当前位置:文档之家› C++求解最大字段和的几种方法

C++求解最大字段和的几种方法

C++求解最大字段和的几种方法
C++求解最大字段和的几种方法

C++求解最大字段和的几种方法

问题定义:

给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值(0

方法一:学过程序设计的都会,那就是枚举i和j,求i和a[i]到a[j]之间的和的最大值。

int maxsub(int *a,int n)

{

int i,j,k,maxn=0;

for(i = 0 ; i < n ; i++)

{

for(j = i+1 ; j < n ;j++)

{

int temp_max = 0 ;

for(k = i ; k <= j ;k++)

{

temp_max+=a[k];

}

if(temmax > maxn)

{

maxn = temp_max;

}

}

}

return maxn;

}

时间复杂度O(n^3)。这显然是不能接受滴。其实这其中进行了大量的重复计算。

方法二:

可以把字段和结果线计算出来啊,存储到s[]数组中,即预处理

int sum = 0.s[n];

for(i = 0 ; i < n ; i++)

{

sum+=a[i];

s[i]=sum;

}

这样在每次计算a[i]到a[j]之间的数和的时候就等于s[j]-s[i]。如此优化时间复杂度变为O (n^2).好一些了,能不能优化呢?显然在优化就是O(n*logn)和O(n)了吧!

方法三:

考虑能不能有O(n*logn)的算法呢?当然有了……

如果将给定的序列a[1..n]分成长度相等的两段a[1..n/2]和a[n/2+1:n],分别求出这两段的最大字段和。则该给定序列的最大字段和有三种情行:

1)和a[1..n/2]的最大字段和相同。

2)和a[n/2+1:n]的最大字段和相同。

3)最大字段和包含两部分,一部分在中,另一部分在a[n/2+1..n]中。

前两种情形我们可以用递归方法求出,第三种情形可以分别求出两部分的最大字段和值再相加(注:a[1..n/2]这部分求最大字段和要以a[n/2]结束,a[n/2+1..n] 这部分求最大字段和要以a[n/2+1]开始)。序列的最大字段和即为这三种情形的最大值。

int maxSubItem(int *a,int low,int high)

{

int s1,s2,s31,s32,i,j;

int sum;

int mid = ( low + high ) / 2;

if(low == high)

return a[low];

else

{

s1 = maxSubItem(a,low,mid);

s2 = maxSubItem(a,mid+1,high);

i = mid;

s31 = a[mid];

while ((s31 + a[i-1] > s31) && (i > low))

{

s31 += a[i-1];

i--;

}

j = mid + 1;

s32 = a[mid + 1];

while ((s32 + a[j + 1] > s32) && (j < high))

{

s32 += a[j + 1];

j++;

}

sum = s31 + s32;

if(sum < s1) sum = s1;

if(sum < s2) sum = s2;

}

}

这种情况下,显然时间复杂度为O(n*logn)。要是有O(n)的算法该多好呢?事实上还真有。这自然就是要想到动态规划了吧!!!

方法四:

int maxsub(int a,int n)

{

int temp = 0,maxn = -INF,k=1

int start,end;

for(i = 1 ; i <= n ;i++)

{

temp+=a[i];

if(temp > maxn)

{

maxn = temp;start = k ;end = i;

}

if(temp < 0)

{

temp = 0;k = i+1;

}

}

return maxn;

}

分析一下这个算法,借用了一个临时变量temp,其实有三种情况:

1. 若temp>maxn则更新maxn,并保存开始和结束位置;

2. 若temp<0则令temp = 0,因为temp<0则不可能继续用temp更新最大值了;

3. 若0

(temp的使用时关键,好好理解这种思想。理解不了也没关系,这是比较难想的方法。)

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》全集汇编及答案解析

【高中数学】数学《坐标系与参数方程》复习知识要点 一、13 1.若点P 的直角坐标为() 1,3-,则它的极坐标可以是( ) A .52, 3 π?? ?? ? B .42, 3 π?? ?? ? C .72, 6 π?? ?? ? D .112, 6π?? ?? ? 【答案】A 【解析】 【分析】 设点P 的极坐标为()(),02ρθθπ≤<,计算出ρ和tan θ的值,结合点P 所在的象限求出θ的值,可得出点P 的极坐标. 【详解】 设点P 的极坐标为()(),02ρθθπ≤<,则() 2 2132ρ=+-=,3 tan 31 θ-= =-. 由于点P 位于第四象限,所以,53πθ=,因此,点P 的极坐标可以是52,3 π?? ??? ,故选:A. 【点睛】 本题考查点的直角坐标化极坐标,要熟悉点的直角坐标与极坐标互化公式,同时还要结合点所在的象限得出极角的值,考查运算求解能力,属于中等题. 2.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2 x = C .2202x y x +==或 D .2y = 【答案】C 【解析】 由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C. 【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=?? =??+=? ,利用这个公式可以实现直角坐标 与极坐标的相互转化. 3.参数方程 (为参数)所表示的图象是

A.B.C.D. 【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。 【详解】 由题意知将代入,得, 解得,因为,所以.故选:D。 【点睛】 本题考查参数方程与普通方程之间的转化,参数方程化普通方程一般有以下几种消参方法:①加减消元法;②代入消元法;③平方消元法。消参时要注意参数本身的范围,从而得出相关变量的取值范围。 4.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A.B. C.D. 【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析 式。 【详解】 由伸缩变换得,代入,有, 即.所以变换后的曲线方程为.故选:C。

用c语言实现迷宫求解完美源代码

#include #include #include #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define UNDERFLOW -2 typedef int Status; //-----栈开始----- typedef struct{//迷宫中r行c列的位置 int r; int c; }PostType;//坐标位置类型 typedef struct{ int ord;// 当前位置在路径上的序号 PostType seat;// 当前坐标 int di;// 从此通块走向下一通块的“方向” }SElemType;// 栈的元素类型 //定义链式栈的存储结构 struct LNode { SElemType data;//数据域 struct LNode *next;//指针域 }; struct LStack { struct LNode *top;//栈顶指针 }; Status InitStack(LStack &s)//操作结果:构造一个空栈S { struct LNode *p; p=(LNode *)malloc(sizeof(LNode)); if(!p) {printf("分配失败,退出程序"); exit(ERROR); } s.top=p; p->next=NULL; return OK; }

Status StackEmpty(LStack s) //若栈s为空栈,则返回TRUE,否则FALSE { if(s.top->next==NULL) return TRUE; return FALSE; } Status Push(LStack &s,SElemType e)//插入元素e成为新的栈顶元素 { struct LNode *p; p=(LNode *)malloc(sizeof(LNode)); if(!p) exit(OVERFLOW); s.top->data=e; p->next=s.top; s.top=p; return OK; } Status Pop(LStack &s,SElemType &e)//删除s的栈顶元素,并且用e返回其值{ struct LNode *p; if(!(s.top->next)) exit(UNDERFLOW); p=s.top; s.top=p->next; e=s.top->data; free(p); return OK; } Status DestroyStack(LStack &s)//操作结果:栈s被销毁 { struct LNode *p; p=s.top; while(p) { s.top=p->next; free(p); p=s.top; } return OK; } //-----栈结束------ //-----迷宫开始------- #define MAXLEN 10// 迷宫包括外墙最大行列数 typedef struct{ int r;

利用栈实现迷宫地求解

利用栈实现迷宫的求解 一、要解决的问题: 以一个m*n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍,设计一个程序,对任意设定的迷宫,求出一条从入口到出口的通路,或得出没有通路的结论。 二:算法基本思想描述: 用一个字符类型的二维数组表示迷宫,数组中每个元素取值“0”(表示通路)或“1”(表示墙壁)。二维数组的第0行、第m+1行、第0列、第m+1列元素全置成“1”,表示迷宫的边界;第1行第1列元素和第m行第n列元素置成“0”,表示迷宫的入口和出口走迷宫的过程可以模拟为一个搜索的过程:每到一处,总让它按东、南、西、北4个方向顺序试探下一个位置; 用二维数组move记录4个方向上行下标增量和列下标增量,则沿第i个方向前进一步,可能到达的新位置坐标可利用move数组确定: Px=x+move[i][0] Py=y+move[i][1] 如果某方向可以通过,并且不曾到达,则前进一步,在新位置上继续进行搜索; 如果4个方向都走不通或曾经到达过,则退回一步,在原来的位置上继续试探下一位置。 三:设计: 1:数据结构的设计: (1)定义三元数组元素的结构 typedef struct MazeDirect { int Dx; //行标 int Dy; //列标 int direct; //走到下一个坐标点的方向 }MazeDirect; (2)定义链表节点的结构组成 typedef struct LinkNode { elemtype data; //数据域 struct LinkNode *next; //指针域 }LinkNode; (3)定义链栈的头指针 typedef struct {

《坐标系与参数方程》练习题(含详解)

数学选修4-4 坐标系与参数方程 [基础训练A 组] 一、选择题 1.若直线的参数方程为12()23x t t y t =+??=-? 为参数,则直线的斜率为( ) A . 23 B .2 3- C .32 D .32 - 2.下列在曲线sin 2()cos sin x y θ θθθ=??=+? 为参数上的点是( ) A .1(,2 B .31 (,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( ) A .2 01y y +==2 x 或 B .1x = C .2 01y +==2 x 或x D .1y = 5.点M 的直角坐标是(1-,则点M 的极坐标为( ) A .(2, )3π B .(2,)3π- C .2(2,)3π D .(2,2),()3 k k Z π π+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆 二、填空题 1.直线34()45x t t y t =+?? =-?为参数的斜率为______________________。 2.参数方程()2() t t t t x e e t y e e --?=+??=-??为参数的普通方程为__________________。 3.已知直线113:()24x t l t y t =+?? =-?为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos=

∴ y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.

求解迷宫问题-(c语言-很详细哦)教学教材

求解迷宫问题-(c语言-很详细哦)

求迷宫问题就是求出从入口到出口的路径。在求解时,通常用的是“穷举求解”的方法,即从入口出发,顺某一方向向前试探,若能走通,则继续往前走;否则沿原路退回,换一个方向再继续试探,直至所有可能的通路都试探完为止。为了保证在任何位置上都能沿原路退回(称为回溯),需要用一个后进先出的栈来保存从入口到当前位置的路径。 首先用如图3.3所示的方块图表示迷宫。对于图中的每个方块,用空白表示通道,用阴影表示墙。所求路径必须是简单路径,即在求得的路径上不能重复出现同一通道块。 为了表示迷宫,设置一个数组mg,其中每个元素表示一个方块的状态,为0时表示对应方块是通道,为1时表示对应方块为墙,如图3.3所示的迷宫,对应的迷宫数组mg如下: int mg[M+1][N+1]={ /*M=10,N=10*/ {1,1,1,1,1,1,1,1,1,1},

{1,0,0,1,0,0,0,1,0,1}, {1,0,0,1,0,0,0,1,0,1}, {1,0,0,0,0,1,1,0,0,1}, {1,0,1,1,1,0,0,0,0,1}, {1,0,0,0,1,0,0,0,0,1}, {1,0,1,0,0,0,1,0,0,1}, {1,0,1,1,1,0,1,1,0,1}, {1,1,0,0,0,0,0,0,0,1}, {1,1,1,1,1,1,1,1,1,1} }; 伪代码:

c语言描述如下: void mgpath() /*路径为:(1,1)->(M-2,N-2)*/ { int i,j,di,find,k; top++; /*初始方块进栈*/ Stack[top].i=1; Stack[top].j=1;

利用栈实现迷宫的求解

利用栈实现迷宫的求解 一、要解决的四个问题: 1、表示迷宫的数据结构: 设迷宫为m行n列,利用maze[m][n]来表示一个迷宫,maze[i][j]=0或1; 其中:0表示通路,1表示不通,当从某点向下试探时,中间点有4个方向可以试探,(见图)而四个角点有2个方向,其它边缘点有3个方向,为使问题简单化我们用maze[m+2][n+2]来表示迷宫,而迷宫的四周的值全部为1。这样做使问题简单了,每个点的试探方向全部为4,不用再判断当前点的试探方向有几个,同时与迷宫周围是墙壁这一实际问题相一致。 如图3.4表示的迷宫是一个6×8的迷宫。入口坐标为(1,1),出口坐标为(m,n)。 入口(1,1) 图 1 用maze[m+2][n+2]表示的迷 宫 迷宫的定义如下: #define m 6 /* 迷宫的实际行 */ #define n 8 /* 迷宫的实际列 */ int maze [m+2][n+2] 2 、试探方向: 在上述表示迷宫的情况下,每个点有4个方向去试探,如当前点的坐标(x , y),与其相邻的4个点的坐标都可根据与该点的相邻方位而得到,如图2所示。因为出口在(m,n),因此试探顺序规定为:从当前位置向前试探的方向为从正东沿顺时针方向进行。为了简化问题,方便的求出新点的坐标,将从正东开始沿顺时针进行的这4个方向(用0,1,2,3表示东、南、西、北)的坐标增量放在一个结构数组move [ 4 ]中,在move 数组中,每个元 m n 素有两个域组成,x:横坐标增量,y:纵坐标增量。Move数组如图3所示。 move数组定义如下: typedef struct { int x //行 int y //列 } item item move[4] 这样对move的设计会很方便地求出从某点 (x,y) 按某一方向 v (0≤v≤3) 到达的新点(i,j)的坐标:i =x + move[v].x ,j = y + move[v].y 。 3.栈的设计: 当到达了某点而无路可走时需返回前一点,再从前一点开始向下一个方向继续试探。因此,压入栈中的不仅是顺序到达的各点的坐标,而且还要有从前一点到达本点的方向,即每走一步栈中记下的内容为(行,列,来的方向)。对于图1所示迷宫,依次入栈为: 栈中每一组数据是所到达的每点的坐标及从该点沿哪个方向向下走的,对于图3迷宫,走

坐标系与参数方程知识点

坐标系与参数方程 知识点 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0) x x y y λλ?μμ'=>?? '=>?g g 的作用 下,点P(x,y)对应到点(,)P x y ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示 ,在平面内取一个定点O ,叫做极点,自极点O 引一条射 线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标 设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个 点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的. 3.极坐标和直角坐标的互化

(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示 : (2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是 (,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表: 点M 直角坐标(,)x y 极坐标(,)ρθ 互化公式 cos sin x y ρθ ρθ=?? =? 222 tan (0)x y y x x ρθ=+= ≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程 曲线 图形 极坐标方程 圆心在极点,半径为r 的圆 (02)r ρθπ=≤< 圆心为(,0)r ,半径为r 的圆 2cos ()2 2 r π π ρθθ=- ≤< 圆心为(, )2 r π ,半 径为r 的圆 2sin (0)r ρθθπ≤<

c语言迷宫问题的求解(栈和递归)

实验报告 【实验名称】项目一迷宫问题的求解 【实验目的】 1.了解栈的基本操作以及充分理解栈的特点。熟悉掌握栈的基本操作和结构体 的运用。 2.学会用栈或者递归方法解决迷宫问题。 【实验原理】 1.本次实验中,以二维数组maze[row][col]表示迷宫,0表示通路,1表示墙,在构建迷宫时,为了清晰显示,在最外层添加一圈墙。 2.算法的核心思想是利用栈后进先出的特点,对迷宫进行探索,如果此路可行,则将此坐标的信息入栈,如果此路不通,则将此坐标的信息出栈。 3.输入形式:根据控制台的提示,依次输入迷宫的行数、列数,然后输入迷宫,再输入入口和出口坐标。 4.输出形式:由用户选择,由递归、非递归两种求解方式输出一条迷宫通路。以非递归方式会显示一种求解方案,并给出相应的三元组序列和迷宫方阵;以递归方式则会显示出所有的路线。 【实验内容】 1.需求分析 (1)问题描述 以一个m*n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍。设计一个程序,对任意设定的迷宫,求出一条从入口到出口的通路,或得出没有通路的结论。 要求以递归和非递归两种方式分别输出一条迷宫的通路,以带方向坐标和迷宫图像表示。

(2)基本要求 (1)首先实现一个以链表作存储结构的栈类型,然后编写一个求解迷宫的非递归程序。求得的通路以三元组(i,j,d)的形式输出。其中:(i,j)指示迷宫中的一个坐标,d表示走到下一坐标的方向。如,对于下列数据的迷宫,输出一条通路为:(1,1,1),(1,2,2),(2,2,2),(3,2,3),(3,1,2),…。 (2)编写递归形式的算法,求得迷宫中所有可能的通路。 (3)以方阵形式输出迷宫及其通路。 2.概要设计 (1)栈的抽象数据类型 ADT Stack{ 数据对象:D={ai|ai∈ElemSet, i=1,2, …,n, n≥0} 数据关系:R1={|ai-1,ai∈D, i=1,2, …,n } 约定an端为栈顶,a1端为栈底。 基本操作: InitStack( &S ) 操作结果:构造一个空栈S。 DestroyStack ( &S ) 初始条件:栈S已存在。 操作结果:销毁栈S。 ClearStack( &S ) 初始条件:栈S已存在。 操作结果:将S清为空栈。 StackEmpty( S ) 初始条件:栈S已存在。 操作结果:若S为空栈,则返回TRUE,否则返回FALSE。 StackLength( S ) 初始条件:栈S已存在。 操作结果:返回S的数据元素个数,即栈的长度。 GetTop( S, &e ) 初始条件:栈S已存在且非空。 操作结果:用e返回S的栈顶元素。 Push( &S, e ) 初始条件:栈S已存在。 操作结果:插入元素e为新的栈顶元素。 Pop( &S, &e ) 初始条件:栈S已存在且非空。 操作结果:删除S的栈顶元素,并用e返回其值。 }ADT Stack (2)程序模块

坐标系与参数方程(题型归纳)

坐标系与参数方程 (一)极坐标系: 1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做 极轴,再选一个长度单位和角度的正方向(通常取逆时针方向).对于平面内的任意一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ, θ)就叫做点M 的极坐标.这样建立的坐标系叫做极坐标系. 2、极坐标与直角坐标互化公式: ★极坐标与直角坐标的互化公式:? ??==θρθ ρsin cos y x , ?? ? ? ?≠=+=0,tan 2 22x x y y x θρ。 ★极坐标与直角坐标的互化的前提: ①极点与直角坐标的原点重合;②极轴与x 轴的正方向重合;③两种坐标系中取相同的长度单位。 例如:极坐标方程cos sin 11x y ρθρθ+=?+=(在转化成,x y 时要设法构造cos ,sin ρθρθ , 然后进行整体代换即可) 3、求极坐标方程的两种方法: ★处理极坐标系中问题大致有两种思路: (1)公式互化法:把极坐标方程与直角坐标方程进行互化; (2)几何法:利用几何关系(工具如:三角函数的概念、正弦定理、余弦定理)建立ρ与θ的方程. (二)参数方程: 1、参数方程的定义: 如果曲线(),0F x y =中的变量,x y 均可以写成关于参数t 的函数()()x f t y g t =???=??,那么()() x f t y g t =???=?? 就称为该曲线的参数方程,其中t 称为参数。 2、常见的消参技巧: (1)代入法:()3 ()2333723x t t y x y x y t =+??=+-?=-? =+? 为参数 (2)整体消元法:2211 x t t y t t ? =+??? ?=+?? ()t 为参数,由222112t t t t ?? +=++ ???可得:22x y =+ (3)三角函数法:利用22 sin cos 1θθ+=消去参数 例如:22cos 3cos 3 ()12sin 94sin 2 x x x y y y θθθθθ? =?=????+=? ?=??= ??为参数

选修4-4坐标系与参数方程练习题及解析答案

高中数学选修4-4经典综合试题(含详细答案) 一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中, 只有一项是符合题目要求的. 1.曲线与坐标轴的交点是(). A. B. C. D. 2.把方程化为以参数的参数方程是(). A. B. C. D. 3.若直线的参数方程为,则直线的斜率为().A. B. C. D. 4.点在圆的(). A.内部B.外部C.圆上D.与θ的值有关 5.参数方程为表示的曲线是(). A.一条直线B.两条直线C.一条射线D.两条射线 6.两圆与的位置关系是(). A.内切 B.外切 C.相离 D.内含 7.与参数方程为等价的普通方程为(). A. B.

C. D. 8.曲线的长度是(). A. B. C. D. 9.点是椭圆上的一个动点,则的最大值为().A. B. C. D. 10.直线和圆交于两点, 则的中点坐标为(). A. B. C. D. 11.若点在以点为焦点的抛物线上,则等于().A. B. C. D. 12.直线被圆所截得的弦长为(). A. B. C. D. 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 13.参数方程的普通方程为__________________. 14.直线上与点的距离等于的点的坐标是_______.15.直线与圆相切,则_______________. 16.设,则圆的参数方程为____________________.

三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 求直线和直线的交点的坐标,及点与的距离. 18.(本小题满分12分) 过点作倾斜角为的直线与曲线交于点, 求的值及相应的的值. 19.(本小题满分12分) 已知中,(为变数), 求面积的最大值. 20.(本小题满分12分)已知直线经过点,倾斜角, (1)写出直线的参数方程. (2)设与圆相交与两点,求点到两点的距离之积.21.(本小题满分12分) 分别在下列两种情况下,把参数方程化为普通方程: (1)为参数,为常数;(2)为参数,为常数. 22.(本小题满分12分) 已知直线过定点与圆:相交于、两点.求:(1)若,求直线的方程; (2)若点为弦的中点,求弦的方程. 答案与解析:

坐标系与参数方程

坐标系与参数方程 1.在极坐标系中,以极点为坐标原点,极轴为x 轴正半轴,建立直角坐标系,点M (2, 6 π )的直角坐标是( ) A .(2,1) B .(3,1)C .(1,3) D .(1,2) 2.曲线的极坐标方程4sin ρθ=化为直角坐标为( ) A.4)2(22=++y x B.4)2(2 2=-+y x C.4)2(22=+-y x D.4)2(2 2=++y x 3.点() 3,1-P ,则它的极坐标是.( ) A .??? ? ?3, 2π B .?? ? ??34,2π C .??? ??-3,2π D .??? ??- 34,2π 4.已知曲线C 1的极坐标方程为ρcos(θ-3 π )=-1,曲线C 2的极坐标方程为ρ=22cos (θ- 4 π).以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系. (Ⅰ)求曲线C 2的直角坐标方程; (Ⅱ)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 5.=4ρθ圆cos 的圆心的极坐标是( ) A.0(2,) B.22 π (,)C.2π(,) D.-2 π(2,) 6.(坐标系与参数方程)设方程?? ???+=+=θθ sin 3cos 1y x ,(θ为参数).表示的曲线为C , (1)求曲线C 上的动点到原点O 的距离的最小值(2)点P 为曲线C 上的动点,当|OP|最小时(O 为坐标原点),求点P 的坐标。 7.在极坐标系中,已知两点A 、B 的极坐标分别为(33π,),(6 4π ,),则△AOB (其中 O 为极点)的面积为. 8.在极坐标系中,点)6, 2(π 到直线1)6 sin(=-π θρ的距离是_______. 9.已知曲线C 的极坐标方程为2ρ=(0,02ρθπ>≤<),曲线C 在点(2,4π )处 的切线为l ,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,则l 的直角坐标方程为. 10.在极坐标系中,已知两圆C 1:ρ=2cos θ和C 2:ρ=2sin θ,则过两圆圆心的直线的极坐标方程是________________________________________. 11.已知圆的极坐标方程为2cos ρθ=,则该圆的圆心到直线sin 2cos 1ρθρθ+=

选修4-4坐标系与参数方程-高考题-分类汇总-(题目和答案)

坐标系与参数方程 1、(2011天津)下列在曲线sin 2(cos sin x y θ θθθ =??=+?为参数) 上的点是( ) A 、1 (,2)2- B 、31(,)42 C 、(2,3) D 、 (1,3) 2、(2011·安徽理,5)在极坐标系中点?? ? ??3,2π到圆ρ=2cos θ的圆心的距离为( ) A .2 B. 4+π 2 9 C. 1+π2 9 D. 3 3、(2011·北京理,3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A .(1,π2) B .(1,-π 2 ) C .(1,0) D .(1,π) 4、(2010·湖南卷)极坐标方程ρ=cos θ和参数方程? ?? ?? x =-1-t y =2+3t (t 为参数)所表示的图形分别是( ) A .圆、直线 B .直线、圆 C . 圆、圆 D .直线、直线 5、(2010·北京卷)极坐标方程为(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( ) A .两个圆 B .两条直线 C .一个圆和一条射线 D .一条直线和一条射线 6.N3[2012·安徽卷] 在极坐标系中,圆ρ=4sin θ的圆心到直线θ= π 6 (ρ∈R )的距离是________. 7.N3[2012·北京卷] 直线??? ?? x =2+t , y =-1-t (t 为参数)与曲线 ???? ? x =3cos α,y =3sin α (α为参数)的交点个数为________. 8.N3[2012·广东卷] (坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为?? ? x =t ,y =t (t 为参数)和 ?? ? x =2cos θ,y =2sin θ (θ为参数),则曲线C 1与C 2的交点坐标为________. 9.N3[2012·湖南卷] 在直角坐标系xOy 中,已知曲线C 1:????? x =t +1,y =1-2t (t 为参数)与曲线C 2:? ?? ?? x =a sin θ, y =3cos θ(θ为参数,a >0)有一个公共点 在x 轴上,则a =________. 10.N3[2012·湖北卷]在直角坐标系xOy 中,以原点O 为极点,x 轴的 正半轴为极轴建立坐标系.已知射线θ=π 4与曲线? ???? x =t +1,y =t -12 (t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________. 11、(2012·高考广东卷)(坐标系与参数方程选做题)在平面直角坐标系 xOy 中,曲线C 1和C 2的参数方程分别为???x =5cos θ y =5sin θ ? ????θ为参数,0≤θ≤π2和 ? ????x =1-2 2t y =-2 2 t (t 为参数),则曲线C 1与C 2的交点坐标为__________. 12.【广东省珠海市2012年9月高三摸底考试】在极坐标系中,圆 2cos ρθ=的圆心到直线cos 2ρθ=的距离是_____________. 13、(2011·陕西理,15)直角坐标系xOy 中,以原点为极点,x 轴的正 半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1: ? ???? x =3+cos θy =4+sin θ(θ 为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________. 14、 N3 [2012·陕西卷]直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________. 15、(2012·高考湖南卷)在极坐标系中,曲线C 1:ρ(2·cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =__________. 17.(2011·天津理,11)已知抛物线C 的参数方程为? ?? ?? x =8t 2 , y =8t ,(t 为 参数),若斜率为1的直线经过抛物线C 的焦点,且与圆(x -4)2 +y 2 = r 2(r >0)相切,则r =________. 18.(2011·广东理)已知两曲线参数方程分别为?? ? x =5cos θ y =sin θ (0≤θ<π)和????? x =54 t 2 y =t (t ∈R ),它们的交点坐标为________. 19、【福建省华安、连城、永安、漳平一中、龙海二中、泉港一中六校 2013届高三上学期第一次联考】 已知在直角坐标系xOy 中,直线l 的参数方程为33x t y t =-???=??, (t 为参数), 在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点, 以x 轴正半轴为极轴)中,曲线C 的极坐标方程为2 4s 30co ρρθ-+=. ①求直线l 普通方程和曲线C 的直角坐标方程; ②设点P 是曲线C 上的一个动点,求它到直线l 的距离的取值范围. 20、(2012·高考课标全国卷) 已知曲线C 1的参数方程是? ????x =2cos φ, y =3sin φ,(φ为参数),以坐标原点为 极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2, 正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为(2,π 3 ). (Ⅰ) 求点A 、B 、C 、D 的直角坐标; (Ⅱ) 设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2 的取值范围.

高中数学选修4-4坐标系与参数方程完整教案(精选.)

选修4-4教案 教案1平面直角坐标系(1课时) 教案2平面直角坐标系中的伸缩变换(1课时)教案3极坐标系的的概念(1课时) 教案4极坐标与直角坐标的互化(1课时) 教案5圆的极坐标方程(2课时) 教案6直线的极坐标方程(2课时) 教案7球坐标系与柱坐标系(2课时) 教案8参数方程的概念(1课时) 教案9圆的参数方程及应(2课时) 教案10圆锥曲线的参数方程(1课时) 教案11圆锥曲线参数方程的应用(1课时) 教案12直线的参数方程(2课时) 教案13参数方程与普通方程互化(2课时) 教案14圆的渐开线与摆线(1课时)

课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:互动五步教学法 教具:多媒体、实物投影仪 复习及预习提纲: 1平面直角坐标系中刻画点的位置的方法 2坐标系的作用 ————教学过程———— 复习回顾和预习检查 1平面直角坐标系中刻画点的位置的方法 2坐标系的作用 创设情境,设置疑问 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 分组讨论 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、确定点的位置就是求出这个点在设定的坐标系中的坐标

高考数学压轴专题(易错题)备战高考《坐标系与参数方程》难题汇编附答案

高考数学《坐标系与参数方程》课后练习 一、13 1.如图,边长为4的正方形ABCD 中,半径为1的动圆Q 的圆心Q 在边CD 和DA 上移动(包含端点A 、C 、D ),P 是圆Q 上及其内部的动点,设BP mBC nBA =+u u u v u u u v u u u v (,m n ∈R ),则m n +的取值范围是( ) A .[21,221]-+ B .[422,422]-+ C .22 [1,2]22- + D .22 [1,2]44 - + 【答案】D 【解析】 【分析】 建立如图所示平面直角坐标系,可得,BA BC u u u r u u u r 的坐标,进而可得BP u u u r 的坐标.分类讨论,当 动圆Q 的圆心在CD 上运动或在AD 上运动时,利用圆的参数方程相关知识,设出点P 坐标,再利用三角函数求m n +的最值. 【详解】 解:建立如图所示平面直角坐标系,可得, (0,4),(4,0)BA BC ==u u u r u u u r ,可得(4,0)(0,4)(4,4)BP m n m n =+=u u u r , 当点Q 在CD 上运动时,设(4,), [0,4]Q t t ∈, 则点P 在圆Q :22 (4)()1x y t -+-=上及内部, 故可设(4cos ,sin ),(,01)P r t r R r θθθ++∈≤≤,

则(4cos ,sin )BP r t r θθ=++u u u r , 44cos 4sin m r n t r θθ =+?∴?=+?, 444(sin cos )4sin 4m n t r t πθθθ? ?∴+=+++=+++ ???, 04,01,t r R θ≤≤≤≤∈Q , 当50,1,4t r πθ===时,m n +取最小值为44-,即14 -; 当4, 1,4 t r π θ=== 时,m n +24+ m n ∴+的取值范围是1244?- +?? ? ; 当点Q 在AD 上运动时,设(,4),[0,4]Q s s ∈, 则点P 在圆Q :22 ()(4)1x s y -+-=上及其内部, 故可设(cos ,4sin ),(,01)P s r r R r θθθ++∈≤≤, 则(cos ,4sin )BP s r r θθ=++u u u r , 4cos 44sin m s r n r θθ =+?∴?=+?, 444(sin cos )4sin 4m n s r s πθθθ? ?∴+=+++=+++ ???, 04,01,s r R θ≤≤≤≤∈Q , 当50,1,4s r πθ===时,m n +取最小值为44-,即14 -; 当4, 1,4 s r π θ=== 时,m n +取最大值为 84 +,即24+, m n ∴+的取值范围是1244?- +?? ? ; 故选:D . 【点睛】 本题考查了向量的坐标运算、点与圆的位置关系,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题. 2.点(,)ρθ满足223cos 2sin 6cos ρθρθθ+=,则2 ρ的最大值为( ) A . 7 2 B .4 C . 92 D .5

c语言程序设计 迷宫

数据结构课程设计_迷宫问题 /* Name:迷宫 Author:wujilin Description:输入时候一圈都应该是# 入口为(1,1) 如果有出口出口为(M-2,M-2) Date: 16-07-06 20:54 Copyright:wujilin */ #include #include #define M 10 //自己规定为10*10的迷宫 #define OK 1 #define ERROR 0 #define OVERFLOW -1 #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 int findway(int); int NextStep(int *, int *, int ); typedef struct { int x, y; //坐标 int dir; //方向 }ElemType; typedef struct StackNode//构造栈 { ElemType *base; ElemType *top; int stacksize; }SqStack; int InitStack(SqStack *S)//初始化栈 { S->base=(ElemType *)malloc(STACK_INIT_SIZE*sizeof(ElemType)); if(!S->base) { printf("memory allocation failed,goodbye"); exit(1); } S->top=S->base; S->stacksize=STACK_INIT_SIZE; return OK; }

迷宫问题实验报告用栈解决迷宫问题

数据结构实验报告 题目:用栈解决迷宫问题 .需求分析 1.以结构体 Maze 表示迷宫,其中 pos 表示该位置是否有障碍; freq 记录该位置被经过的次数;数组 move 表示下一步的方向。 2. 本程序自动随机生成一个12 × 12大小的迷宫,字符“ H”表示有障碍,空符表示通 路。 3. 迷宫的入口为左上角,出口为右下角。 4. 本程序只求出一条成功的通路。 .概要设计 为了实现上述操作,以栈为存储结构。 本程序包含三个模块: 1)主程序模块 :实现人机交互。 2)迷宫生产模块:随机产生一个12× 12的迷 宫。 3)路径查找模块:实现通路的查找。 4)求解迷宫中一条通路的伪代码: do{ 若当前位置可同,则{ 将当前位置插入栈顶;若该位置是出口位置,则结束;否则切换当前位置的东临方块为新的当前位置;} 否则 { 若栈不空且栈顶位置尚有其他方向未被探索,则设定新的的当前位置为沿顺时针 方向旋转找到的栈顶位置的下一相邻块若栈不空但栈顶位置的四周均不可通, 则{ 删去栈顶位置; 若栈不空,则重新测试新的栈顶位置,直至找到一个可通的相邻块或出栈 至栈空。 } } } while( 栈不空 ) 三. 详细设计栈的设计: typedef struct { Node *base,*top; int length; }Stack; Stack *initstack(); // 初始化栈 void printstack(Stack *s); // 打印栈 Status destroy(Stack *); // 销毁整个栈 Status deltop(Stack *s); // 出栈 Status pushelem(Stack *,ElemType ,ElemType); // 进栈 1. 主程序模块: int main() { printf(" 随机产生一个12× 12 的迷宫, X 字符表示障碍,空符表示通路: \n"); Maze a[N][N]; makemaze(a); printf(" 输入回车键显示路径 ,* 字符表示路径。 \n"); getchar(); findpath(a); while(1); return 0;

坐标系与参数方程(解析版)

专题14 坐标系与参数方程 1.【2019年高考北京卷理数】已知直线l 的参数方程为13, 24x t y t =+=+??? (t 为参数),则点(1,0)到直线l 的距离是 A . 1 5 B . 25 C . 45 D . 65 【答案】D 【解析】由题意,可将直线l 化为普通方程:12 34 x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l 的距离6 5 d = =,故选D . 【名师点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查. 2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 【答案】(1)22 1(1)4 y x x +=≠-;l 的直角坐标方程为2110x +=;(2 . 【解析】(1)因为2 21111t t --<≤+,且() 2 2 2 22 222141211y t t x t t ??-??+=+= ? ?+????+,所以C 的直角坐标方程为2 2 1(1)4 y x x +=≠-. l 的直角坐标方程为2110x ++=. (2)由(1)可设C 的参数方程为cos , 2sin x y αα=??=? (α为参数,ππα-<<). C 上的点到l π4cos 11 α? ?-+ ?= 当2π3α=- 时,π4cos 113α? ?-+ ?? ?取得最小值7,故C 上的点到l .

相关主题
文本预览
相关文档 最新文档