敏度较高,工作功耗低等诸多优点,所以它适用于无线远传水表、无线远传电表、无线远传燃气表、无线远传热量表无线遥控系统、无线传感器网络、无线温度压力数据采集、机器人控制等需要用电池长期工作的领域。 系统电路设计 系统主要由一个MCU和RFM64组成。MCU选用了ST公司的低功耗单片机 STM8L101F3, RFM64与单片机通讯采用SPI接口,与外部终端通信采用UART接口。由于高度集成化RFM64外围零件已经很少,所以设计的关键是RF前端的匹配电路的设计。另外高频部分的走线尽量的短粗,元器件参数要根据线路板的实际情况作出适当的调节,以抵消分布参数的影响。一般的RF芯片发射与接收端口的阻抗并不是标准的50?阻抗,要达到最佳的接收效果必须将输入阻抗通过外围器件的补偿使之与50?的天线匹配。

家用热量表系统设计

家用热量表系统设计

绪论 1.1 研究的目的及意义 新中国成立以来,供热事业有了很大发展,对国家经济建设、提高人民生活水平和改善环境发挥了重要作用。当前由于我国建筑物的保温隔热和气密性能很差,供暖系统热效率低,至2000年,全国城市建筑耗能将占能源生产总量的14%,单位住宅建筑面积采暖能耗为相同气候条件下发达国家的3倍[1]。在社会生产力不断发展的今天,能源紧缺已经成为各个国家越来越突出的问题。所以能源合理有效地使用已经成为我国相关部门管理的重要内容之一[2]。 随着社会主义市场经济体制的逐步前进,我国供热体制正在发生改变。供热企业与用户之间的关系己逐渐变为供暖部门与业主之间的商品买卖关系[3]。尤其随着“房改”和住房私有化后,现行的城市住宅供暖费用由企业全部承担的政策已不能适应当前形势的需要,住户对采暖方式有了自主选择的权利和自由。这些都对传统的供暖计费方式提出挑战,这要求我们要设计以单片机为核心的新型智能热量表[4]。 2007年6月,国家发改委与国家建设部又联合制定了关于《城市供热价格管理暂行办法》。办法中明确了用户、热力生产企业及传送企业之间按热量表收热费的要求。这也就要求新建居民住宅要以户为单位分户做计量设计,分户施工并安装户用热量表,而之前所建的居民住宅要逐步实施改造,加装户用热量表。同年10月,建设部又发布关于《热量表》城镇建设行业产品标准,规定此标准自2008年4月1日起正式实施[5]。自从供热计量收费制度在全国开展以来,仅热量表每年的需要量就可达上百万套,中国热量计量仪表产业将是世界最大且最具潜力 的产业。所以,本课题的研究具有现实的经济意义和社会意义。 1.2 国内外背景及发展现状 上世纪的70年代,针对热量表的发展,国外已经做了大量研究,迄今为止所积累的大量经验也表明,为了让人们得以自觉节能并形成习惯,行之有效的手段则是以户为单位,按户实际所耗热量来进行计费。这种以按实际耗用热量向用户

热量表的安装

超声波热量表、电动温控阀安装 超声波热量表的安装及注意事项。 配置:超声波热量表、测温球阀、电动温控阀、热量表配套活接、过滤器、手动球阀(或锁闭阀)。 (1)热量表、测温球阀、电动温控阀安装示意图 (2)施工条件 A)系统及过滤器杂质排除干净,管道系统中无杂质; B)安装热量表的环境中无漏水情况,相对空气湿度不超过85% 。 C)超声波热量表调试,必须要从过滤器排污,排污时将热量表用塑料袋套住,防止排污泄水导致热量表进水损坏。 (3) 热量表安装 1.安装位置:热量表按设计安装在进水管(供水管)。电动温控阀安装在回水管测温球阀后。 A ,热量表要安装在合适的位置,以便于操作、读取与维护维修。 B, 热量表上的铅封不能损坏。如损坏生产厂商将不再承担质量和准确度保证。

C,安装时应严格要求,谨慎操作,防止人为损坏。 D, 超声波热量表可水平或垂直安装,垂直安装时,应使进水方向由下进水; E ,热量表禁止安装在管道的最上端,防止局部管道集气造成计量不准; F ,安装热量表前,应先确认区分供、回水管以及水流方向;热量表壳体上箭头所指方向为水流方向,不得装反; 2.安装环境: a.热量表要求使用环境相对干燥,湿度较低为宜. b.安装在管道井内,管道井地面应有防水处理; c.热量表安装时应避免在表的上方有各种供回水管道,防止漏水造成热量表损坏; d.同一个管井安装多块热量表时,应使热量表安装位置在垂直方向错开(相互平行或并排),避免上下叠加的安装方式造成上面漏水下面进水的结果;3.热量表的搬运及拿放: 热量表属于比较贵重精密仪表,拿起放下时必须小心 a.轻拿轻放,避免碰撞; b.禁止提拽表头、传感器线;禁止挤压测温探头; c.严禁靠近较高温度热源如电气焊,防止电池爆炸伤人以及损坏仪表; 4. 热量表温度传感器的安装方式: 热量表的温度传感器共有两只(进水和回水),安装时应将红色标签的温度传感器安装在进水管上(通常在表体测温孔内),另一只兰色标签的温度传感器安装在回水管上,安装温度传感器的步骤为: a)取下温度传感器上的防水胶圈塞进侧温座孔内;

超声波热量表的施工安装要点及相关技术要求

超声波热量表的施工安装要点及相关技术要求标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

超声波热量表的施工安装要点及相关技术要求超声波流量传感器是通过波在介质中的传输速度在顺水流和逆水流方向的差异,而求出介质流速的方法来测量流量。按传感器水流通道方式,超声波流量传感器分单通道式和U 形管式。 超声波式热量表选用主要控制参数为:公称直径DN、常用流量、最大流量、最小流量、额定压力、最大压力损失、温度范围、温差范围等。超声波热量表的初期投资相对较高,仪表的流量传感器具有精度高、压损小、不易堵塞等特点,但流量传感器的管壁锈蚀程度、水中杂质含量、管道振动等因素将影响流量计的精度。 超声波热量表施工安装要点 1. 当使用分体式热量表时,积分仪与流量传感器的距离不宜超过10M。 2. 气泡对准确测量干扰很大,不能安装在管道最高处。 3.安装时远离交流电和高频输射源,避开高温辐射源、阳光直射。 流量传感器的安装 1) 热量表的流量传感器必须安装在一次网的供水管道上。 2) 热量表的流量传感器应安装在直径等于其公称直径的管道上,并且在前、后端分别留有规定长度的直管段(以厂家产品技术说明书为准,一般表前为公称直径10倍的直管段,表后为公称直径5倍的直管段,直管段范围内无其它任何测温、测压、过滤器、阀门等元件)。

3) 在安装流量传感器时应考虑留出便于读数和维修的空间,强烈建议在表体下游满足直管段后安装管道伸缩器,便于热量表的安装及校验。 4) 安装时必须按照流量计管段上水流指示箭头方向安装,并建议在流量传感器前后安装阀门,便于检修。 5) 热量表可以水平、垂直安装,但水平安装时两换能器应在同一水平面上,防止供水沉淀后的淤泥沉积于低处换能器影响信号传输,垂直安装时水流方向必须为从下而上;流量传感器前端应安装过滤器(必须满足表体的前直管段要求)。 温度传感器的安装 1)温度传感器必须安装在流量传感器规定的直管段以外;安装温度传感器管道处的水温须均匀。在安装与流量传感器处于同一根管上(供水管或回水管)的温度传感器时,最好将它安装在流量传感器的后端(下游)。 2)温度传感器不宜安装在管道较高的位置上(可能不充满液体),安装时要与管道中心轴面相垂直。 3)确定温度传感器插入管道的长度,应以使其中热敏元件位于管道中心并偏下的位置为原则。 4)在不影响热计量精度的前提下,建议在同一管道上安装双金属玻璃温度计或其它现场温度计。 热量积分仪的安装 1)积分仪所处位置的环境温度不能超过生产厂家标明的使用环境温度范围。

热量表设计方案

热量表设计方案

1 引言 把热表计量技术中的关键要素——温度和流量引入到热计量技术中;利用热介质的温差及供热系统中流量相对稳定的概念,将每个计算单元的温差及流量作为热能计量的依据,实现热量计量。 2 核心技术介绍 2.1热量计算原理 在供热用户中安装热量表,当热水流经供热用户时,根据流量传感器给出的流量和配对温度传感器给出的供回水温度,以及热水流经的时间,可计算并显示供热用户所吸收的热量。其基本公式为: 1 1 r r m v r r Q q hdt q hdt ρ= ?= ??? (1) 式中:Q —供热用户所吸收的热量,J 或W .h m q —流经热量表的水的质量流量,kg/h v q —流经热量表的水的体积流量,m 3 /h ρ—流经热量表的水的密度,kg/m 3 Δh —供热用户的入口和出口温度下的焓值差,J/kg τ—时间,h 2.2 红外无线通信技术 红外线是指波长在750nm~1mm 之间的电磁波,它的频率介于微波和可见光之间,是一种人眼看不到的光线。红外通信利用波长在850nm~900nm 之间的近红外线作为信息的载体来进行通信,将二进制数调制成脉冲序列并以此驱动红外线发射管向外发射红外光;而接收端则先将接收到的光脉冲信号转换为电信号,再进行放大、滤波、解调处理后还原为二进制信号。 2.3超声波流速测量原理 图1 超声波测量流量原理 超声波流量测量是应用一对超声波换能器相向交替(或同时)收发超声波,通过观测超声波在介质中的顺流和逆流传播时间差来间接测量流体的流速,再通过流速来计算流量的一种间接测量方法,如图1 所示。

3 总体设计方案及说明 本方案以MPS430为主控芯片、结合超声波测量技术利用高精度时间测量芯片TDC-GP2测量暖气管道进水流速、进回水温度,以此作为热量计算的依据。 3.1系统原理框图 通过一对超声波换能器测量供暖管道的水流速度,进而通过流速计算流量,实现流量的测量;通过温度传感器PT1000测量供暖管道进水温度和回水温度,计算其温度差,由流量和进回水温度差计算出用户所用的热量,作为计费的依据。其系统组成框图如图2所示。 图2 系统原理框图 3.2模块功能 超声波换能器 通过一对超声波换能器,相向交替收发超声波,通过测量超声波在顺流和逆流传播时间差来间接测量流体的流速。 进水温度、回水温度 采用PT系列温度传感器PT1000测量进回水温度,PT1000具有很好的线性性质,测量精度高,电路实现简单。 红外通信接口(预留) 通过此接口实现热能表参数设定、数据抄录等功能。 RS485通信接口(预留) 通过上位机读取指定热量表的热能数据、热能表系统参数信息、读取并设定数据参数。 液晶显示模块 通过按钮按下时间长短显示相应菜单,向用户提供相应热能数据信息,方便用户查询,并当系统发生故障时,显示报警信息。 按键接口 通过此按键按下时间长短显示相应菜单,实现与用户交互,方便用户查询。 注:预留功能接口其与外界通信数据格式与贵公司协商,由贵公司提供。 3.3 功能设计: ①显示功能:用户可以在显示屏查看累计用热、进出水温度值、进出水温差、流量以及其他提示性符号; ②记忆功能:热量表中信息自行记忆,保持时间大于10年;

基于GP21+EFM32的超低功耗超声波热量表电路模块设计

基于32位Cortex-M3内核的超低功耗微控制器EFM32与ACAM公司的高集成度TDC-GP21芯片推出的超声波热量表方案,能够充分发挥EFM32的超低功耗与高运算能力的特点及GP21高精度的测量能力,它将成为超声波热量表方案中的最优之选。 主控及显示部分 超声波主控MCU采用EFM32TG840F32,它是基于ARM公司的32位Cortex-M3内核设计而来,对比于传统的8位、16位单片机,它具有更高的运算和数据处理能力,更高的代码密度,更低的功耗。实际数据显示,EFM32TG840在执行32位乘法运算仅需4个内核时钟周期,32 位除法运算仅需8个内核时钟周期,而相应热表上运用的16位单片机却分别需要50和465个时钟周期。而恰恰在时间数据转换芯片TDC-GP21上采集得到的数据均是32位长度,因此在运算和热量计算时均是32位的数据运算。可见,采用EFM32TG840可以让超声波热量表有更好的运算性能,从而使得整机可以缩短处在运行计算状态状态,达到降低运行功耗的效果。 EFM32TG840具有EM0-EM4共5种低功耗模式。在EM2的低功耗模式下,微控制器仍可实现RTC运行,LEUART、LETIMER 及LESENSE的通信或控制功能,而功耗仅需900你A。而且它具有灵活的唤醒方式和自主工作的PRS系统,可以由外部I/O、I2C通信接口、 LEUART 通信信号等等方式唤醒。 EFM32TG840集成了8×20段的LCD驱动器,满足直接驱动超声波热量表液晶屏的需求,而功耗仅为550nA。EFM32TG840的 LCD驱动器内部集成电压升压功能和对比度调节功能,可实现在芯片内部VCMP电压比较器监控VDD电压,分等级开启LCD升压及对比度调节,达到LCD 的现象效果良好,即使系统电池随着使用时间增加出现电压跌落现象。

如何选择热量表型号及其安装使用详解

如何选择热量表型号及其安装使用详解 以下就热表的设计选型及安装使用中的注意事项作一简单介绍,并就有关配套管理规定提出建议。 1设计中应注意的问题 1.1设计选型 在设计选型时,应根据供热系统的运行条件及环境状态来确定热表的型式、尺寸、准确度及环境等级等参数。其中涉及许多的因素,主要应注意考虑以下几点。 1.1.1热表型式 热表包括3部分:流量传感器、配对温度传感器和计算器。常见的热表有机械式、电磁式、超声波式、振荡式等等。一般来说采用机械式流量计量的热表的价格会比采用非机械式流量计量的热表低;但非机械式热表的精度及长久稳定性要比机械式的好,相应的故障率及运行维护成本也就比机械式的低。选用时应综合考虑一次投资及维护保养等成本。 1.12介质温度 介质温度涉及供回水的最高、最低温度及最大、最小温差。如果介质温度及供回水温差超出热表的使用范围,有可能导致测量误差超标或造成热表的损坏。 1.1.3系统压力 供热采暖系统中一般采用的系统压力有PN10,PN16和PN250热表的设计制造也是按此分级进行的,可根据系统压力选用相应额定压力的热表。如果管道内的压力波动超过1.5倍额

定压力的话,热表的流量测量元件有可能会受到损坏。 1.1.4流量及管径 系统流量是热表选型的最重要参数之一。通常,管径与管内流量是相互对应的。对于一个设计合理的系统而言,其管道直径与热表的口径可能非常接近或相同。但二者并不一定等同。一些设计人员习惯于按系统管径来选用热表,这是错误的。因为,选用热表的主要参数是系统流量而不是系统管径,应该按照流量大小来确定热表的型号。 鉴于工程设计中通常计算的是最大负荷状态下的流量,而在实际运行中多数情况F的流量都远远小于这个流量,所以,有时按照最大设计流量的80%来确定热表的额定流量往往更符合实际运行要求。国内以往设计时采用的系统管内流速较低,管径偏大,所以按流量方式选择的热表的口径往往会比系统管道口径小。在这种情况下,建议采用变径措施。因为如果采用与管径相同的大口径热表,热媒通过流量计量装置的流速过低,有可能影响到计量精度。此外,热表口径越大,价格越高,有时热表口径大一号,其售价会高很多,所以应尽量避免不必要地增大热表口径。 热表的流量参数包括额定流量及最大、最小流量。一般最大流量为额定流量的2倍,最小流量为额定流量的1/50或1/1000为了保证热表的正常工作及测量精度,必须使热表的额定流量与系统管道中最可能的运行流量相近,同时还应注意使热表的最小流量小于系统管道的最小流量、热表的最大流量大于系统管道的最大流量。 1.1.5电源 热表的供电方式有电池供电和外接电源供电两类。电池方式一般采用鲤电池,寿命6~12年不等;外接电源包括AC230V,24V及配24V等。应根据具体工程项目情况来确定热表的电源配置。在国内,由于市电电网掉电比较频繁,建议采用电池供电方式,小型户用热表尤为如此。对于电源有保障的项目,也可采用市电供电方式。在一些设有楼宇自控系统的项目上,采用与自控系统相同的24V外接电源也不失为一种好的选择,可以节省布线费用。对于换热站内的

智能热量表设计

目录 摘要 (Ⅰ) Abstract (Ⅱ) 第1章引言 (1) 1.1智能热量表的产生背景、研究现状和结论 (1) 第2章智能热量表的设计方案 (3) 2.1 智能热量表的原理 (3) 2.2 智能热量表的功能框图 (4) 第3章智能热量表的硬件、软件设计 (4) 3.1 智能热量表的硬件设计 (4) 3.1.1 单片机的选用 (5) 3.1.2 温度模块设计 (5) 3.1.3 流量模块设计 (5) 3.1.4 日历时钟模块设计 (5) 3.1.5 报警功能设计 (5) 3.1.6 键盘的设计 (5) 3.1.7 显示模块设计 (5) 3.2 智能热量表的软件设计 (6) 3.2.1 流程图设计 (6) 3.2.2 各模块的流程图设计 (6) 3.2.3 主程序设计 (6) 3.2.4 子程序设计 (6) 第3章结论 (7)

参考文献 (8) 谢辞 (9) 智能热量表设计 摘要 改革开放以来,我国房地产业发展迅速,物业管理现已成为一个独立的产业。随着物业管理现代化水平日益提高,迫切要求物业管理部门对业主提供高质量的 服务及合理的收费。尤其是资源的使用要有精确的计量方法,方便的查阅手段,按量收费。现在水、电、煤气均已分户装表,依量收费.唯有供暖仍采用平均收 费的方法。这种方法因用户实际消费的热源不同,无形中就产生了不合理的因素,经常因此引起争议。建设部已明确指出,2005年用热也要分户计量,这样既可 减少物业部门与用户之间的争议,也使供热部门的生产效率及时体现。 智能热量表又称智能热表、智能能量表或智能暖气表,常安装在锅炉房或用 热点的出入口,主要用于监测和计量用热点热量消耗。本文设计了一种可以联网 进行集中管理和控制的微功耗热量表,3.6V锂电池供电可使本表正常工作6年 以上;操作简单,功能齐全。实现了智能热量表功能:累积热量计量及显示;供 /回水温度、温差测量及显示;累积流量计量及显示;流量测量及显示;日历时 钟功能;键盘控制;自诊断及故障显示、报警功能,当热量表出现故障或超限,有自动报警功能。 该智能热量表是户内型计量采暖用户消耗(即使用)的热量,以此为依据,在 用户采暖系统的分户计量中,按使用的热量收费,使供暖收费更趋于合理。设计 中采用涡轮流量计,带动微型电机,作为测速发电机,用其发的电压高低反映流 速信号,并根据管路口径与时间等参数计算出流量。在进水口和出水口各安装一 个温度测量传感器,计算出温差,再由流量与温差的参数计算出消耗的热量值,供热部门可通过现场或远距离遥测抄表收取热量使用费。也可由智能热量表本身 或远距离通讯指令,实现停止供热。 关键词:智能热量表;单片机;低功耗 The Design of an Intelligence Calorimeter Abstract Since reform and opening up, China's rapid real estate development, property management has become an independent industry. With property management modernization level increasing urgently require property owners to the management to provide quality service and reasonable charges. In particular, the use of resources is to have accurate measurement methods and convenient means of access, according to the volume charges. Now they have water, electricity and gas have been splitting chart, according to the volume charges.

超声波热量表说明书

超声波热量表说明书 一、用途与特点 超声波式热能表将流量计、计算器集成为一体,具有结构紧凑、安装方便等特点。该表采用优质压电陶瓷换能器,保证了高准确度和稳定性,UHM系列整体式超声波热量表是为了解决采暖和中央空调在用户范畴内的热量计量问题。整体式超声波热量表没有活动零部件,机械寿命长。超低功耗设计,采用一次性锂电池供电可以达到6年以上。解决了机械式热量表在寿命和性能方面的不足。 二、结构与外形尺寸图 2.1结构图

20~40口径结构 图 50~200口径结构图2.2外形尺寸图 20~40口径外形尺寸 流量代号口径DN(mm) 流量传感器接口尺寸 表体高度H(mm) 表体宽度W(mm) 无接管长L(mm)接口螺纹D(inch) N0.6 20 130 G1B 101 102 N1.0 20 130 G1B 101 102 N1.5 20 130 G1B 101 102 N2.5 20 130 G1B 101 102 N3.5 25 160 G11/4B 106 102 N6 32 180 G11/2B 113 102 N10 40 200 G2B 121 102

50~200口径外形尺寸 流量代 号口径DN(mm) 高度H(mm) 法兰外径 D(mm) 长度L(mm) 螺栓孔中心圆直径 D1 单边螺栓数与孔径n-φ k N15 50 175 165 300 125 4-φ19 N25 65 196 185 300 145 4-φ19 N40 80 216 200 350 160 8-φ19 N60 100 233 220 350 180 8-φ19 N100 125 264 250 350 210 8-φ19 N150 150 291 285 500 240 8-φ23 N250 200 347 340 500 295 12-φ23 流量代号N0.3 N0.6 N1.0 N1.5 N2.5 N3.5 N6.0 N10.0 口径DN(mm) 20 20 20 20 20 25 32 40 过载流量qmax (m3/h) 0.6 1.2 2.0 3.0 5.0 7.0 12.0 20.0 常用流量qp (m3/h) 0.3 0.6 1.0 1.5 2.5 3.5 6.0 10.0 最小流量qmin (L/h) 6 6/12 10/20 15/30 25/50 35/70 60/120 100/200 流量代号N15 N25 N40 N60 N100 N150 N250 口径DN(mm) 50 65 80 100 125 150 200 过载流量qmax (m3/h) 30 50 80 120 200 300 500 常用流量qp (m3/h) 15 25 40 60 100 150 250 最小流量qmin (m3/h) 0.15/0.3 0.25/0.5 0.4/0.8 0.6/1.2 1/2 1.5/3.0 2.5/5 2.23流量范围

超声波热量表原理及应用

一、超声波热量表原理: 1、基本原理: 热量表是将一对温度传感器分别安装在通过载热流体的上行管和下行管上,流量计安装在流体入口或回流管上,流量计发出与流量成正比的脉冲信号,一对温度传感器给出表示温度高低的模拟信号,而积算仪采集来自流量和温度传感器的信号,利用计算公式算出热交换系统获得的热量。 热水所提供的热量与热水的进回水温差及热水流量成正比例关系。热水流量采用声波时差法原理进行测量,进回水温度则通过铂电阻温度计测量。热能表积算仪将热水流量和进回水温度进行数据运算处理,最后得出所消耗掉的热量,单位为 kWh 、 MWh、MJ 或 GJ。

2、计算方法: a、焓差法(依据供回水温度、流量对水流时间进行积分来计算) Q = Q:系统释放或吸收的热量; :水的质量流量 :水的体积流量 :供水和回水温度的水的焓值差 b、热系数法(根据供回水温差、水的累积流量) Q = K= V :水的体积 :供水和回水的温差 k :热系数 (具体密度及焓的取值参见GB/T 32224-2015附录A) 二、超声波热量表的选用 1、机械部分 a、热量表外形尺寸选用:热量表公称口径;公称压力;热量表全长、热 量表计算器长度、高度、计算器高度、表接螺纹、流量计表体材质等。 保证热量表可以正确安装在设备无干涉、且后期检修方便。 b、热量表技术数据选用:包含热量表的最小流量、最大流量、过载流量、 热量表温度范围、公称流量下的压力损失、最大温差、最小温差、测算 精度、热量表防护等级等。 2、电气及软件部分

热量表供电方式:一般为24V和230V(具体参见说明书)。 温度传感器类型、传感器导线长度(严禁自行加长、截短或更换导线)、 热量表的通讯方式及通讯接口、流量计计量周期、用户M-Bus抄表系统、流量计数据存储量。 三、换热机组超声波热量表的应用 1、超声波流量计的应用 a、确保安装位置的管段不会产生气泡,否则会影响测量精度,表头可倾 斜45°安装。 b、热量表安装位置应方便后期拆解维护,热量表上游应安装过滤器。 c、温度传感器红色表示热水端,蓝色表示冷水端。如果传感器安装在护 套中,必须确保插入护套底部。 d、热量表应安装于回水或进水侧管路,并且保证水流方向与热量表测量 管的指示方向一致。 e、热量表宜设置旁通管方便管道的清洗。两端必须有相应的阀门。 2、温度传感器的应用 a、当温度传感器与流量传感器处于同一根管上时,最好安装在流量传感 器的下游。 b、温度传感器不宜安装在管道的较高位置上(可能不充满液体)。 c、确定温度传感器插入管道的深浅,应使其中的温度传感器位于管道中 心并偏下的位置。 d、温度传感器的近旁宜安装标准温度计,方便读数测量。 3、积分仪的应用 a、积分仪上方是否存在排水口、冷凝水等对热量表产生不良影响的因素。 b、计算器安装在流量传感器上,介质温度应在要求的5-90℃内,超出 此温度时,应该分体安装。 c、积分仪与各个部件的连接线、电缆及连接方式,必须安装厂家规定。 d、积分仪与与各个部件的连接线与动力线必须保持距离,放止干扰测 量数据。

相关主题
文本预览
相关文档 最新文档