当前位置:文档之家› 光伏系统设计

光伏系统设计

光伏系统设计
光伏系统设计

编 号:

家庭太阳能光伏发电示范工程初步设计

上海电力学院2012届毕业生

2011-12-14

光伏一体化建筑示范工程

1项目概况

本项目根据用户要求,在上海地区某屋顶建设小型的建筑一体化并网型光伏电站。系统总装机量达到3~4KW,安装面积47.88m2,预计投资金额6500元。

1.1项目意义

日本近海3月11日发生9.0级强烈地震,引发约10米高海啸,并引发核电站爆炸。核电站的爆炸让人们意识到了,核能已经不能作为安全的能源供人类使用。然而煤,石油,天然气这类战略储备能源,一天天的减少。另一方面,人们对电能需求,日益增长,如何填补这个缺口,已经成了全社会的问题。

根据“十二五”规划纲要提出的节能减排目标,到2015年,主要污染物排放总量要显著减少,化学需氧量、二氧化硫排放分别减少8%,氨氮、氮氧化物排放分别减少10%。减排,环保已经成了全社会的问题,而太阳能光伏发电,具有无污染,稳定性高,寿命长,结构简单,安装使

用方便等种种优势,受到人们的青睐。

1.2项目特色

本设计项目的特色在于将新能源普及于家庭,利用家庭屋顶这块没有被开发的宝地,利用取之不尽用之不竭的太阳光照发电,满足小型家庭的使用,并且将多余的电能运送入国家电网,为社会的减排,做出自己的贡献。

2项目可行性

2.1上海市日照资源

上海市东经121°.4 北纬 31°.2' ,年日照平均1940多小时,日照资源丰富。上海市年平均温度17.5°C左右,年降水量1289.4mm左右。特别是在夏天,光辐照充足,非常适合太阳能光伏发电。

2.2技术可行性

目前光伏太阳能技术在国内外取得了许多成功的应用,光伏建筑一体化已经成熟。以下两张照片是我校赵春江博士说做的工程。

图2.2.1赵春江博士的家庭太阳能发电站

图2.2.2上海电力学院太阳能研究所

诸如此类的成功案例还有很多,这就是太阳能光伏发电技术走向成熟成功应用的佐证。在当下利用太阳能这种新型能源,完全可以应用于生活实际中。

2.3经济可行性

“十二五”规划纲要提出的节能减排目标,正是对太阳能光伏发电最有利的支持。国家发改委在发改价格1594中指出:2011年7月1日以前核准建设、2011年12月31日建成投产、我委尚未核定价格的太阳能光伏发电项目,上网电价统一核定为每千瓦时1.15元(含税)。2011年7月1日及以后核准的太阳能光伏发电项目,以及2011年7月1日之前核准但截至2011年12月31日仍未建成投产的太阳能光伏发电项目,除西藏仍执行每千瓦时1.15元的上网电价外,其余省(区、市)上网电价均按每千瓦时1元执行。今后,我委将根据投资成本变化、技术进步情况等因素适时调整。可见国家对光伏上网的支持力度在不断的变

化,随着能源的枯竭,国家会越来越重视光伏等新能源。

另外一方面,西方国家对太阳能电池进行反倾销反补贴的双方政策,大大的阻碍了中国太阳能电池的出口。从某种程度上讲,这么大的量将成为推动中国光伏业的发展。价格战的背后,最大的受益者是中国的消费者。综上所述,本项目在经济上是可行的。

3项目建设条件

本项目的实施地在上海市某居民屋顶,光伏发电系统计划安装在向南的一面屋顶上。房屋的屋顶外观如图3.1所示,总预计占用屋顶47.88m2面南25o,房屋建筑为钢结构,能承受光伏电板及其组件的重量。

本地区无盐雾、无地震、无水灾。东侧约300M处有一条南北走向的高速公路,东西两侧都没有可能造成阴影的高层建筑、树木、电杆、烟囱、铁塔等,南侧有同等高度的建筑楼,但无阴影影响,安装太阳能光伏发电系统的条件比较好。

综上所述,此屋顶适合安装太阳能光伏系统。

图3.1施工屋顶

4项目方案设计

4.1系统构成

此并网型光伏系统主要由光伏组件方阵、3KW逆变器、避雷针、支架、家用智能双向电表、家用交流保护开关箱、组件安装用构件、交直流电缆等构成。

光伏阵列由太阳能电池组件构成,光伏阵列安装在房屋顶上。同时,光伏阵列按照合理的组串方式接入接线箱,然后接入并网逆变器,配电箱,电表(向电网输出)到电表(从电网引入),具体如图4.1.1所示。

图4.1.1建筑设计模型

4.2光伏组件选型

该屋顶光伏系统选用晶澳光伏科技有限公司生产的JAP6-72/250 型多晶硅光伏组件,该组件基本性能参数如4.2.1下:

JAP6-72-250电性参数(标准测试条件)

最大功率PMAX(W)250

开路电压(Vcc/V)43.60

最大功率点的工作电压(Vmp/V)35.26

短路电流(Isc/A)7.8

最大功率点的工作电流(Imp/A)7.09

组件效率(%)12.81

图4.2.1组件性能参数

组件的 IV 曲线图如4.2.2所示:

图4.2.2 IV图

组件外观尺寸如示意图4.2.3

图4.2.3组件尺寸外观示意图

4.3 光伏组件布置方案

上海地区太阳位于正南时(约在12:30~13:00之间)的最高高度(以下称太阳高度)为82.4度(6月22日夏至日),最低高度为35.5度(12月22日冬至日),平均高度约为59度。如从一年四季尽可能均衡发电考虑,则太阳电池安装角度取30度为宜(图4.3.1)。这种情况下,太阳电池阵列的冬季投影面积与夏季投影面积相差不大,如果太阳辐照量一年四季是均匀分布的,就可达到均衡发电的目的。但是由于上海地区冬季太阳辐照量较弱,且阴雨天较多(最近记录有2003年12月17日~25日连续9天阴雨天),而夏季太阳辐照量较强,即使冬夏季发电面积相等,发电量仍相差很大。不如从全年多发电角度考虑,重视2月至10月的发电量,该期间的平均太阳高度约为63度,太阳电池安装角度取25度为宜。

图4.3.1太阳电池阵列安装角度取30°的情况

图4.3.2太阳电池阵列安装角度取25o的情况

综合发电效率和美观性,本工程按照如下方案铺设光伏电板。

图4.3.3屋顶坡度长度(cm) 图4.3.4屋顶施工面(cm)

图4.3.5施工侧面(蓝色为铺设太阳能地方)(cm)

图4.3.6施工正南面(cm)

根据客户的要求发电功率在3~4KW之前,工程设计为晶澳电池JAP6-72/250,总计共14块。依据为:250W*14=3.5KW。在实际情况工作下,太阳电池组件的输出会受到外在环境的影响而降低。泥土,灰尘的覆盖和组件性能的慢慢衰变都会降低太阳电池组件的输出。通常的做法就是在计算的时候减少太阳电池组件的输出10%来解决上述的不可预知和不可量化的因素 。所以当减少10%后,电池发电效率为3.15KW,仍旧在

3~4KW之间。电池的排布如图4.3.6所示,符合工程需要。

光伏组件采用铝合金或镀锌导轨进行固定,导轨图布与各种零件如下图所示。(注:太阳能光伏阵列支架的金属表面,应镀锌、镀铝或涂防锈漆,防止生锈腐蚀。)导轨一头固定于屋顶上方的脊梁上。可以采用在脊梁上穿洞螺丝固定,加上柏油涂成,在用混凝土将固定部分夯实填补。另外一头采用沉重式,做一个圆柱型的墩,需要达到高15cm,直径20cm的圆柱,将铝合金导轨浇筑其中(考虑到屋顶下部女儿墙这里有一个排水道,故应该浇筑的时候插入一根塑料管,以便通水不影响原有功能)。将导轨分成三段,从上至下,每隔2米焊接一块长为10cm宽为5cm 的铁片(图中为蓝色部分),然后将铁片部分与周围的瓦片抹上混凝土以达到加固的左右。

晶澳公司生产的JAP6-72/250 型光伏组件的重量约为27.5kg,光伏安装支架的重量一般为1.5~2.5kg/m2,本光伏建筑一体化并网发电工程总共使用了14块组件,安装面积约为:35.05m2。那么整个光伏组件系统以及安装支架的总重量约为70.2kg,平均每平方米的重量为

12.99kg。按照一般情况下的建筑设计标准,此重量在屋顶结构承重范围内。

轨道截面图片为:

图4.3.7轨道截面图(轨道底可以穿洞固定滑块) 图4.3.8轨道滑块图单位(1/10mm)

图4.3.8抓手(底部与滑块焊接) 图4.3.9上部分实物图(可以螺丝调节,固定太阳能电板部

分垫上橡胶 )

图4.3.10支架部分(绿色为光伏电板,蓝色部分为支架上的铁片)

图4.3.11实物效果图

4.4逆变器选置

为了减少电脑损耗,提高光伏系统性能的稳定性,所以我们选择了afore生产的逆变器,型号为HNS3000TL,输出功率为3KW,单箱。产品

的有点在于高效性:一、最大功率达到97%;二、双独立MPPT通道确保系统最大发电量;以及产品的可靠性:一、孤岛保护;二、增强的DSP 控制系统;三、紧凑的版式设计,高级的散热设计;四,漏电保护等。非常适合家庭用户这类小型的发电站使用。具体外观与参数如下图: Afore HNS3000TL外观:

图4.4.1HNS3000TL外观

HNS3000TL参数:

electrical specifications HNS3000TL

Input

Max.DC Power[W]3400

Max.DC Voltage[V]520

MPPT Voltage Range[V]150-450

Max.DC current[A]10+10

Number of MPPT Channel2

Strings Per MPP Tracker1

Output

Power Connector Single Phase

Max.AC Power[W]3200

Norminal AC Power[W]3000

Norminal AC Voltage/Range[V]230/180~270

Norminal AC Frequency[Hz]50

Max.AC current[A]15

Norminal AC current[A]13

Power Factor1

Output current THD<3%

Power Efficiency

Max.Efficiency97.20%

Euro Efficiency96.30%

MPPT Efficiency>99.9%

Compliance

图4.4.2逆变器参数

参数,我们知道此逆变器的最大输入电流为10A,输入最大电压为

520V,而我14块电池板电压达到610.4V超过了逆变器的限定电压,又因为逆变器有两个通道,所以采取并联的形式,将整个电池方针分成两部分,各为7块,复合逆变器的要求。分区如图4.4.3

图4.4.3电池阵列编号

施工时候,将1、4、7、10、13、8、14光伏组件连接在一起,选最优,余出路径以及最终有13和14号组件余出一根线与汇流箱连接,另外一部分相同原理,余出11和12号组件接入汇流箱。

另外,逆变器为3Kw输入,最大输入为3.4KW,而此光伏组件设计的最大发电量为3.5KW。因为逆变器自己本身存在20%左右的预留功率,如果算上这些预留功率,将复合此逆变器的工作最大功率。光伏组件能发电量达到3.5KW的时候在上海市的光照强度下,很少能发生,所以此逆变器能安全运行。

4.5.1防直击雷设计

太阳能光伏阵列的结构件通过接地体接地防止直击雷,即太阳能光伏阵列的金属支架及其它金属构件均应与屋面避雷带或防雷引下线可靠连接。一般情况下防雷接地电阻应小于30Ω。光伏系统对接地电阻值比较严格,需要根据该屋顶的具体避雷条件进行修改。

4.5.2防感应雷设计

为防止感应雷对光伏发电系统的设备器件造成损坏,需在光伏阵列的直流输出端安装光伏专用高压防雷模块,模块安装在直流汇线盒内。

系统绝缘应满足以下要求:

(1)绝缘电阻:各带电回路与地之间的绝缘电阻应不小于10MΩ;(2)绝缘强度:带电回路两导体之间及任一导体与机壳(或地)之间,按照其额定绝缘电压分级,应能承受规定的50Hz 正弦试验电压1min.不出现击穿和飞弧现象,漏电流不大于10mA。

4.6具体电气设计

图4.4.4电气设计图

因为此工程为小型规模的光伏应用,所以决定将并网逆变器,交流防雷保护模块,单向电能表,双向电能表放于室内。线路连接需在外面用口径为2CM的PVC管道内,可以延缓线路的磨损老化等原因。建议通过空调主外机连接处穿入,减少对墙面的损伤。对空调主外机处需用塑化泡沫等加以填充,尽量恢复原有样貌。连接图如图4.4.4所示。

5施工组织设计

5.1施工交通运输

该房屋所在地周围基础建设齐全,道路交通通畅,在其东侧约300m处有一高速公路,满足施工运输要求。

5.2施工永久占地

该房屋光伏并网发电工程建于主楼、副楼楼顶,不需另外占地。5.3安装地点工程施工

该工程建于居民楼楼顶,安装所在的屋顶均不需要进行大的工程建设和改造。

5.4太阳能光伏阵列安装

太阳能光伏阵列安装时需注意的问题:

(1)电池板排列应主要考虑串联数和并联数,不能造成电池板闲置浪费等问题。阵列数应和串并联数合理配合,方便分组连线。

(2)电池板一定要考虑散热问题,在夏天很热的时候因温度升高而造成功率损失不容忽视,应设计通风道。通常单块太阳能电池之间保持间隙5cm至10cm,太阳能电池阵列离地的距离也在5cm至10cm。

(3)光伏建筑一体化屋顶阵列应充分考虑排水问题。

(4)太阳能光伏阵列的安装应充分考虑其所在建筑本身结构的承重能力,支架的承重点要绝对保证座落在建筑主体大梁上,以免留下安全隐患或是造成施工事故。

(5)在太阳能光伏阵列的安装需要破坏楼顶部分结构时,应充分论证,征求业主的同意,在不影响楼体安全与防水条件的情况下进行。(6)在太阳能光伏组件安装时,应尽量避免在风大天气,以防安装组件时因风大而对施工人员人身安全或是组件本身的结构造成非预期的危害或是损害。

太阳能光伏阵列支架设计的基本要求:

(1)应遵循用料省、造价低、坚固耐用、安装方便的原理进行太阳能光伏阵列支架的设计生产和制造。

(2)太阳能光伏阵列支架应选用钢材或铝台金材料制造,其强度应可承受10级大风的破坏。

(3)太阳能光伏阵列支架的金属表面,应镀锌、镀铝或涂防锈漆,防止生锈腐蚀。

(4)在设计太阳能光伏阵列支架时,应考虑当地纬度和日照资源等因素既要考虑与建筑本身的结合度,也要在这个基础上充分优化调整太阳能光伏阵列的向日倾角和方位角的结构,以便充分地接受太阳辐射能,增加太阳能光伏阵列的发电量。

(5)太阳能光伏阵列支架的连接件,包括组件和支架的连接件、支架与螺栓的连接件以及螺栓与方阵场的连接件,均应用电镀材料或不锈钢钢材制造。

(6)未完全完工前,光伏组件应该由黑色薄膜遮挡避光,以免电池发黄损坏。

6环境影响分析及保护措施

6.1工程施工期对环境的影响

本工程所在地是居民楼顶,没有土建部分,施工量小,所以施工中不会影响生态环境,不会影响农业生态,总体上对环境的影响很小。具体情

1)噪声防治

本工程施工内容主要是光伏系统阵列支架的安装,电力设施的安装等,安装

过程中几乎没有噪音。

2)扬尘、废气、污水

本工程在施工中不会产生粉尘和二次扬尘,不会造成局部区域的空气污染。

也不会产生污水。

3)水土保持

光伏系统在建筑楼屋顶安装,不会在建设场区排弃土石、修建通道、铺设水

管线路等,所以不涉及到水土保持。符合《中华人民共和国水土保持法》的相关

规定。

4)绿化和临时占地恢复措施

由于工程不是在地表施工,不会损伤植被,也没有临时占地恢复的问题。

6.2运行期对环境的影响

太阳能光伏发电是将太阳辐射能量转变为电能,在运行中不消耗矿物燃料,不会产生空气污染物,因此运行期间对环境的影响主要表现为以下几个方面:

1)噪声影响

光伏组件工作时没有噪音产生,逆变器工作时产生的声音很小,可以忽略,

所以光伏系统工作时无噪音影响。

2)电磁干扰

项目中使用的逆变器等电气设备容量小,且室内布置,不会对旅客身体健康

产生影响,不会对相关电气设备产生电磁干扰。

3)对电网的影响

太阳能光伏系统运行时,选用的高性能的逆变器装置产生的电流谐波控制在

3%以内,大大小于GB 14549-1993《电能质量公用电网谐波》规定的5%。光伏发电场并网运行时,电网公共连接点的三相电压不平衡度不超过GB15543-1995《电能质量三相电压允许不平衡度》规定的数值。因此可认为本工程对电网的影响控制在国家标准允许的范围内。

太阳电池组件内的电池片表面涂覆有减反膜,同时封装的玻璃表面已经过特殊处理,因此太阳电池组件对阳光的反射以散射为主,无眩光,不会产生光污染。

7工程运行安装、维护与管理

根据本项目的施工量,施工面积,我们承诺在7个工作日内为你完成所有的组件的施工安装。

本项目为无人值守发电系统,正式投产后可项目所在的单位安排人员兼职负责。系统设备的检修可由供应商和专业检修公司负责。

8发电量预测和节能减排分析

8.1发电量预测

本项目总装机容量为3.5KW,根据上海市日照情况分析,首年发电量为约3533.79度。系统的设计寿命为25年,发电量每年线性衰减8‰,在电站25年生命周期内,共可发电约88300.75度,平均每年发电3532.03度。

8.2节能减排分析

光伏系统利用太阳能进行发电。光伏发电过程不消耗任何化石能源,也不排放任何废气,是非常理想的绿色能源。光伏发电系统的应用,可以有效减少常规能源的消耗,并且可以有效减少温室气体及其它有害气体的排放,因此具有非常

重要的环保意义。

目前我国火力发电每产生一度电能平均消耗334克标煤本项目实施后,首年可以节省1.18吨标准煤,25年共可节省29.51吨标准煤。

据统计,每燃烧一吨标煤排放二氧化碳约2.6吨,二氧化硫约24公斤,氮氧化物约7公斤(《对我国能源及能源问题的思考》,国家发展和改革委员会能源局,史立山)。如图 8.2.1所示,此项目实施后,每年可以节省大量的煤炭,并可以减少排放大量温室气体。此外,光伏发

图8.2.1

9投资估算与经济效益分析9.1光伏项目投资概算

项目明细价格

光伏阵列太阳能电池组

9.6元/W

逆变设备并网逆变器5000元

接线电缆及支

2元/w

家用双向电表2000元

家用交流保护开关1000元

场地基础及土建工程防雷及接地装

300元混凝土与柏油500元

安装调试设计

安装调试费用12100元

9.2投资项目损益计算

首年发电量为 1.009kWh/W,按每年千分之八的衰减率计算,25年的生命周期内总发电量为88300.75kWh。按照现行上网电价,22年收回成本。但是您对这个社会,做出的贡献,不是这些钱能衡量的。

10我们的承诺

10年

自质保期开始日起十年内,如任何组件出现输出功率低于太阳能产品资料中所规定的标称功率的90%,并且由我方能确定是由于我放的原材料或工艺缺陷所致,我放提供组件给客户弥补功率损耗或者更换有缺陷的组件。

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优化设计

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优 化设计 《太阳能光伏发电系统》 课程设计 课题名称: 家庭并网光伏发电系统的优化设计专业班级: 学生姓名: 学生学号: 指导教师: 设计时间: 沈阳工程学院 报告正文 目录 第1章绪 论 ..................................................................... . (3) 1.1 设计背 景 ..................................................................... .. (3) 1.2 设计意 义 ..................................................................... ......................................... 3 第2章朝阳市气象资料及地理情况...................................................................... ............... 4 第3章家用并网型...................................................................... .. (6)

太阳能光伏发电系统的优化设 计 ..................................................................... .. (6) 3.1 设计方 案 ..................................................................... .. (6) 3.2负载的计算...................................................................... . (8) 3.3 太阳能电池板容量及串并联的设计及选 型 (9) 3.4 太阳能电池板的方位角与倾斜角的设 计 (10) 3.5 蓄电池容量及串并联的设计及选型..................................................................... 11 3.6 控制器、逆变器的选 型 ..................................................................... (12) 3.7 电气配置及其设 计 ..................................................................... (13) 3.8 系统配置清 单 .....................................................................

12kW户用光伏系统典型设计过程

12kW户用光伏系统典型设计过程 前言: 随着分布式发电补贴的下降和光伏电站建造成本的降低,很多用户在选择安装户用光伏系统时,都希望最大化的利用屋顶的面积,尽可能扩大安装容量,以增加发电量,保障投资收益率。在我国北方许多地区,以前大屋顶优势让户用光伏系统能够达到10kW左右,现在随着技术的不断进步,和成本的不断优化,三相12kW逆变器的成本已经快速下降,接近于10kW逆变器的价格,12kW以上户用系统迎来大量应用场景。本文将从组件、逆变器,支架、线缆、配电箱的选型,到整体设计方案,以及电站收益预测等方面,与大家分享12kW电站的设计过程。 一、设计过程 1.项目勘察 农户自建住宅,水泥平屋顶,经现场勘测,设计组件排布示意图如下:

2.组件选择 在目前的组件市场上,275W~330W功率段的组件最为常用。本文的典型设计方案直流 侧建议选择两串输入,可以减少线路损耗,提高系统效率。大家可根据项目特点在下表 中选用相应组件方案。 组件规格每串数量(块)电站总串数(串)电站总功率(KW)组件总数(块)

根据组件的参数和数量得到装机容量为300Wp* 46块=13.80KWp 3.支架方案及组件安装 水泥平屋顶的支架/组件安装步骤如下: ? 预置水泥墩基础 ? ? 用膨胀螺栓固定角铝底座 ? ? 固定角铝底座和角铝斜撑 ? ?

固定角铝后撑和斜撑,然后铺设导轨,用T头螺丝固定? ? 安装组件,用中压块和边压块固定

新型高效组件的应用给逆变器的性能提出了新的需求,同时随着技术和成本不断的优化,纳通在考虑实际应用要求后,优化了产品性能,推出了12kW三相逆变器NAC12K-DT,最大直流输入电压可达到1100V,有着极高的功率密度和性价比。直流侧输入电压提高后,光伏组件(以多晶60片电池片计算)的单串数量从原来的最多22块扩充到24块, 子串数量减少,直流侧线缆的用量也随之减少,减少的线损,充分提升输出电量。

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

独立光伏发电系统设计

独立光伏发电系统设计 目录 1引言 (1) 2 独立光伏发电系统工作原理 (1) 3 独立光伏发电系统的设计 (2) 3.1 系统容量的设计 (2) 3.2 太阳能电池组件及方阵的设计 (3) 3.2.1 光伏组件方阵设计需要考虑的问题 (3) 3.2.2 太阳能电池组件(方阵)的方位角与倾斜角 (4) 3.2.3 一般设计方法 (4) 3.3 直流接线箱的选型 (5) 3.4 光伏控制器的选型 (7) 3.6 光伏逆变器的选型 (8) 结论 (9)

独立光伏发电系统设计 摘要 太阳能光伏发电是一种最具可持续发展理想特征的可再生能源发电技术,发展太阳能光伏发电系统也具有很高的可行性,首先能缓解我国目前的能源问题以及日益严重的环境问题,还能解决边远地区居民用电难,成本高的问题。本论文将从小型独立系统的发电原理,系统设计原理,及其本身具有的优势结合其受众群体的所需考虑的各方面因素来设计适合家庭使用的小型系统。通过理论与实际市场调查相结合的方法设计适合全国各地人民使用的优惠且实用的系统。 关键词:小型;独立光伏发电;系统;优惠实用 1引言 当下,许多国家已把发展可再生能源作为未来实现可持续发展的重要方式,而中国也将以太阳能为代表的可再生能源作为未来低碳经济的重要组成部分。近年来,国家财政对太阳能产业的补贴力度逐年增强。独立光伏发电系统是指未与公共电网相连接的太阳能光伏发电系统,其输出功率提供给本地负载(交流负载或直流负载)的发电系统。其主要应用于远离公共电网的无电地区和一些特殊场所,如为公共电网难以覆盖的边远偏僻农村、海岛和牧区提供照明、看电视、听广播等基本生活用电,也可为通信中继站、气象站和边防哨所等特殊处所提供电源。 2 独立光伏发电系统工作原理 通过太阳能电池将太阳辐射能转换为电能的发电系统称为太阳能光伏发电系统。其主要结构由太阳能电池组件(或方阵)、蓄电池(组)、光伏控制器、逆变器(在有需要输出交流电的情况下使用)以及一些测试、监控、防护等附属设施构成。 太阳能电池方阵吸收太阳光并将其转化成电能后,在防反充二极管的控制下为蓄电池组充电。直流或交流负载通过开关与控制器连接。控制器负责保护蓄电池,防止出现过充或过放电状态,即在蓄电池达到一定的放电深度时,控制器将自动切断负载,当蓄电池达到过充电状态时,控制器将自动切断充电电路。有的控制器能够显示独立光伏发电系统的充放电状态,并能贮存必要的数据,甚至还具有遥测、遥信和遥控的功能。在交流光伏发电系统中,DC-AC逆变器将蓄电池组提供的直流电变成能满足交流负载需要的交流电。

太阳能光伏发电系统(PVsyst运用)

扬州大学能源与动力工程学院本科生课程设计 题目:北京市发电系统设计 课程:太阳能光伏发电系统设计 专业:电气工程及其自动化 班级:电气0703 姓名:严小波 指导教师:夏扬 完成日期: 2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

光伏系统设计

光伏系统设计 太阳能光伏系统的组成结构和工作原理,并结合实例讲述光伏系统的常见类型、一般设讣原理和方法、光伏系统的测试以及性能分析。 1.光伏系统的组成和原理 光伏系统由以下三部分组成:太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。 光伏组件方阵:由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。 蓄电池:将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求, 它是太阳能光伏系统的储能部件。LI前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。 控制器:它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD系列的控制器就集成了上述三种功能。 逆变器:在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设 备, 将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则山蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。 交流、直流供电系统(AC/DC) 及上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满

光伏发电系统设计方案专业设计书

光伏发电工程 项 目 方 案 设 计 书

目录 一、概述 (4) 1.1项目概况 (4) 1.2编制依据 (4) 二、建设地址资源简述 (4) 2.1日照资源 (4) 2.2接入系统条件 (6) 三、总体方案设计 (6) 3.1光伏工艺部分 (6) 3.2太阳电池组件选型 (7)

3.3光伏阵列设计 (12) 3.4系统效率分析 (15) 四、电气部分 (16) 4.1概述 (16) 4.2系统方案设计选型 (16) 4.3电气主接线 (20) 4.4主要设备选型 (20) 4.5防雷及接地 (30) 4.6电气设备布置 (31) 4.7电缆敷设及电缆防火 (31) 五、工程案例 ........................................................................... 错误!未定义书签。 六、系统配置以及报价.............................................................. 错误!未定义书签。

一、概述 1.1 项目概况 1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。针对固定式安装电池板,采用最佳倾角进行安装,地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室。 1.2 编制依据 本初步设计说明书主要根据下列文件和资料进行编制的: 1)GB50054《低压配电设计规》; 2)GB50057《建筑物防雷设计规》; 3)GB31/T316—2004《城市环境照明规》; 4)GBJl33—90《民用建筑照明设计标准》; 5)JGG/T16—921《民用建筑电气设计规》; 6)GBJ16—87《建筑设计防火规》; 7)《中华人民国可再生能源法》; 8)国家发展改革委《可再生能源发电有关管理规定》; 二、建设地址资源简述 2.1日照资源 我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。全国总面积2/3 以上地区年日照时数大于2000 小时。

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

太阳能光伏发电系统设计思路

太阳能光伏发电设计思路

摘要:简要介绍太阳能光伏发电系统设计思路和组成光伏系统器件选型方法,分析和研究太阳能光伏发电的热点和核心技术。 前言:当今世界,能源是促进经济发达与社会进步的原动力。目前所使用之主要能源为化石能源,然而其蕴藏量有限,且在开发过程造成空气污染、环境破坏,积极开发低污染及低危险性的新能源乃为迫切需要。 太阳能发电是指太阳能光伏发电,光伏发电是利用半导光生伏特效应将光能直接转变为电能的一种发电技术。太能是一种非常理想的干净、安全且随处可得的清洁能源,因此各国均不断地研发各种相关技术,藉以提高系统发电效率并降低发电成本,推广普及使用太阳能。

第一部分 太阳能电池发电系统原理 太阳能电池发电系统(又称光伏发电系统),从大类上分为 独立(离网)和并网光伏发电系统两大类。 目前应用比较广泛的光伏发电系统,主要是在偏远地区可以 作为独立的电源使用,也可以与风力发电机或柴油机等组成混合发电系统,在城市太阳能光伏建筑集成并网发电得到了快速发展,光伏发电与建筑一体化是太阳能光伏与建筑的完美结合,属于分布式发电的一种。它能够减少电网用电,大大减轻公共电网的压力,就近向电网输送电力。 1.1独立的电源使用(光伏离网发电系统) 太阳能光伏组件组成太阳电池方阵,在充足情况下,一方面给负载供电(直流负载,若交流负载需要逆变器),另一方面给蓄电池组充电,晚上依靠蓄电池组放电供负载使用(如下图示意)。 图1-1直流负载光伏发电示意图 在方阵工作时,阻塞二极管防止向电池方阵反充电,止逆二极管两端有一定的电压降,对硅二极管通常为0.60.8V ;肖特基或锗 太阳电池方阵 控制器 负载 阻塞二极管 蓄电池

光伏并网发电系统设计复习过程

光伏并网发电系统设 计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。

R L U 图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC 变换器和后级的DC-AC 逆变器组成。在系统中,DC-DC 变换器采用BOOST 结构,主要完成系统的MPPT 控制;DC-AC 部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz 交流电。设计采用单片机SPWM 调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT 原理及电路设计 3.1 MPPT 原理

分布式光伏发电系统设计方案(专业)

某学校 512K分布式光伏发电系统设计方案2013年10月10日 项目编号:XXX

目录 1工程概述 (3) 1.1工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 3.4.1电池组件 (6)

3.4.2 组件结构图 (7) 3.4.3 并网逆变器 (8) 3.4.4 并网逆变器规格 (9) 4发电量估算 (10) 5系统的社会效益 (10) 5.1社会效益(25年) (10) 6设备材料清单及造价一览表(此报价含税不含物流费用) (11) 7工程业绩表及典型工程 (11) 8合利欧斯优势 (16) 8.1 与保利协鑫(GCL)的合作 (16) 8.2 与河北**的的合作 (17) 1工程概述 1.1工程名称 河南**外国语学校512kW户用分布式光伏发电项目。

1.2 地理简介 郑州位于东经112°42'-114°13' ,北纬34°16'-34°58',东西宽166公里,南北长75公里,总面积约为7446.2平方公里,其中市区面积约1010.3平方公里,山地面积约2377平方公里,水面面积约11.4平方公里。郑州市属北温带大陆性季风气候,冷暖适中、四季分明,春季干旱少雨,夏季炎热多雨,秋季晴朗日照长,冬季寒冷少雨。郑州市冬季最长,夏季次之,春季较短。统计资料表明郑州市的平原和丘陵地区春季开始的时间大致在3月27日,终止于5月20日,历时55天;夏季开始于5月21日,终止于9月7日,历时110天;秋季开始于9月8日,终止于11月9日,历时63天;11月10日至次年的3月26日为冬季,长达137天。处于西部浅山丘陵区的荥阳、巩义、新密和登封四市,年平均气温在14~14.3℃之间。郑州年平均降雨量640.9毫米,无霜期220天,全年日照时间约2400小时。 1.3 气象资料 气象资料以NASA数据库中郑州气象数据为参考。 表1 气象资料表

太阳能光伏照明控制系统的硬件电路项目设计方案

太阳能光伏照明控制系统的硬件电路项 目设计方案 1.1概述 传统的化石能源资源日益枯竭,严重的环境污染制约了世界经济的可持续发展。能 源的需求有增无减,能源资源已成为重要的战略物资,化石能源储量的有限性是发展可 再生能源的主要因素之一。根据世界能源权威机构的分析,按照目前已经探明的化石能 源储量以及开采速度来计算,全球石油剩余可采年限仅有 41年,其年占世界能源总消 耗量的40.5%,国内剩余可开采年限为15年;天然气剩余可采年限61.9年,其年占世 界能源总消耗量的24.1%,国内剩余可开采年限30年;煤炭剩余可采年限230年,其 年占世界能源总消耗量的25.2%,国内剩余可开采年限81年;铀剩余可采年限71年, 其年占世界能源总消耗量的 7.6%,国内剩余可开采年限为50年。 太阳能利用和光伏发电是最有发展前景的可再生能源,因此,世界各国都把太阳能 光伏发电的商业化开发和利用作为重要的发展方向,制定了相应的导向政策。在光伏发 电的历史上,最早规模化推广的是日本,而后是德国,再发展到现在大力推广的包括美 国、西班牙、意大利、挪威、澳大利亚、韩国、印度等超过 40个国家与地区,如日本 “新阳光计划”、欧盟“可再生能源白皮书”,以及美国国家光伏发展计划、百万太阳能 屋顶计划、光伏先锋计划等的相继推出,成为近年来推动太阳能光伏发电产业的主要动 力。根据欧盟的预测:到2030年太阳能发电将占总能耗10%以上,到2050年太阳能发 电将占总能耗20% 1.2光伏照明系统的结构 光伏照明系统主要由五大部分组成,即太阳能电池、蓄电池、控制器、照明电路、 负载,如下图1-1所示。 在系统中,控制器是整个系统的核心。它控制蓄电池的充电及蓄电池对负载的供电, 对蓄电池性能、使用寿命有非常大的影响。目前,光伏系统主要由于控制器控制蓄电池 充电方式不合理,降低了蓄电池寿命而导致整个系统可靠性不高,因此,在控制器的设 计中采用什么样的充电 图1- 1光伏系统组成框图

6kW户用光伏系统典型设计全过程

6kW户用光伏系统典型设计全过程 为了让大家全面了解6kW光伏电站设计全过程,小固从组件、逆变器、线缆、配电柜的选型到整体设计方案和详细清单以及电站收益预测进行了下面的分享。 一、设计过程 1 项目简介 农户自建住宅,南北朝向,希望在闲置的楼顶装上光伏电站,合作的EPC提供的是300Wp的组件,经过测算,楼顶面积可以安装22块组件。 安装排布图及效果图 2 组件的选择 用户希望装机容量尽量大,故EPC帮客户选择了300Wp的高效组件,该组件有着优异的低辐照性能,其技术参数如下:

1 组件的主要参数Pm=300Wp;Voc=39.85V, Vmpp=32.26V,Imp=9.30A,Isc=9.75A。2 根据组件的型号和敷设的数量计算得到6.6KWp(300Wp*22块)的装机容量。根据装机容量、组件实际排布情况来选择合适的逆变器。 3 支架方案 本次项目为斜屋面琉璃瓦屋顶,在安装支架时一般采用主支撑构件与琉璃瓦下层屋面固定,来支撑支架主梁及横梁,组件与横梁之间采用铝合金压块压接。在安装过程中,务必要做好屋面的防水工作并且合理的布置线缆。

支架安装方式 4 逆变器的选择 该项目容量为6.6kWp且并网电压为220V,故选择单相双路GW6000D-NS这款光伏逆变器,超配比为1.1倍。 逆变器电气参数 组件的朝向、倾角完全一致,分为两个相同的组串,每串11块组件,接到逆变器的直流侧。如下图所示。

组件逆变器接入方式 5 线缆的选择 1 直流侧线缆 直流线缆多为户外铺设,需要防潮、防晒、防寒、防紫外线等,因此分布式光伏系统中的直流线缆一般选择光伏认证的专用线缆,考虑到直流插接件和光伏组件输出电流,目前常用的光伏直流电缆为PV1-F 1*4mm2。 交流侧线缆 交流线缆主要用于逆变器交流侧至交流汇流箱或交流并网柜,可选用YJV型电缆。长距离铺设还要考虑到电压损失和载流量大小,6KW单相机交流线缆推荐使用YJV-3*6mm2。

光伏发电系统_毕业设计

1. 引言 日常生活和社会生产都离不开能源。人们通过直接或间接利用某些自然资源得到能,因而,把具有某种形式能量资源以及由它加工或转换得到的产品统称为能源。前者叫自然能源或一次能源,如矿物燃料、植物燃料、太阳能、水能、风能、海洋能、地热能和潮汐能等,后者通常又把可再生的自然资源称为新能源,其围包括太阳能、生物质能、风能、地热能和海洋能等。矿物燃料(煤、石油、天然气等)又称为常规能源。 值得注意,几乎所有的自然资源,从广义的角度看都来自太阳能。由大气、陆地、海洋、生物等所接受的太阳能都是各种自然资源的源泉。矿物燃料是古生物长期沉积在地下形成的,它的形成源自远古的太阳能。[9]水的蒸发和凝结,风、雨、冰、雪等自然现象的动力也是靠太阳,因而水能、风能归根到底都来自太阳能。生物质能是通过光合、光化作用转化太阳辐射能取得的。由于太阳和月球对地球水的吸水作用产生潮汐能。 世界上最丰富的永久能源是太阳能。地球截取的太阳能辐射能通量为1.7ⅹ1014kW,比核能、地热和引力能储量总和还要大5000多倍。其中约30%被反射回宇宙空间;47%转变为热,以长波辐射形式再次返回空间;约23%是水蒸发、凝结的动力,风和波浪的动能,植物通过光合作用吸收的能量不到0.5%。地球每年接受的太阳能总量为1ⅹ1018kW·h。这相当于5ⅹ1014桶原油,是探明原油储量的近千倍,是世界年耗总能量的一万余倍。 太阳的能量是如此巨大,正如通常所说的“取之不尽、用之不竭”,但是太阳辐射能的通量密度较低,大气层外为1353W/m2.太通过大气层时会进一步衰减,还会受到天气、昼夜以及空气污染等因素的影响,因而,太阳能对地球又呈现间歇性质,时高时低,时有时无。太阳能须加有储热装置,这些都使太阳能利用系统的初期投资变得昂贵。综上所述,太阳能利用具有以下明显的特点:(1)总能量很大,但太阳能通量密度较低; (2)是可再生的能源,但又具有间歇性; (3)无污染的清洁能源; (4)太阳能本身是免费的,有效利用它的初期投资较高; (5)太阳能热利用较容易实现热能能级的合理匹配,从而做到热尽使用。

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计 摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。 目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。 关键词:太阳能分布式光伏发电系统 1.前言 太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。从长远来看,太阳能的利用前景最好,潜力最大。近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。 本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。 2.太阳能光伏发电应用现状 太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。 近几年,我国光伏行业发展也非常迅速。国家对光伏发电较为重视,国家和地方政府相继出台了一些列的补贴政策以促进光伏产业的发展,国家发改委实施“送电到乡”、“光明工

户用光伏离网系统典型设计

户用光伏离网系统典型设计 由于经济发展水平的差异,还有小部分偏远地区,没有解决基本用电问题,无法享受现代文明,光伏离网发电可以解决无电或者少电地区居民基本用电问题。 户用光伏离网发电系统主要由光伏组件、支架、控制器、逆变器、蓄电池以及配电系统组成。系统电气方案设计,主要考虑组件、逆变器(控制器)、蓄电池的选型和计算。设计之前,前期工作要做好,因为离网系统都是定制的,没有一个统一的方案,需要先了解用户负载类型和功率,白天和晚上的用电量,安装地点的气候条件。光伏离网系统,用电要依赖天气,没有100%的可靠性。 离网系统由于必须配备蓄电池,且占据了发电系统30-50%的成本。而且铅酸蓄电池的使用寿命一般都在3-5年,过后又得更换,从经济性来说,很难得到大范围的推广使用,只适合缺电的地方使用。 离网系统和并网系统不一样,组件和逆变器并不是按照一定的比例去配置,而是要根据用户的负载,用电情况和当地的天气条件来设计: 1、根据用户的负载类型,及功率确认离网逆变器的功率 家用负载一般分为感性负载和阻性负载,洗衣机、空调、冰箱、水泵、抽油烟机等带有电动机的负载是感性负载,电动机启动功率是额定功率的3-5倍,在计算逆变器的功率时,要把这些负载的启动功率考虑进去。逆变器的输出功率要大于负载的功率。但对于一般贫困家庭而言,考虑到所有的负载不可能同时开启,为了节省成本,可以在负载功率之和乘以0.7-0.9的系数。下面的列表是常用家用电器的功率,供设计时参考。

2、根据用户每天的用电量确认组件功率 离网系统可用的电量=组件总功率*太阳能发电平均时数*控制器效率*蓄电池效率。组件的设计原则是要满足平均天气条件下负载每天用电量的需求,也就是说太阳能电池组件的每天发电量要稍大于负载每天用电量。因为天气条件有低于和高于平均值的情况,太阳能电池组件的设计基本满足光照最差季节的需要,就是在光照最差的季节蓄电池也能够基本上天天充满电。但在有些地区,最差季节的光照度远远低于全年平均值,如果还按最差情况设计太阳能电池组件的功率,那么在一年中的其他时候发电量就会远远超过实际所需,造成浪费。这时只能考虑适当加大蓄电池的设计容量,增加电能储存,使蓄电池处于浅放电状态,弥补光照最差季节发电量的不足对蓄电浊造成的伤害。组件的发电量并不能完全转化为用电,还要考虑控制器的效率和机器的损耗以及蓄电池的损耗。 组件的安装角度要考虑用户的地理位置,尽量满足夏季和冬季的要求,在我国,太阳能电池的方位角一般都选择正南方向,以使太阳能电池单位容量的发电量最大,最理想的倾斜角是使太阳能电池年发电量尽可能大,而冬季和夏季发电量差异尽可能小时的倾斜角。 灯泡、电风扇、电吹风这样的负载,用电量等于功率乘以时间;空调、冰箱这样的负载,是间隙性工作的,空调的耗电和室内外温度差、房间面积、空调的能效率有很大关系,1台1P的空调,晚上用8小时,耗电1-5度不等。 3、根据用户晚上用电量,或期望待机时间确定蓄电池容量 蓄电池的任务是在太阳能辐射量不足时,保证系统负载的正常用电。对于重要的负载,要能在几天内保证系统的正常工作,要考虑连续阴雨天数。对于一般的负载如太阳能路灯等

分布式光伏发电系统设计方案

分布式光伏发电系统 设 计 方 案 编制人: 审核人: 批准人: 20 年月

目录 1 工程概述 (3) 1.1 工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2 太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3 方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 4 发电量估算 (11) 5 系统的经济和社会效益 (11) 5.1 经济效益 (11) 6 设备材料清单 (12) 7 工程业绩表及典型工程照片 (12) 8 英利介绍............................................................................................... 错误!未定义书签。 9 附图1 .................................................................................................... 错误!未定义书签。

1 工程概述 1.1 工程名称 河北省分布式光伏发电项目。 1.2 地理简介 项目地点位于河北省保定市,保定市地处太行山东麓,冀中平原西部。北纬38°10′-40°00′,东经113°40′-116°20′之间。北邻北京市和张家口市,东接廊坊市和沧州市,南与石家庄市和衡水市相连,西部与山西省接壤。保定年平均气温12℃,年降水量550毫米,属于温带季风性气候。这里四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,来此旅游一般以夏秋季为宜。 1.3 气象资料 气象资料以NASA数据库中保定市气象数据为参考。 表1 气象资料表

相关主题
文本预览
相关文档 最新文档