当前位置:文档之家› 酶工程在环境保护中的应用

酶工程在环境保护中的应用

酶工程在环境保护中的应用
酶工程在环境保护中的应用

酶工程在环境保护中的应用

摘要:酶作为生物催化剂,具有高催化效率,专一性强,反应条件温和及酶活性可以调控,针对化境中的空气污染和水污染有高度专一性,可在最短的时间内有效除去污染物,而且无二次污染,为解决环境污染问题提供了有效措施。

关键词:生物酶;污水处理;甲醛污染;

环境污染问题直接关系到人的生命与健康,是城镇公共安全体系中最重要的核心安全问题。近几年来,全国多个城市发生了突发性环境污染事故,尤其是水污染和居民住宅甲醛超标,对城市环境及人民生命安全造成威胁,社会影响极为严重。但目前国内现有的常规处理工艺无法应对突发性环境污染造成的超标污染物,深度处理工艺也仅能对部分超标污染物。突发环境污染时如何保障城市环境及人民生命安全,如何采用有效的应急处置技术,在最短时间有效去除污染物,已成为当前所面临的新课题。

环境工程技术与生物技术的结合,为污染治理提供了新的技术手段,环境生物技术已成为解决环境污染的发展方向。利用生物酶催化技术进行环境污染应急处置,即通过有效的生物降解功能来对目前一些污染治理技术所不能达到的污染源进行处理,可在最短的时间内有效去除污染物,保障环境及人民生命安全。

1 生物酶催化处理污水技术

1.1生物酶催化处理污水技术的机理

将生物酶催化技术应用于环境中污染物的去除,不同于普通微生物的系列生物酶技术,是将多种生物酶进行复合,通过生物酶打开污染物中更复杂的化学链,酶分子可以使反应物分子中化学键拉长、扭曲和变形,使他们更容易被水解,因而加速有机物的分解,将其迅速降解为小分子,从高分子有机物降解为低分子有机物或CO2、H2O等无机物,降低 CODCr值,从而达到去除污染物的目的,并可大大降低污水处理费用。与其他微生物处理相比,生物酶催化处理法具有催

化效能高、反应条件温和、对废水质量及设备情况要求较低,反应速度快,对温度、浓度和有毒物质适应范围广,可以重复使用等优点。

1.2 生物酶催化处理污水技术的优点

(1)催化效率高

生物酶一般能加速反应速度109~1010倍。而化学催化剂仅能加快反应速度104~105倍。所以相对含量很低的生物酶在短时间内能催化含量很高的底物,可以成千万倍地加速生物化学反应的速度。生物酶催化仅能加快化学反应速度并不会改变化学反应的平衡点,且在反应前后其本身不发生变化。

(2)专一性

每种酶有且仅有一种功能。有机体内的每项功能、每种底物,都有与其对应的唯一的一种酶。底物与酶像钥匙与锁一样配套。只有当酶找到其合适的底物时,生化反应才会发生。

(3)适用范围广

生物酶种类繁多,几乎所有的有机物都能被某一种生物酶降解。在一个反应器里,多种生物酶可在相同的条件下同时净化处理含有多种污染成分的废水。

(4)长久高效性

酶作为催化剂,不会成为它所催化的生化反应的终产物的一部分。某一生化反应完成后,产物离开酶,酶就可以对另一分子进行相同的作用了。只要有合适的条件,酶可以一直工作下去。

(5)环保性

生物酶是环境友好型制剂,可以被完全生物降解。而大量使用化学制剂会对环境产生二次污染,生物酶对环境没有危害,因此生物酶可以更经济地完成同样的工作,却对环境无害。环保用酶没有任何有害废物产生,使用生物酶制剂是无害化处理的过程,这使其成为解决工业水污染问题的最佳方案。

1.3滞留污水应急处置

有机物等被特选生物酶分解为CO2和H2O,高效生物酶净水剂催化处理污水技术有独特的处理效果,尤其是对自然微生物(活性污泥)有毒有害、难以降解的大分子化合物有良好的降解效果。该方法利用高效生物酶与酶技术在污水处理领域的应用,可在短时间内迅速对有机物进行催化氧化,高分子有机物经催化氧化后开环断链形成小分子有机物,提高了污水的可生化性,可有效地降低COD 和色度,还可以去除产生臭味的污染物等。经处理后的污水,可达到国家相关排放标准。采用该技术对现有滞留污水进行应急处置操作简便,处理效果好,处理费用低,运行安全可靠,不产生二次污染,能够确保处理水质的可靠,是对现有滞留污水进行应急处置的有效方法。

2、生物清醛酶清除甲醛

采用氨基酸解大豆蛋白,并添加一种从纯天然植。物中提取的活性酶,成功制备出生物清醛酶(又名氨基酸解大豆蛋白)新产品。该新产品结合了生物酶催化、吸附和分解等技术,不仅可有效去除脲醛树脂、涂料和乳胶漆等产品中的游离甲醛,还可以高效、快速地清除人造板、家具、壁纸和地毯等装饰装修材料中散发出的甲醛。

生物清醛酶可以高效迅速的去除居室内的甲醛等污染物,其中针对甲醛有较强的催化降解作用,可使其降解为CO2、H2O等无机物。作用迅速,无二次污染物的产生。

3、结语

采用生物酶催化处理污水、甲醛等污染物的应急处置,其优点体现在:

(1)处理效率高;

(2)生物酶技术先进;

(3)生物酶是环境友好型高效催化剂,不产生二次污染;

(4)可有效解决污水和甲醛污染问题,节省费用。

在解决污水问题时,合生物酶可以高效迅速的去除污水中的污染物,其中特选的生物酶对于污水中的污染物有较强的催化降解作用,可使其从复杂的大分子有机物降解为小分子有机物或CO2、H2O等无机物。同样,生物清醛酶可有效将甲醛分解为CO2、H2O等无机物,高效且无二次污染物。

4、酶工程的应用前景

我国正处于经济发展的高速时期,同样环境也付出了巨大的代价。所以,利用生物方法解决污染问题是新形势下最有效的方式之一。面对不断减少的不可再生资源,全世界处于开发新型能源的大趋势下,利用酶工程技术从生物中生产燃料也是人们正在探寻的一条新路。如应用生物酶发制造生物柴油。另外,在石油的开发中,利用微生物作为石油勘测、二次采油、石油精炼等手段是国内外普遍关注的课题。当然酶工程的用途不仅仅是在能源开发上应用,酶工程在食品加工、轻化工业、医药制造、环境工程等的应用领域十分广泛,并在各个领域取得了显著成效。

参考文献:

[1] 齐爱玖;孙祥章;李伯群;;生物酶催化技术在水污染应急处置中的应用;福州晨翔环保工程有限公司;泉州市泉港区规划建设局;2010;06;46-49;

[2] 摆脱甲醛污染的高科技产品——生物清醛酶;山东诸城市良丰化学有限公司环境科学技术研究所;

[3] 陈新里伟杜伟等;生物酶法制备生物柴油研究现状及展望;清华大学化学工程系;

[4] 冯裕华, 付仲逑.环境污染控制[M].北京:中国环境科学出版社,2004;

[5] 周晓云. 酶学原理与酶工程[M].北京: 中国轻工业出版社, 2005;

[6] 沈耀良, 等. 固定化微生物污水处理技术[M].北京:化学工业出版社,2002;

酶工程发展概况及应用前景

酶工程发展概况及应用前景 【摘要】酶的生产和应用的技术过程称为酶工程。其主要任务是通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥其最大的催化功能。本文意在阐述近年来酶工程在分子水平的研究进展,展示酶工程在医药、农业、食品、环境保护等领域的应用进展,并对其未来前景进行了展望。 【关键词】酶工程;概况;应用;前景 酶工程,从定义上来说,是酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶的反应器等方面内容。 酶工程的前景 酶因其反应的专一性,高效性和温和性的特点,已和生物工程,信息科学和材料科学构成了当今的三大前沿科学。而作为生物工程的重要组成部分,将在未来的发展中,在世界科技和经济发展中起着主导和支柱作用。而工业用酶日益广泛地应用于化学,医药,纺织,农业,日化,食品,能源,化妆品以及环保等行业。据报道,到2003年,欧洲工业用酶的市场增加至9亿美元,年增长率达百分之十;而2000年的中国,酶制剂总产量达272吨,同比增长8.8%,可谓发展迅速,前景十分广阔。 酶工程的发展 酶工程的发展,是一部科学的成长史。在二次世界大战后,酶工程发展成为新的工业领域—酶工程工业。酶工程的发展历史从那时算起, 至今已经三十多个年头了。六十年代以后, 由于固定化酶、固定化细胞及固定化活细胞的崛起, 使酶制剂的应用技术面貌一新。七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。几十年来酶制剂的品种和应用不断扩大。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。近年来, 国际上酶工程技术发展迅速, 硕果累累,主要有基因工程、蛋白质工程、人工合成酶、模拟酶、核酸酶、抗体酶、酶的定向固定化技术、酶化学技术、非水酶学、糖生物学、糖基转移酶、极端环境微生物和不可培养微生物的新品种等。 酶工程的应用 酶工程的发展日新月异,现举几个例子更加形象地说明酶工程地应用: 酶工程在污染处理中的作用:可利用过氧化物酶和聚酚氧化酶处理含酚废水和造纸废水,如辣根过氧化物酶,木质素过氧化物酶,植物来源的过氧化物酶;酪氨酸酶,漆酶等;可利用氰化物酶和氰化物水合酶处理含氰废水;利用蛋白酶,淀粉酶处理食品加工废水;并且,可以通过设计复合代谢途径,拓宽氧化酶的专一性等基因工程的运用,提高微生物的降解速率;拓宽底物的专一性;维持低浓度下的代谢活性;改善有机污染物降解过程中的生物催化稳定性等。酶在废物处理及资源化过程中正在发挥重要作用, 利用基因工程和蛋白质工程扩展酶的代谢途经, 是治理难降解有毒污染物的重要方法。

酶工程的研究进展及前景展望

酶工程的研究进展及前景展望 摘要:概述了21 世纪国际上酶工程研究的新进展和新趋势。本文意在阐述近年来酶工程在分子水平的研究进展,并对其未来前景进行了展望。简单介绍了酶工程研究的进展, 对酶工程的发展前景进行了探讨。介绍了酶工程的应用现状,并对酶工程的作用和发展做出了展望。 关键词: 酶工程; 抗体酶;酶的固定化;开发研究; 进展; Abstract:An overview of the enzyme engineering in the 21st century international research progress and new trends. This paper aims to elaborate in recent years, progress in enzyme engineering research at the molecular level, and its future prospects. Briefly introduced the progress of the study of enzyme engineering, discussed the prospects for the development of enzyme engineering. Introduced the application status of the enzyme works , and the role and development of enzyme engineering to make the outlook. Keywords:Enzyme Engineering; Antibody enzyme; Immobilization; Research and development;Progress 1 前言 跨入21 世纪,人们在20 世纪认识生命本质高度一致性的基础上,迎来了后基因组时代,将有可能从整个基因组及其全套蛋白质产物的结构- 功能机理的角度,进一步阐明生命现象的核心和本质, 并系统整合生物学的全部知识,建立起真

酶工程的应用及发展前景.

酶工程的应用及发展前景 生物技术一班 41208220 杨青青

酶工程的应用及发展前景 杨青青 (陕西师范大学生命科学学院生物技术专业1201班) 摘要:酶工程是现代生物技术的重要组成部分,它作为一项高新技术将为各工业的发展起重要推动作用。本文概要介绍了酶工程的概念,酶工程在农产品加工、医药工业、食品工业、污染治理工业、蛋白质高值化加工等方面的应用以及探讨了在各个工业中的发展前景。 关键词:酶工程、应用、发展前景 一、酶工程的概念 酶是由生物体产生的具有催化活性的蛋白质,它能特定的促成某个化学反应而本身却不参加反应,且具有反应率高、反应条件温和、反应产物污染小、能耗低、反应容易控制等特点。这些特点比传统的化学反应具有较大的优越性。酶的应用不仅可以增强产量,提高质量,降低原材料和能源消耗,改善劳动条件,降低成本,而且可以生产出用其他方法难得到的产品,促进新产品、新技术和新工艺迅速发展。随着现代生物技术的兴起,酶工程技术应运而生,并在制药、食品工业和农产品加工显示出强大的生命力。酶工程就是利用酶催化作用,

通过适当的反应器工业化的生产人类所需的产品或是达到某一目的,它是酶学理论与化工技术相结合而形成的一种新技术。酶工程包括自然酶的开发和利用、固定化酶、固定化细胞、多酶反应器(生物反应器)、酶传感器等。 二、酶工程的应用以及发展前景 1、酶工程在农产品加工上的应用与前景 以前,人们认为氨基酸是人体吸收蛋白质的主要途径。随着研究的发现,蛋白质经消化道中的酶水解后,主要以小肽的形式被吸收,比完全游离的氨基酸更易吸收利用。这一发现启发了科研工作者采用酶工程技术用蛋白质生产生物活性肽的新思路。生物活性肽是蛋白质中20种天然氨基酸以不同排列组合方式构成的从二肽到复杂的线性或环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能。主要是通过酶法降解蛋白质而制得。 目前已经从大豆蛋白、玉米蛋白、牛奶蛋白、水产蛋白的酶解物中制得一系列功能各异的生物活性肽。因为各类蛋白质存在的差异性,所以在生产活性肽方面有略微的不同。不论哪种方法,都会用到一定的酶类水解蛋白质。比如:文献报道采用中性蛋白酶、木瓜蛋白酶水解大豆蛋白,配合活性炭的吸附处理、超滤、真空浓缩和喷雾干

酶在环境保护方面的应用

酶在环境保护方面的应用 摘要:随着科学技术的迅速发展,人类赖以生存的环境质量,是目前举世瞩目的重大问题。对日益严峻的全球化环境污染问题,酶在环保方面的应用日益受到关注,呈现出良好的发展前景。为环境保护污染治理提供了新的技术手段。?本文介绍了酶工程基本技术,包括酶制剂的生产、酶的分离纯化,酶的固定化技术、酶的改造和修饰等,综述了酶在环境保护方面,包括水净化、石油和工业废油的处理、白色污染的治理和环境监测等方面的研究和应用现状。 关键词:酶工程;环境保护;环境监测;废水处理;可生物降解材料开发;石油和工业废油 众所周知,酶作为一种高效生物催化剂,能在十分温和的条件下起高数率的催化作用, 并且具有高度的区域选择性和立体专一性。因此, 它有着化学催化剂所无可比组的优越性, 已经广泛应用在食品工业、药物工业和洗议剂工业。 近年来环境污染越来越严重,酶的作用也从工业生产转移至环境治理中来。 人类的生产和生活与自然环境密切相关,随着科学技术的不断发展,地球环境由于受到各方面因素的影响,正在不断恶化,人类开发利用自然资源的能力和范围不断扩大,随之而来的环境污染问题也越来越严重,已经成为举世瞩目的重大问题。环境污染已成为制约人类社会发展的重要因素,我国每年排放大量废水(416亿t)、废气和烟尘(2000万t)以及固体废弃物(i000亿t),污染达到相当严重的地步。因此环境保护问题越来越受到人们的重视。20世纪以来,在化学和生物学之间的交叉地带形成的生物

技术占据了重要的地位,在工业、农业、医药、食品等方面得到了广泛的应用,并对解决当代资源、能源、环保等多方面问题起着举足轻重的作用。而作为生物工程的重要组成部分,酶和酶工程受到生物化学工作者的重视,几种新兴的技术产业已成为优先发展的高科技领域。 酶在环境保护方面的应用 1.酶在环境监测方面的应用 环境监测是了解环境情况、掌握环境质量变化,进行环境保护的一个重要环节。酶在环境监测方面的应用越来越广泛,已经在农药污染的监测、重金属污染的监测、微生物污染的监测等方面取得重要成果。? (1)利用胆碱酯酶检测有机磷农药污染? 最近几十年来,为了防治农作物的病虫害,大量使用各种农药。农药的大量使用,对农作物产量的提高起了一定的作用,然而由于农药,特别是有机磷农药的滥用,造成了严重的环境污染,破坏了生态环境。 为了监测农药的污染,人们研究了多种方法,其中采用胆碱酯酶监测有机磷农药的污染就是一种具有良好前景的检测方法。?胆碱酯酶可以催化胆碱酯水解生成胆碱和有机酸:?有机磷农药是胆碱酯酶的一种抑制剂,可以通过检测胆碱酯酶的活性变化,来判定是否受到有机磷农药的污染。20世纪50年代,就有人通过检测鱼脑中乙酰胆碱酯酶活力受抑制的程度,来检测水中存在的极低浓度的有机磷农药。现在可以通过固定胆碱酯酶的受抑制情况,检测空气或水中微量的酶抑制剂(有机磷等),灵敏度可达L。(2)利用乳酸脱氢酶的同工酶监测重金属污染?

酶工程的发展状况及其应用前景

酶工程的发展状况及其应用前景 摘要:酶在现代生物生产中扮演着重要角色,酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,以及酶工程不断的技术性突破,使得酶在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。 关键词:酶工程生物催化剂酶的固定 正文: 随着酶生产的不断发展,酶的应用越来越广泛。现在,酶工程已在医药、食品工业、农业、饲料、环保、能源、科研等领域广泛应用。成为基因工程、细胞工程、蛋白质工程等新技术领域的科学研究和技术开发中不可取代的工具。 一、酶工程的发展及应用现状 (一)国内外酶制剂的发展现状 BCC最新研究报告显示,未来4年全球工业酶制剂市场价值将以%的复合年增长率继续增长,由2011年的39亿美元增加至2016年的约61亿美元。该报告将工业酶市场细分成3个部分:生物酶、食品和饮料酶以及其他酶制剂。2011年生物酶的市场价值达12亿美元,预计还将以%的复合年增长率继续增长,2016年达17亿美元。2011年食品和饮料活性酶的市场价值接近13亿美元,未来4年还将以%的年均复合增长率增长,预计2016年达21亿美元。2011年其他酶制剂的市场价值为15亿美元,预计还将以%的复合年增长率增长,到2016年市场价值将达到22亿美元①。 我国酶制剂工业面经过近几十年的发展,初步具有一定的规模,取得了很大的进步。但是,国外酶制剂公司仍然处于绝对的领先地位,特别是一些比较出色的公司,例如,诺和诺德公司(Novo Nordisk)、丹尼斯克公司(Danisco)等②。 (二)酶工程的应用现状 一、酶工程技术在医药工业中的应用 1、酶的固定化技术 酶的固定化(enzyme immobilization)是指采用有机或无机固体材料作为载体(carrierorsupport),将酶包埋起来或束缚、限制于载体的表面和微孔中,使其仍具有催化活性,并可回收及重复使用的酶化学方法与技术。不使用固体材料作为载体,通过酶分子之间的相互交联形成聚集体,也可将酶固定化,称为无载体酶固定化。由于酶的蛋白质属性,进人人体后产生免疫反应,因稀释效应,而无法集中于靶器官组织,常不能保持最适合的治疗浓度,而固定化酶则很好的克服了游离酶的这些缺点,应用于治疗镁缺乏症、代谢异常症及制造人工内脏方面,如固定化L-天冬酰胺酶用于治疗白血病。葡萄糖氧化酶被固定化在纳米微带金电极上可用于活体检测的微生物传感器③。 固定化酶技术可用于治疗一些代谢障碍疾病。已知人类关于新陈代谢的疾病已过120余种,很多病因归结为人体缺乏某种酶的活性,一种可能的治疗方法就是通过某种方式给病人提供他所缺乏的酶。其提供的方式主要有:①将固定化酶用于体内作为治疗药物;②将固定化酶组装成体外生物反应器,通过体外循环作为临床治疗剂。将固定化酶用于临床诊断的例子很多,如各种酶测试盒层出不穷,采用固定化酶柱反应器的FIA(流动注射法)可用于临床诊断检测尿酸、葡萄糖、氨、尿素、胆甾醇、谷氨酸、乳酸、无机磷等。 2、酶催化技术 主要介绍非水相介质中的酶催化,传统的酶催化反应主要在水相中进行,但自1987年Kilibanov等。用脂肪酶粉或固定化酶在几乎无水的有机溶剂中成功地催化合成了肽以及手性的醇、脂和酰胺以来,对酶在非水相介质的催化反应技术的开发及研究报道迅速增加,特别在手性药物的不对称合成及手性药物拆分的生物技术开发中得到了很多应用。目前非水相中的酶催化技术已衍生出以下几类体系:①水与有机溶剂的互溶均相体系;②水与有机溶剂形

酶工程在现实方面的应用

酶工程在现实生活的应用 学院:生命科学与食品工程学院 姓名:沈峰学号:5602209078 班级:生工092 摘要:酶是催化特定化学反应的蛋白质、RNA或其复合体。是生物催化剂,能通 过降低反应的活化能加快反应速度,但不改变反应的平衡点。绝大多数酶的化学本质是蛋白质。具有催化效率高、专一性强、作用条件温和等特点。酶工程技术与我们生活息息相关,比如酿酒,制药工业等等。 Abstract:The enzyme is a specific protein, RNA or its complex which is used to catalytic specific chemical reaction.it's biological catalyst .It can accelerate reaction velocity by reduce the activation energy of reaction ,without changing the point of balance. The vast majority of enzyme's chemical nature is protein.so it have lots of Characteristics as high catalytic efficiency, high specificity, mild conditions and so on.The enzyme engineering is closely linked with our life ,for example,making wine pharmaceutical industry and so on. 关键字:酶工程酶啤酒制药 酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 如果要了解酶工程在现实生活方面的应用的话,首先先要知道什么是酶,什么是酶工程,和哪些酶可以在起作用及酶的特性有哪些。 首先酶是催化特定化学反应的蛋白质、RNA或其复合体。目前已发现有2000 多种。分子量在数万至数十万之间。生物体内的含量一般极少,它能参与生物体的各种生理生化活动,起催化剂的作用。酶的种类众多,而在酿酒等工业方面方面应用的酶也不少。比如,曲霉,根霉,红曲霉,拟内孢霉,木霉,青霉,等等。所以没对于现实生活有着广而深的影响,对于酶的特性的了解也就十分必要。 酶工程:酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。 酶的特性主要四点:1、酶具有高效率的催化能力;其效率是一般无机催化剂的10的7次幂~~10的13次幂。2、酶具有专一性;(每一种酶只能催化一种或一类化学反应。)3、酶在生物体内参与每一次反应后,它本身的性质和数量都不会发生改变(与催化剂相似);4、酶的作用条件较温和。 一酶工程在酿酒制造业的作用 总所周知,现实生活中的许多家庭每天都或多或少会在酒的方面消费,还有社交

酶工程的概念其主要研究内容和任务有哪些

酶工程电子教案 第三章酶的提取与分离纯化 ◆酶的提取与分离纯化是指将酶从细胞或其它含酶原料中提取出来,再与杂质分开,而获得所要求的酶制品的过程。 ◆主要内容包括细胞破碎,酶的提取,离心分离,过滤与膜分离,沉淀分离,层析分离,电泳分离,萃取分离,浓缩,干燥、结晶等。 1.细胞破碎 ◆细胞破碎方法可以分为机械破碎法,物理破碎法,化学破碎法和酶促破碎法等,如表3-1所示。 表3-1 细胞破碎方法及其原理

1.1 机械破碎法 ◆通过机械运动所产生的剪切力的作用,使细胞破碎的方法称为机械破碎法。 ◆常用的破碎机械有组织捣碎机,细胞研磨器,匀浆器等。 ◆机械破碎法分为3种:捣碎法,研磨法和匀浆法。 1.2物理破碎法 ◆通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法,称为物理破碎法。物理破碎法多用于微生物细胞的破碎。 ◆常用的物理破碎法方法有温度差破碎法、压力差破碎法、超声波破碎法等,现简介如下: (1)温度差破碎法:利用温度的突然变化,由于热胀冷缩的作用而使细胞破碎的方法称为温度差破碎法。 (2)压力差破碎法:通过压力的突然变化,使细胞破碎的方法称为压力差破碎法。常用的有高压冲击法、突然降压法、及渗透压变化法等。 (3)超声波破碎法:利用超声波发生器所发出的声波或超声波的作用,使细胞膜产生空穴作用(cavitation)而使细胞破碎的方法称为超声波破碎法。 1.3化学破碎法 ◆通过各种化学试剂对细胞膜的作用,而使细胞破碎的方法称为化学破碎法。 ◆常用的化学试剂有甲苯、丙酮、丁醇、氯仿等有机溶剂,和特里顿(Triton)、吐温(Tween)等表面活性剂。 ◆有机溶剂可以使细胞膜的磷脂结构破坏,从而改变细胞膜的透过性,使胞内酶等细胞内物质释放到细胞外。

基因工程技术在环境保护中的应用

基因工程技术在环境保护中的应用 基因工程技术在环境保护中的应用随着科技的发展,人类在为自己生产出越来越多生活资料的同时,产生有害物质的数量和种类也大幅度增加,环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术是在DNA分子水平上按照人们的意愿进行的定向改造生物的新技术。而利用基因工程技术提高微生物净化环境的能力是用于环境治理的一项关键技术。这一技术发展到今天,正形成产业化并列为世界领先专业技术领域之一,广泛应用于食品、医药、化工、农业、环保、能源和国防等许多部门,并日益显示出其巨大的潜力。 一、基因工程在废水处理中的应用 基因工程技术应用于废水处理是水处理领域一项具有广泛应用前景的新兴技术。常规的废水处理方法有物化法、生物法等。由于一般的物化方法只是污染物的转移,不能从根本上治理,且容易造成二次污染,成本也较高,生物法逐渐成为废水处理的主要方法。但是由于废水的多样性及其成分的复杂性,自然进化的微生物降解污染物的酶活性往往有限,如果能利用基因工程技术对这些菌株进行遗传改造,提高微生物酶的降解活性,并可大量繁殖,就可以定向获得具有特殊降解性状的高效菌株,方便有效地应用于水污染处理。因此,构建基因工程菌成为现代废水处理技术的一个重要研究方向,且日益受到人

们的重视。基因工程技术在废水处理中的应用有以下几个方面。 1、基因工程在环境污染监测中的应用 目前,聚合酶反应(简称PCR)技术和核酸探针技术是常用于水环境中微生物的检测技术。PCR技术是一种在体外模拟自然DNA复制过程的核酸扩增技术,常用于监测海洋环境中存在的微生物。标记的核酸探针可以用于待测核酸样本中特定基因序列,如监测饮用水中病毒的含量。PCR技术和核酸探针技术可能取代常规的水质分析,发展成为一种快速可靠水体微生物的检测技术,并将在细菌、病毒及其他毒物检测中得以迅速的应用发展。 2、基因工程菌对水体中重金属离子的生物富集 利用基因工程菌代替普通微生物处理重金属是近年来研究的热点。基因工程技术在重金属废水治理中的作用主要体现在提高微生物菌体细胞对重金属离子的富集容量以及提高菌体对特定重金属离子的选择性两个方面。此法采用生物工程技术将微生物细胞中参与富集的主导性基因导入繁殖力强、适应性能佳的受体菌株内,大大提高了菌体对重金属的适应性和处理效率。 2.1提高重组菌重金属离子的富集容量

酶工程在医药上的应用

酶工程在医药上的应用 朱祺琪社科1003班3100104077 【摘要】本文为读书报告,从酶工程制药的工艺和工程化技术方面,以及酶工程在医药上的应用及对未来的展望对酶工程的一个方面进行概述。 【关键词】酶工程酶的固定化酶法手性合成技术非水相酶催化 【引言】酶,它作为一种生物催化剂,已广泛地应用于轻工业的各个生产领域。近几十年来,随着酶工程不断的技术性突破,在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛重组DNA技术促进了各种有医疗价值的酶的大规模生产。用于临床的各类酶品种逐渐增加。酶除了用作常规治疗外,还可作为医学工程的某些组成部分而发挥医疗作用。如在体外循环装置中,利用酶清除血液废物,防止血栓形成和体内酶控药物释放系统等。另外,酶作为临床体外检测试剂,可以快速、灵敏、准确地测定体内某些代谢产物,也将是酶在医疗上一个重要的应用。 【正文】 一、酶工程制药的工艺和工程化技术 1)酶的固定化技术 在40多年以前,几乎所有的工业化生产中采用的生物催化剂都是用全细胞或组织来进行的。作为生物催化剂的微生物细胞种类繁多,并带动了目前发酵工业的迅速发展。但由于正常发酵过程中的微生物生长和繁殖都需要消耗培养基中的营养物质并产生不必要的副产物,因而导致目的产物必须经过分离步骤才能从最终产物的混合物中分离出来,因此使用微生物细胞进行催化并不是十分有效的方法。

酶的固定化最早在1916年由Nelson和Griffin在研究酵母蔗糖酶时提出,他们发现蔗糖酶被吸附在活性炭上后仍然有活性。在20世纪60年代,羧肽酶、胃蛋白酶、核糖核酸酶相继被固定化成功,从而使得固定化酶在制药工业中的应用受到越来越大的重视。1969年千烟一郎固定化氨基酰化酶工业化生产L 氨基酸;随后青霉素酰化酶固定化生产。氨基青霉烷酸获得成功。近十几年来,随着工业分离纯化技术的发展和应用,使得工业规模获得酶成为可能,离体酶在制药工业中应用在逐渐增加。其最明显的优势在于具有更有效的底物转化率、更高的投料量和产量以及更好的产物均一性。但这些优点极有可能被酶纯化所增加的成本和纯化过程中酶的失活所抵消掉,造成对酶应用的限制。许多科学家已经开始研究如何去克服这些困难,其中大批量进行酶纯化能够在一定程度上减低成本,但更有效的方法当属固定化酶的方法,这种方法使得酶在使用过程中稳定性提高,可重复使用,降低了生产成本。 2)酶法手性合成技术 近来,小分子与生物大分子间的相互作用引起了人们很大的关注。对于选择性酶抑制剂和受体激动剂或拮抗剂的研究是药用工业中靶目标定位研究的关键之一。在分子水平上对药物作用机制的深入了解引起了人们的广泛注意,意识到手性作为许多药物功效之关键的重要性。现在人们已经知道在许多情况下,药物中仅有一种对映体对功效是必需的,其他对映体或者无活性,或者活性下降,甚至产生毒害。现在制药企业已经意识到,新药的开发必须是单手性的,以此来避免由不需要的对映体引起的不必要的副作用。许多情况下,一旦由消旋体药物向对映体纯化合物的转化成为可能时,就是发展工业化过程的良机。与消旋化合物相比较,单一对映体的优势体现在制备过程和配方上。 手性药物中间体可通过不同途径制备。一个方法是从天然的手性化合物开始,这种手性化合物主要是由发酵过程产生。手性库主要用到廉价的,使用方便的,有旋光性的天然产物。第二种方法是通过拆分消旋化合物实现的,该方法是主要是通过对映体或非对映体结晶性质上的差异以及通过化学或生物催化的方法有效拆分消旋化合物来完成的。最后,也可以用微生物细胞或其代谢产物酶,

现代生物技术在环境保护中的应用和前景(最新版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 现代生物技术在环境保护中的应用和前景(最新版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

现代生物技术在环境保护中的应用和前景 (最新版) 摘要:针对我国目前生态环境状况,论述了现代生物技术在治理环境污染,保护生态环境中的应用和发展前景。 关键词:现代生物技术生态环境环境保护 1我国生态环境现状 目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8000万人和6000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2500万亩;人们的身体健康受到严重威胁,疾病发病率急

剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。 2现代生物技术与环境保护 现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20世纪80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。与传统方法比较,生物治理方法具有许多优点。 (1)生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。 (2)利用发酵工程技术处理污染物质,最终转化产物大都是无

酶工程技术在环境保护中的应用

酶工程技术在环境保护中的应用 摘要:酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,研究和应用显示了酶在环境污染治理中有着广阔的应用前景。综述了酶的固定化技术,包括酶的固定化方法、选择与比较等;膜式酶生物反应器的基本概念和利弊、及其应用;以及酶在污染治理中的研究和应用,其中包括水净化、环境监测、白色污染的治理和有机废水的酶处理等方面。酶在环境污染治理中的研究和应用显示了生物工程在环境污染治理和生物修复上有着广阔的应用 前景。 关键词:酶固定技术;酶反应器;环境保护;应用 1 酶的固定化 1.1 酶固定化的方法 酶的固定化方法主要有四种: 包埋法(entrapment) 、吸附法(adsorption) 、共价法(covalent blinding) 、交联法(cross linking)。 1.1.1 包埋法 包埋固定化法是把酶定位于聚合物材料的格子结构或微胶囊结构中。这样可以防止酶蛋白释放, 但是底物仍能渗人格子内与酶相接触. 此法较为简便,酶分子仅仅是被包埋起来, 生物活性破坏少, 但此法对大分子底物不适用。 ( l) 凝胶包埋。凝胶包埋法是将酶包埋在交联的水不溶性凝胶的空隙中的方法. 交联聚丙烯酞胺凝胶包埋法是首先被采用的包埋技术。 (2) 微胶囊包埋。将酶包埋于半透性聚合体膜内, 形成直径为1-100um的微囊。这种固定化酶是以物理方法包埋在膜内的只要底物和产物分子大小能够通过半 透膜底物和产物分子就能够以自由扩散的方式通过膜。 1.1.2 吸附法 吸附固定是最简单的方法, 酶与载体之间的亲和力是范德华力、离子键和氢键。此方法又可分为物理吸附法和离子吸附法: (l) 物理吸附法

酶工程技术极其在医药领域的应用

酶工程技术极其在医药领域的应用 摘要:随着生物技术的迅速发展,酶工程在生物工程中的核心地位得到了更好的体现。酶工程作为一种高新技术,已在医药、食品、轻工业、纺织等行业中得到越来越广泛的应用。本文将从酶的固定化技术、酶催化技术、酶的化学修饰、脱氧核酶、抗体酶和酶学诊断等几个方面来对酶工程在医药行业中的应用进行综述。 关键词:酶工程;医药;应用 Enzyme engineering technology and it’s application in the medical field Abstract: With the rapid development of biotechnology, enzyme engineering as a hard core of biological engineering has been better reflected. Enzyme engineering, as a new high-tech, has been widely used in medicine, food, light industry, textile and other industries. This article told the application of enzyme engineering in the medical industry from these aspects ,Enzymes Immobilization, Enzyme Catalysis, Enzymes Modification, Deoxyribozyme, Catalytic Antibody and Enzymatic diagnosis. Key words: Enzyme Engineering; Medicine; Application 1 引言:回顾20世纪,生物科学与生物工程在全球崛起并迅速发展,已经从整体水平发展到细胞水平和分子水平,在基础与应用研究领域取得了举世瞩目的成果。酶工程作为生物工程的重要组成部分,

酶工程复习要点

1、酶的催化作用特点:具有专一性,催化效率高和反应条件温和等显著特点。 2、酶研究的两个方向:理论研究方向和应用研究方向。理论研究方向:酶的理化性质、催化性质、催化机制等。应用研究:促进了酶工程的形成。 3、酶工程的定义:利用酶或者微生物细胞,动植物细胞,细胞器,借助于酶的催化作用,通过工程学手段生产产品或提供社会服务的科学体系。 4、酶工程的应用范围:①对生物资源中天然酶的开发和生产②自然酶的分离纯化与鉴定技术③酶的固定化技术④酶反应器的研制与应用⑤与其它生物技术领域的交叉与渗透。 5、酶工程的组成:①酶的发酵生产②酶的分离纯化③酶分子修饰④酶和细胞固定化⑤酶反应器和酶的应用等方面。 6、酶工程的主要任务:通过预先设计,经过人工操作控制而获得大量所需的酶,并通过各种方法使酶发挥其最大的催化功能。 8、酶的分类:第1类,氧化还原酶;第2类,转移酶;第3类,水解酶;第4类,裂合酶;第5类,异构酶;第6类,合成酶;第7类,核酸类酶。 9、酶的作用机制:酶的催化机理可能与几种因素有关:酶与底物结合时,两者构象的改变使它们互相契合,底物分子适当地向酶分子活性中心靠近,并且趋向于酶的催化部位,使活性中心这一局部地区额底物浓度大大增高,并使底物分子发生扭曲,易于断裂。在另一些情况中,可能还有一些其他的因素使酶反应速度稍有一些提高,如酶与底物形成有一定稳定度的过渡态中间物——共价的ES中间物,这种ES中间物又可迅速地分解成产物,又如酶活性中心的质子供体和质子受体对底物分子进行了广义的酸碱催化等。 10、酶的催化能力:酶仅能改变化学反应的速度,并不不能改变化学反应的平衡点。酶本身在反应前后也不发生变化例如肽键遇水自发地进行水解的反应极为缓慢,当有蛋白酶存在时,这个反应则进行得十分迅速,可降低反应的活化能。在一个化学反应体系中,反应开始时,反应物(S)分子的平均能量水平较低为“初态”,在反应的任何一瞬间反应物中都有一部分分子具有了比初态更高一些的能量,高出的这一部分能量称为活化能,使这些分子进入“过渡态”,这时就能形成或打破一些化学键,形成新的物质——产物(P)。即S变为P。这些具有较高能量,处于活化态的分子称为活化分子,反应物中这种活化分子愈多,反应速率就越快。活化能的定义是在一定温度下一摩尔底物全部进入活化态所需要的自由能,单位是焦耳/摩尔。 11、酶的专一性:酶的专一性是指一种酶只能催化一种或一类结构相似的底物进行某种类型的反应。如果没有酶的专一性,在细胞中有秩序的物质代谢将不复存在,而且酶的应用将如同其他非酶催化剂那样受到局限。酶的专一性可以分为两类:①绝对专一性:一种酶只能催化一种物质进行一种反应,这种高度的专一性称为绝对专一性。②相对专一性:一种酶能够催化一类结构相似的物质进行某种相同类型的反应,这种专一性称为相对专一性。 12、酶的专一性确定过程:首先要选择一种该酶可催化的物质作为该酶的作用底物,通过实验确定其最适PH、温度等反应条件,其次是实验底物浓度对反应速度的影响,确定其米氏常数K m,然后用其他有可能是该酶作用底物的物质,在相同条件下逐个进行实验,有时要在不同条件下逐个试验,观察是否有催化反应发生,从而确定该酶是属于绝对专一性还是相对专一性,可作用于一类物质,可以选择几种有代表性的底物,求出各自的值,在某些情况下,不同底物有不同的最适PH值,而PH对K m有一定的影响,此时必须作出不同底物各自的PH曲线。然后再在各自的最适PH值条件下进行试验,以确定各底物相对应的K m值,在进行酶的专一性试验时,所使用的酶和各种底物都要尽可能地纯。对于有对称碳原子的物质,应分别对不同的光学异构进行试验。 13、酶活力是酶的数量的量度指标,酶的比活力是酶纯度的量度指标,酶转换数是酶催化效率的量度指标,而酶结合效率是酶被固定比例的量度指标。

现代生物化工中酶工程技术研究与应用

现代生物化工中酶工程技术研究与应用 张智梁 摘要:酶是生物体内进行新陈代谢不可缺少的受多种因素调节控制的具有催化功能的生物催化剂。在现代生物化工发展的过程中,酶工程技术发挥着至关重要的作用。相对而言,这种技术的内容比较丰富,像酶反应器与酶的应用、酶制剂生产等,都属于酶工程技术的主要内容。生物化工对于人们日常的生产生活有着重要的影响,关系着人们的身心健康。经过100多年的发展,酶工程已经成为生物工程的主要内容之一,在世界科技和经济大发展中起着重要的作用。今后随着工业生物技术的发展,酶工程将继续向纵深发展,显示出更广阔的前进。做好现代生物化工中酶工程的技术研究工作,扩大这种技术的应用范围,具有重要的现实参考意义。 关键词:现代生物化工;酶工程技术;酶反应器;应用范围 在生物体细胞中,每时每刻都在进行新陈代谢的作用。通过新陈代谢,排除衰老死亡的细胞、以新生的细胞为主维持机体的正常运作,对于生命周期的循环起着重要的保障作用,因此新陈代谢不可忽视。新陈代谢包含了一些重要的有机化学,作为常见的生物催化剂,酶的存在有利于加快新陈代谢速度,从根本上保证了相关化学反应的持续进行。最初的淀粉酶主要是从麦芽提取液中得到的。此后随着现代生物工程技术的不断发展,研究工作者对于各种生物酶的结构和特性有了更加深入的了解,为这些酶应用范围的扩大奠定了坚实的基础。 1酶工程技术的研究的相关内容 1.1生物酶的主要特点 生物酶其本质是一种蛋白质,主要存在于活细胞中,为细胞的生存、代谢、繁殖等一系列生物反应提供了良好的促进和调节作用,在实际生产应用中也常常具有良好的催化效果,。一般的工程酶主要是指的是有生物酶参加的反应,在一定程度上确保了一些物质进行代谢的速度。生物酶的主要特点包括:(1)高效的催化效率。相对而言,酶的催化效率远远高于一般的催化剂,最大为1013倍;(2)稳定性差。作为机体活细胞的蛋白质,生物酶很容易受到各种存在因素的影响,导致蛋白质现象的出现,从而使酶失去了活性。这些内容客观地反映了生物酶稳

酶工程在医药工业中的应用

酶工程在医药工业中的应用 1161001413168 郑峰 摘要:酶工程是现代工业生物技术的重要组成部分,它作为一项高新技术,为各工业的发展起到了极大的推动作用,本文简要介绍了酶固定化、基因工程菌(细胞)的固定化、植物细胞培养产酶、酶的化学修饰、核酸酶、杭体酶、酶标药物的理论和技术研究的最新进展以及酶工程在医药工业中的应用,对酶工程的发展前景进行了探讨。 关键词:酶工程;酶的固定化;核酸酶;抗体酶;医药应用

目录 一、酶工程技术 (3) (一)酶和细胞的固定化 (3) (二)酶的化学修饰 (3) (三)核酸酶和抗体酶 (4) (四)酶标药物 (4) (五)职务细胞培养产酶 (5) 二、酶工程技术在医药工业中的应用 (5) (一)应用酶工程制备生物代谢产物 (5) (二)应用酶工程技术转化凿体 (6) (三)应用酶工程生产抗生素 (6) (四)应用酶工程生产氨基酸和有机酸 (6) (五)应用酶工程生产维生素 (7) (六)应用酶工程生产核苷酸类药物 (7) 三、酶工程在医疗中的应用 (7) 四、展望 (8) 参考文献: (9)

一、酶工程技术 (一)酶和细胞的固定化 将酶或细胞通过物理或化学方法固定在水溶性或非水溶性的膜状、颗粒状、管状的载体土,称为固定化酶或固定化细胞。我国研制过的固定化酶(细胞)已有50种左右,分为二种类型:固定化单酶或含特定酶的细胞、固定化双酶、固定化各类激酶构成ATP再生系统。一般能明显地提高酶对热与酸碱度的稳定性。固定化的方法主要有吸附、共价结合、包埋和选择性热变性等。目前又发展了利用光、辐射等物理技术和定点固定化技术固定酶[1]。在制药工业中包埋法应用较多,其次是吸附法。 固定化细胞包括微生物细胞(含基因工程菌)、动物细胞和植物细胞,目前更多地注重活细胞和增殖细胞的固定化。植物细胞固定化大多采用包埋法,至今已报道了固定化南洋金花、烟草、胡萝卜等十多种细胞的研究,植物细胞固定化技术在中药有效成分的生产应用研究上有更好的前景。动物细胞只有吸附和包埋法得以成功。目前动物细胞微囊化法用得最多的是聚赖氨酸/海藻酸(PIJL/Al,G)法,细胞生长密度可达106一109个·mL。微囊化细胞主要有两方面的应用:培养微囊化动物细胞生产一些药物;作为药物直接用于治疗或作为药物筛选之用,如用来生产单克隆抗体、干扰素、组织纤溶酶原激活剂(TPA)、自细胞介素、胰岛素生长因子和乙肝病毒表面抗原等。未来将有一大批具有生物活性的蛋白质可依靠固定化细胞在生物体外大规模的合成。应用基因重组技术将生物细胞中存在极少的催化某一生化反应的酶通过基因扩增和增强表达,建立高效表达特定酶制剂的基因工程菌或基因工程细胞,从而进一步构建成固定化一工程菌或固定化工程细胞的新一代催化剂。如德国BM公司应用蛋白质工程技术对表达青霉素酞化的基因进行点突变改造,重建了青霉素酞化酶工程菌,从而大大延长了固定化青霉素酞化酶的使用半衰期,其酶柱可连续使用700d以上[2]。 (二)酶的化学修饰 酶的化学修饰是指利用化学手段将某些化学物质或基团结合到酶分子上,或

酶工程在制药领域的应用

酶工程在制药领域的应用 潘天敏 摘要:随着科学技术的不断发展,酶工程技术在工业领域的应用会越来越广泛,本文主要探讨了酶工程在中药制药领域的应用。其酶法在中药成分提取中酶解作用机制及在中药有效成分提取中的应用进行综述,以叙述黄酮类化合物提取中的应用,与新技术结合用于中药提取,分析酶法的现存问题,展望酶法在中药提取中的发展前景。 关键词:酶工程、黄酮类成分、中药。 中药治疗疾病的物质基础是其中有效的化学成分,中药中植物药约占 90% ,由于中药成分十分复杂且很多有效成分含量很低,因此有效成分的提取与分离纯化是中药开发中的关键工序。随着酶工程应用技术的发展,将酶工程技术应用于中药有效成分的提取分离和纯化,可以提高中药有效成分的提取效率,取得了显著效益。 1.酶的提取 1.1水溶液法常用稀盐溶液或缓冲液提取、经过预处理的原料,包括组织糜、匀浆、细胞颗粒以及丙酮粉等,都可用水溶液抽提。为了数量和种类上不同材料却有很大的差别,组织中酶的总量虽然小少、仅各种酶的含量却非常少、从己有的资料看,个别酶的含量在0.01%—1%。因此在提取酶时应根据各种酶的分布特点和存在特性选择适宜的生物材料-防}巨提取过程中酶活力降低,一般在低温下操作:但对温度耐受性较高的酶(如超氧化物歧化酶),却应提高温度,以使杂蛋白变性,利于酶的提取和纯化。 1.2水溶液的PH选择对提取也很重要,应考虑的因素有:酶的稳定性、酶的溶解度、酶与其他物质结合。性质、选择pH的总原则是:在酶稳定的pH范围内,选择偏离等电点的适当PH。有机溶剂法某些结合酶,如微粒体和线粒体膜的酶,由于和脂质牢固结合,用水溶液很难提取,为此必须除去结合的脂质,且小能使酶变性。 2.酶提取技术的原理 植物药提取过程中,细胞原生质中的有效成分向溶媒扩散时,须克服细胞壁及细胞间质的双重阻力。细胞壁的主要成分是纤维素,细胞间质中存在纤维素、果胶等,通过选用一些适当的酶类,如纤维素酶、半纤维素酶、果胶酶等作用于植物细胞,使细胞壁及细胞间质中的纤维素、半纤维素、果胶等物质降解,细胞的致密性降低,而有利于有效成分的溶出。还可以控制非目标物的溶出,在提高有效成分溶出效率的同时,简化后续精制操作。 3,酶工程在中药提取中的应用 3.1用于中药有效成分的提取 酶提取的原理是利用酶反应的高度专一性,将细胞壁组成成分水解或降解,破坏细胞壁,从而提高有效成分的提取率。选用恰当的酶,无需高温即可将影响液体制剂的杂质如淀粉、蛋白质、果胶等分解去除,较温和地分解植物组织,加速有效成分的释放提取,也可促使某些水溶性不好的成分转化为糖有等易溶于水的成分,有利于提取,生物催化活性专一。 3,2用于提取液的精制 中药水提液含有多种类型的杂质,如淀粉、蛋白质、蹂质、果胶等。采用常规提取法时,煎煮过程中药材里的蛋白质遇热凝固、淀粉糊化,影响有效成分煎出,分离困难。针对中药水提液中所含的杂质类型,采用相应酶将其降解为小分了物

相关主题
文本预览
相关文档 最新文档