当前位置:文档之家› 母线差动保护原理及说明书。解析

母线差动保护原理及说明书。解析

母线差动保护原理及说明书。解析
母线差动保护原理及说明书。解析

3.2 原理说明

3.2.1 母线差动保护

母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。

1)起动元件

a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为:

△u >△U T +0.05U N

其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。

b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为:

Id > I cdzd

其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。

母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。

2)比率差动元件

a ) 常规比率差动元件

动作判据为:

cdzd m j j I I

>∑=1 (1)

∑∑==>m j j m j j I K I

1

1 (2) 其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。)

其动作特性曲线如图3.2所示。

∑j I

j cdzd

I

图3.2 比例差动元件动作特性曲线

为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大

差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。

小差比例差动元件则固定取比率制动系数高值。

b ) 工频变化量比例差动元件

为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流

构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固

定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为:

cdzd T m

j j DI DI I +?>?∑=1 (1)

∑∑==?'>?m

j j m j j I K I 11 (2)

其中K '为工频变化量比例制动系数,母联开关处于合闸位置以及投单母或刀闸双跨时K '取0.75,而当母线分列运行时则自动转用比率制动系数低值,小差则固定取0.75;△I j 为第j 个连接元件的工频变化量电流;△DI T 为差动电流起动浮动门坎;DI cdzd 为差流起动的固定门坎,由I cdzd 得出。

3)故障母线选择元件

差动保护根据母线上所有连接元件电流采样值计算出大差电流,构成大差比例差动元件,作为差动保护的区内故障判别元件。

对于分段母线或双母线接线方式,根据各连接元件的刀闸位置开入计算出两条母线的小差电流,构成小差比率差动元件,作为故障母线选择元件。

当双母线按单母方式运行不需进行故障母线的选择时可投入单母方式压板。当元件在倒闸过程中两条母线经刀闸双跨,则装置自动识别为单母运行方式。这两种情况都不进行故障母线的选择,当母线发生故障时将所有母线同时切除。

母差保护另设一后备段,当抗饱和母差动作(下述TA 饱和检测元件二检测为母线区内故障),且无母线跳闸,则经过250ms 切除母线上所有的元件。

另外,装置在比率差动连续动作500ms 后将退出所有的抗饱和措施,仅保留比率差动元件(cdzd m j j I I

>∑=1,∑∑==>m

j j m j j I K I 11),若其动作仍不返回则跳相应母线。这是为了防止在某些复杂故障情况下保护误闭锁导致拒动,在这种情况下母线保护动作跳开相应母线对于保护系统稳定和防止事故扩大都是有好处的。(而事实上真正发生区外故障时,TA 的暂态饱和过程也不可能持续超过500ms )

4)TA 饱和检测元件

为防止母线保护在母线近端发生区外故障时TA 严重饱和的情况下发生误动,本装置根据TA 饱和波形特点设置了两个TA 饱和检测元件,用以判别差动电流是否由区外故障TA 饱和引起,如果是则闭锁差动保护出口,否则开放保护出口。

TA 饱和检测元件一:

采用新型的自适应阻抗加权抗饱和方法,即利用电压工频变化量起动元件自适应地开放加权算法。当发生母线区内故障时,工频变化量差动元件△BLCD 和工频变化量阻抗元件△Z 与工频变化量电压元件△U 基本同时动作,而发生母线区外故障时,由于故障起始TA 尚未进入饱和,△BLCD 元件和△Z 元件的动作滞后于工频变化量电压元件△U 。利用△BLCD 元件、△Z 元件与工频变化量电压元件动作的相对时序关系的特点,我们得到了抗TA 饱和的自适应阻抗加权判据。由于此判据充分利用了区外故障发生TA 饱和时差流不同于区内故障时差流的特点,具有极强的抗TA 饱和能力,而且区内故障和一般转换性故障(故障由母线区外转至区内)时的动作速度很快。

TA 饱和检测元件二:

由谐波制动原理构成的TA 饱和检测元件。这种原理利用了TA 饱和时差流波形畸变和每周波存在线性传变区等特点,根据差流中谐波分量的波形特征检测TA 是否发生饱和。以此原理实现的TA 饱和检测元件同样具有很强抗TA 饱和能力,而且在区外故障TA 饱和后发生同名相转换性故障的极端情况下仍能快速切除母线故障。

图3.3为动模实验室实录的母线区外发生ABC 三相故障时TA 极度饱和波形,在此情况下本保护可靠制动,可见其优异的抗TA 饱和性能。

饱和TA 一次电流 —— 饱和TA 二次电流

图3.3 动模实验室实录的母线区外发生ABC 三相故障时TA 饱和波形

5)电压闭锁元件

其判据为 U φ ≤U bs

3U 0≥U 0bs

U 2≥U 2bs

其中U φ为相电压,3U 0为三倍零序电压(自产),U 2为负序相电压,U bs 为相电压闭锁值,U 0bs 和U 2bs 分别为零序、负序电压闭锁值。以上三个判据任一个动作时,电压闭锁元件开放。在动作于故障母线跳闸时必须经相应的母线电压闭锁元件闭锁。

△U1 : I母电压工频变化量元件△Z : 工频变化量阻抗元件Icd : 差流起动元件△BLCD1: I母工频变化量比率差动元件△BLCD : 大差工频变化量比率差动元件BLCD' : 大差比率差动元件(K=0.2)BLCD1' : I母比率差动元件(K=0.2)

BLCD : 大差比率差动元件

BLCD1 : I母比率差动元件

Ubs : I母电压闭锁元件

SW : 母差保护投退控制字

YB : 母差保护投入压板

图3.4 母差保护的工作框图(以I 母为例)

当用于中性点不接地系统时,将“投中性点不接地系统”控制字投入,此时电压闭锁元件为 U l ≤U bs ;U 2≥U 2bs (其中U l 为线电压,U 2为负序相电压,U bs 为线电压闭锁值,U 2bs 为负序电压闭锁定值)。

母差保护的工作框图(以I 母为例)如图3.4所示。

3.2.2 母联充电保护

当任一组母线检修后再投入之前,利用母联断路器对该母线进行充电试验时可投入母联充电保护,当被试验母线存在故障时,利用充电保护切除故障。

母联充电保护有专门的起动元件。在母联充电保护投入时,当母联电流任一相大于母联充电保护整定值时,母联充电保护起动元件动作去控制母联充电保护部分。

当母联断路器跳位继电器由“1”变为“0”或母联TWJ=1且由无电流变为有电流(大于0.04In),或两母线变为均有电压状态,则开放充电保护300ms ,同时根据控制字决定在此期间是否闭锁母差保护。在充电保护开放期间,若母联电流大于充电保护整定电流,则将母联开关切除。母联充电保护不经复合电压闭锁。

另外, 如果希望外部保护动作时闭锁本装置母差保护(如充电保护),将“投外部闭锁母差保护”控制字置1。装置检测到“闭锁母差保护”开入后,闭锁母差保护。该开入若保持1s 不返回,装置报“闭锁母差开入异常”,同时解除对母差保护的闭锁。

母联充电保护的逻辑框图如图3.5所示。

母联TWJ

CDBS:母联充电保护闭锁母差保护控制字投入闭锁母差母联IA>0.04In

母联IC>0.04In

母联IA>Ichg

母联IC>Ichg Ichg:母联充电保护定值

两母线均有电压

SW1 :母联充电保护投退控制字YB :母联充电保护投入压板SW2 :投外部闭锁母差保护控制字BSMC : 外部闭锁母差保护开入

母联IB>0.04In

母联IA>Ichg

图3.5 母联充电保护的逻辑框图 3.2.3母联过流保护

当利用母联断路器作为线路的临时保护时可投入母联过流保护。

母联过流保护有专门的起动元件。在母联过流保护投入时,当母联电流任一相大于母联过流整定值,或母联零序电流大于零序过流整定值时,母联过流起动元件动作去控制母联过流保护部分。

母联过流保护在任一相母联电流大于过流整定值,或母联零序电流大于零序过流整定值时,经整定延时跳母联开关,母联过流保护不经复合电压元件闭锁。

3.2.4母联失灵与母联死区保护

当保护向母联发跳令后,经整定延时母联电流仍然大于母联失灵电流定值时,母联失灵保护经两母线电压闭锁后切除两母线上所有连接元件。通常情况下,只有母差保护和母联充电保护才起动母联失灵保护。当投入“投母联过流起动母联失灵”控制字时,母联过流保护也可以起动母联失灵保护。

如果希望通过外部保护启动本装置的母联失灵保护,应将系统参数中的“投外部起动母联失灵”控制字置1。装置检测到“外部起动母联失灵”开入后,经整定延时母联电流仍然大于母联失灵电流定值时,母联失灵保护经两母线电压闭锁后切除两母线上所有连接元件。该开入若保持10S 不返回,装置报“外部起动母联失灵长期起动”,同时退出该起动功能。

逻辑框图见图3.6。

SW1: 投外部起动母联失灵控制字

SW2: 投母联过流起动母联失灵控制字

图3.6 母联失灵保护逻辑框图

若母联开关和母联TA 之间发生故障,断路器侧母线跳开后故障仍然存在,正好处于TA 侧母线小差的死区,为提高保护动作速度,专设了母联死区保护。本装置的母联死区保护在差动保护发母线跳令后,母联开关已跳开而母联TA 仍有电流,且大差比率差动元件及断路器侧小差比率差动元件不返回的情况下,经死区动作延时Tsq 跳开另一条母线。为防止母联在跳位时发生死区故障将母线全切除,当两母线都有电压且母联在跳位时母联电流不计入小差。母联TWJ 为三相常开接点(母联开关处跳闸位置时接点闭合)串联。逻辑框图见图3.7。

母联TWJ

跳一母母联IA>0.04In 母联IB>0.04In

母联IC>0.04In

两母线均有电压

母差跳一母

一母比例差动元件

大差比例差动元件

母差跳二母二母比例差动元件

跳二母图3.7

母联死区保护逻辑框图

3.2.5母联非全相保护

当母联断路器某相断开,母联非全相运行时,可由母联非全相保护延时跳开三相。

非全相保护由母联TWJ 和HWJ 接点起动,并可采用零序和负序电流作为动作的辅助判据。在母联非全相保护投入时,有THWJ 开入且母联零序电流大于母联非全相零序电流定值,或母联负序电流大于母联非全相负序电流定值,经整定延时跳母联开关。逻辑框图见图3.8。

TWJA

HWJA

SW: 母联非全相保护投退控制字

YB: 母联非全相保护投入压板

图3.8 母联非全相保护逻辑框图

3.2.6 母联带路运行方式

当主接线方式为母联兼旁路主接线方式时,应投入“投母联兼旁路主接线”控制字。

当系统处于母联带路运行方式时,应投入母联带路压板,并根据系统主接线情况决定是否投入带路TA 极性负压板:由于各支路的同名端均在母线侧,所以当带路TA极性端位于母线侧时,不投入此压板;反之当带路TA极性端位于线路侧时则需投入此压板。

当保护处于母联带路状态时,母联电流被视为等同于支路电流。根据“带路TA极性负”的压板状态,决定如何将母联电流计入大差和小差电流;而根据“I母带路”和“II母带路”的压板状态,决定母联电流计入I母小差还是II母小差电流。

当保护处于母联带路状态时,自动将母联开关的部分保护功能(如母联充电保护、母联死区保护、母联失灵保护)退出,另外将因母联开关担负两母线联接功能而设置的一些保护功能(如发生母线故障时将母联开关跳开)也同时退出。此时仍保留母联过流保护、母联非全相保护功能,带路时可用作带路支路的过流保护、母联非全相保护。

3.2.7 断路器失灵保护

断路器失灵保护由各连接元件保护装置提供的保护跳闸接点起动,逻辑如图3.9。输入本装置的跳闸接点有两种:一种是分相跳闸接点(虚框1所示),分别对应元件2、3、4、5、7、8、9、10、12、13、14、15、17、18、19、20的跳A、跳B、跳C,通常与线路保护连接,当失灵保护保护检测到此接点动作时,若该元件的对应相电流大于失灵相电流定值(可整定是否再经零序电流或负序电流闭锁),则经过失灵保护电压闭锁起动失灵保护;另一种是每个元件都有的三跳接点Ts(虚框2所示),当失灵保护检测到此接点动作时,若该元件的任一相电流大于失灵相电流定值(可整定是否再经零序电流或负序电流闭锁),则经过失灵保护电压闭锁起动失灵保护。失灵保护起动后经跟跳延时再次动作于该线路断路器,经跳母联延时动作于母联,经失灵延时切除该元件所在母线的各个连接元件。

跳母联

跳母联

SW : 断路器失灵保护保护投退控制字

YB : 断路器失灵保护保护投入压板图3.9 断路

器失灵保护逻辑框图

失灵保护电压闭锁判据为: Uφ≤U sl

3U0≥U0sl

U2≥U2sl

其中Uφ为相电压,3U0为三倍零序、U2为负序相电压,U sl为相电压闭锁定值,U0sl和U2sl分别为零序、负序电压闭锁定值。以上三个判据任一动作时,电压闭锁元件开放。

当用于中性点不接地系统时,将“投中性点不接地系统”控制字投入,此时电压闭锁元件的判据为 U l ≤U sl;U2≥U2sl(其中U l为线电压,U sl为线电压闭锁值)。

考虑到主变低压侧故障高压侧开关失灵时,高压侧母线的电压闭锁灵敏度有可能不够,因此可选择主变支路跳闸时失灵保护不经电压闭锁,这种情况下应同时将另一付跳闸接点接至解除失灵复压闭锁开入。该开入若保持10s不返回,装置报“保护板/管理板DSP2长期起动”,同时解除电压闭锁功能暂时退出。

3.2.8 母线运行方式识别

针对不同的主接线方式,应整定不同的系统主接线方式控制字。若主接线方式为单母线,则应将“投单母线主接线”控制字整定为1;若主接线方式为单母分段,则应将“投单母线分段主接线”控制字整定为1;若该两控制字均为0,则装置认为当前的主接线方式为双母线。

对于单母分段等固定连接的主接线方式无需外引刀闸位置,装置提供刀闸位置控制字可供整定。

双母线上各连接元件在系统运行中需要经常在两条母线上切换,因此正确识别母线运行方式直接影响到母线保护动作的正确性。本装置引入隔离刀闸辅助触点判别母线运行方式,同时对刀闸辅助触点进行自检。在以下几种情况下装置会发出刀闸位置报警信号:

1、当有刀闸位置变位时,需要运行人员检查无误后按刀闸位置确认按钮复归;

2、刀闸位置出现双跨时;

3、当某条支路有电流而无刀闸位置时,装置能够记忆原来的刀闸位置,并根据当前系统的电流分布情况

校验该支路刀闸位置的正确性,此时不响应刀闸位置确认按钮;

4、由于刀闸位置错误造成大差电流小于TA断线定值,而小差电流大于TA断线定值时延时10s发刀闸位

置报警信号;

5、因刀闸位置错误产生差流时,装置会根据当前系统的电流分布情况计算出该支路的正确刀闸位置。

另外,为防止无刀闸位置的支路拒动,当无论哪条母线发生故障时,将切除TA调整系数不为0又无刀闸位置的支路。

我们还提供与母差保护装置配套的模拟盘(见附录2)以减小刀闸辅助触点的不可靠性对保护的影响。当刀闸位置发生异常时保护发出报警信号,通知运行人员检修。在运行人员检修期间,可以通过模拟盘用强制开关指定相应的刀闸位置状态,保证母差保护在此期间的正常运行。

注意:当装置发出刀闸位置报警信号时,运行人员应在保证刀闸位置无误的情况下,再按屏上刀闸位置确认按钮复归报警信号。

3.2.9 交流电压断线检查

1)母线负序电压大于12V,延时1.25秒报该母线TV断线。

2)母线三相电压幅值之和(|U a|+|U b|+|U c|)小于Un,且母联或任一出线的任一相有电流(>0.04In),

延时1.25秒延时报该母线TV断线。

3)当用于中性点不接地系统时,将“投中性点不接地系统”控制字整定为1,此时TV断线判据改为3U2>12V 和线电压低于70V。

4)三相电压恢复正常后,经10秒延时后全部恢复正常运行。

5)当检测到系统有扰动或任一支路的零序电流大于0.1In时不进行TV断线的检测,以防止区外故障时误判。

6)若母线任一电压闭锁条件开放,延时3秒报该母线电压闭锁开放。

3.2.10 交流电流断线检查

1)任一支路3I0>0.25Iфmax+0.04I n时延时5秒发TA断线报警信号,该判据可由控制字选择退出。

2)大差电流大于TA异常报警整定值IDXBJ时,延时5秒报TA异常报警,不闭锁母差保护。TA回路恢复正常后延时5秒TA异常报警信号自动复归。

3)差流大于TA断线整定值IDX ,延时5秒发TA断线报警信号。

4)大差电流大于TA断线整定值IDX,两个小差电流均大于IDX时,延时5秒报母联TA三相断线,当母联代路时不判母联TA三相断线。

5)如果仅母联TA断线不闭锁母差保护,但此时自动切到单母方式,发生区内故障时不再进行故障母线的选择。

6)其它TA断线情况时均闭锁母差保护(其它保护功能不闭锁)。

7)当母线电压异常(母差电压闭锁开放或母线电压3U0大于5V)时不进行TA断线的检测。

8)根据母差保护中“投TA断线自动恢复”控制字可以选择电流回路恢复正常后母差保护是否自动解除闭锁(注:该控制字对支路对称断线及母联TA断线无效)。若此控制字置0则电流回路恢复正常后,须按屏上复归按钮复归报警信号,母差保护才能恢复运行。

3.2.11 母线电压切换

当有一组PT检修或故障时,可利用屏上的电压切换开关进行切换。开关位置有双母,Ⅰ母、Ⅱ母三个

引入装置的电压都为Ⅰ母电压,即U A2 =U A1 ,U B2 =U B1 ,U C2 =U C1 ; 当置在Ⅱ母位置,引入装置的电压都为Ⅱ母电压,即U A1 =U A2 ,U B1 =U B2 ,U C1 =U C2 。

注意:当由电压切换开关进行切换时,请将整定控制字中的投一母方式、投二母方式置为0;当由整定控制字进行TV切换时(用于远方控制),请将电压切换开关打在双母位置。

当母联代路运行或两母线分列运行时PT切换不再起作用,各母线取各自PT的电压,而双母方式或单

母方式运行(包括投单母方式、双跨)时,PT切换一直起作用,所以此时如果有PT检修则必须将TV切换至未检修侧PT,不应打在双母位置。如为单母主接线方式,则程序中固定投一母TV。

6整定方法及用户选择

6.1装置参数定值

6.1.1 定值区号:母差保护与失灵保护有4套定值可供切换。装置参数与系统参数不分区,只有一套定值。

6.1.2 母线名称:可输入由6位A~Z或0~9组成的母线名称,例如BUS001。

6.1.3 本机通讯地址:与后台机联接时本装置的通讯地址。

6.1.4 波特率1:装置通讯接口1的波特率。

6.1.5 波特率2:装置通讯接口2的波特率。

6.1.6 打印波特率:打印的通讯波特率。

6.1.7 通讯规约:置“0”表示投60870-5-103规约,置“1”表示投RCS-900系列传统规约。

6.1.8自动打印:当需要在保护动作后自动打印报告时置为“1”,否则置为“0”。

6.1.9 网络打印机:当需要使用共享的打印机时置为“1”,否则置为“0”。

6.1.10分脉冲对时:当采用分脉冲对时置为“1”,秒脉冲对时置为“0”。

6.1.11远方修改定值:当允许远方修改定值时置为“1”,否则置为“0”。

定值单见表6.1

6.2系统参数定值

6.2.1 TV二次额定电压:固定取为5

7.7V

6.2.2 TA二次额定电流:取基准变比的电流互感器的二次额定电流。

6.2.3 TA调整系数:TA调整系数是专为母线上各连接元件TA变比不同的情况而设,取多数相同TA变比为基准变比,TA调整系数整定为1,没有用到的支路TA调整系数整定为0。例如母线上连接有3个元件,TA变比分别为600:5,600:5,1200:5,则将“线路01TA调整系数”整定为1,“线路02TA调整系数”也整定为1,而将“线路03TA调整系数”整定为2,其余各TA调整系数均整定为0。

注意:为保证精度,各连接元件TA变比的差别一般不宜超过4倍。归算至基准TA二次侧的系统短路容量不应超过80In。所有电流的显示值也均归算到了基准TA的二次侧。

如果各连接元件TA二次额定电流不同,订货时应特别声明。此时TA调整系数应反映各元件TA一次额定电流之比。例如母线上连接有3个元件,TA变比分别为600:1,600:5,1200:5,则应将TA二次额定电流整定为5A,将“线路01TA调整系数”整定为1(此时装置内元件1的电流变换器额定电流为1A),“线路02TA调整系数”也整定为1,而将“线路03TA调整系数”整定为2,其余各TA调整系数均整定为0。

6.2.4投中性点不接地系统控制字:当用于中性点不接地系统时将“投中性点不接地系统”控制字整定为1,此时母差及失灵定值中的相电压闭锁改取线电压作为比较电压,TV断线判据改为3U2>8V和线电压低于70V。

6.2.5 投单母主接线控制字:当用于单母主接线系统时将“投单母主接线”控制字整定为1。

6.2.6投单母分段主接线控制字:当用于单母分段主接线系统时将“投单母分段主接线”控制字整定为1,此时无需外引刀闸位置,应通过整定刀闸位置控制字决定母线运行方式。当“投单母主接线”和“投单母分段主接线”控制字均为0时,装置认为当前的主接线方式为双母主接线。

6.2.7投母联兼旁路主接线控制字:当用于母联兼旁路主接线系统时将“投母联兼旁路主接线”控制字整定为1。

6.2.8投外部起动母联失灵控制字:如果希望通过外部保护启动本装置的母联失灵保护,将“投外部起动母联失灵”控制字置1。

6.2.9母线1、2编号:根据母线实际编号整定,整定范围为I~VIII。

6.2.10 I、II母刀闸位置控制字:当“投单母分段主接线”控制字为1时无需外引刀闸位置,应通过整定刀闸位置控制字决定母线运行方式。刀闸位置控制字某位置1表示该元件挂在此母线上,例如:若I母刀闸位置控制字1整为000F,则表示线路01、02、03、04挂在I母上。控制字定义如下:

6.3母差保护定值

注意:以下所有电流的定值均要求归算至基准TA的二次侧。

6.3.1 IHcd:差动起动电流高值,保证母线最小运行方式故障时有足够灵敏度,并应尽可能躲过母线出线最大负荷电流。

6.3.2 ILcd:差动起动电流低值,该段定值为防止母线故障大电源跳开差动起动元件返回而设,按切除小电源能满足足够的灵敏度整定,如无大小电源情况整定为0.9IHcd。

6.3.3 KH:比率制动系数高值,按一般最小运行方式下(母联处合位)发生母线故障时,大差比率差动元件具有足够的灵敏度整定,一般情况下推荐取为0.7。

6.3.4 KL:比率制动系数低值,按母联开关断开时,弱电源供电母线发生故障的情况下,大差比率差动元件具有足够的灵敏度整定,一般情况下推荐取为0.6。

6.3.5 Ichg:充电保护电流定值,按最小运行方式下被充电母线故障时有足够的灵敏度整定。

6.3.6 Igl:母联过流电流定值,按被充线路末端发生相间故障时有足够灵敏度整定,且必须躲过该运行方式下流过母联的负荷电流。

6.3.7 I0gl:母联过流零序定值(3I0),按被充线路末端接地故障有足够灵敏度整定。

6.3.8 Tgl:母联过流时间定值,可根据实际运行需要整定。

6.3.9 Idx:TA断线电流定值,按正常运行时流过母线保护的最大不平衡电流整定。

6.3.10 Idxbj:TA异常电流定值,设置TA异常报警是为了更灵敏地反应轻负荷线路TA断线和TA回路分流等异常情况,所以整定时灵敏度应较Idx高,推荐值为0.06In左右。

6.3.11 Ubs:母差相低电压闭锁,按母线对称故障有足够的灵敏度整定,推荐值为35~40V。(注:当“投中性点不接地系统控制字”投入时,此项定值改为母差线低电压闭锁值,推荐值为70V)

6.3.12 U0bs:母差零序电压闭锁(3U0),按母线不对称故障有足够的灵敏度整定,并应躲过母线正常运行时最大不平衡电压的零序分量。推荐值为6~10V。(注:当“投中性点不接地系统控制字”投入时,此项定值无效)

6.3.13 U2bs:母差负序电压闭锁(相电压),按母线不对称故障有足够的灵敏度整定,并应躲过母线正常运行时最大不平衡电压的负序分量。推荐值为4~8V。

6.3.14 Imsl:母联失灵电流定值,按母线故障时流过母联的最小故障电流来整定,应考虑母差动作后系统变化对流经母联断路器的故障电流影响。

6.3.15 Tmsl:母联失灵时间定值,应大于母联开关的最大跳闸灭弧时间。

6.3.16 Tsq:母联死区动作时间定值,应大于母联开关TWJ动作与主触头灭弧之间的时间差,以防止母联TWJ开入先于开关灭弧动作而导致母联死区保护误动作,推荐值为100ms。

6.3.17投单母方式:此控制字不同于系统参数里的“投单母主接线”控制字。“投单母主接线”控制字整定为1时,表示系统的主接线方式为单母主接线;而“投单母方式”控制字整定为1时,表示系统可能运行于单母线运行方式下(如:双母主接线下只有一条母线运行),在单母线运行方式下运行人员投入“投单母”压板,装置即将母差的故障母线选择功能退出。

6.3.18投一母TV、投二母TV:母线电压切换时使用,具体说明请参见3.2.11。

6.3.19投充电闭锁母差:该控制字整定为1时,在充电保护开放的300ms内闭锁母差保护。

6.3.20投TA断线不平衡判据:当系统中存在不平衡负荷,可能导致TA断线不平衡判据3I0>0.25Iфmax+0.04I n 误判时,应将此控制字整定为0,将TA断线不平衡判据退出,否则一般情况下该控制字均应整定为1。

6.3.21投TA断线自动恢复:当系统中存在冲击性不平衡负荷(如电铁或钢厂负荷),可能导致TA断线不平衡判据3I0>0.25Iфmax+0.04I n短时间内误判时,应将该控制字整定为1,当TA断线不平衡判据返回后母差保护将自动解除闭锁。

6.3.22投母联过流起动失灵:该控制字整定为1时,母联过流保护动作时起动母联失灵保护。

6.3.23投外部闭锁母差保护:如果希望外部保护动作时闭锁本装置母差保护(如母联充电保护),该控制字整定为1。

注意:本保护中除用于母线电压切换的“投一母TV”和“投二母TV”(见3.2.11)以外,各控制字和对应压板之间均为“与”关系,即只有控制字和压板同时投入时,相应的保护功能才能投入。

定值单见表6.3。

6.4失灵保护定值

6.4.1 Tgt:跟跳本线路动作时间,当不用跟跳功能时,该定值应与Tml定值一致。定值整定范围为0.1秒~母联动作时间Tml,推荐值为0.15秒。

6.4.2 Tml:母联动作时间,该时间定值应大于断路器动作时间和保护返回时间之和,再考虑一定的裕度。推荐值为0.25~0.35秒。

6.4.3 Tsl:失灵保护动作时间,该时间定值应在先跳母联的前提下,加上母联断路器的动作时间和保护返回时间之和,再考虑一定的裕度。失灵保护动作时间应在保证动作选择性的前提下尽可能缩短。推荐值为0.5~0.6秒。

6.4.4 Usl:失灵相低电压闭锁,按连接本母线上的最长线路末端对称故障发生短路故障时有足够的灵敏度整定,并应在母线最低运行电压下不动作,而在故障切除后能可靠返回。(注:当“投中性点不接地系统控制字”投入时,此项定值改为失灵线低电压闭锁值)

6.4.5 U0sl:失灵零序电压闭锁(3U0),按连接本母线上的最长线路末端不对称故障发生短路故障时有足够的灵敏度整定,并应躲过母线正常运行时最大不平衡电压的零序分量。(注:当“投中性点不接地系统控制字”投入时,此项定值无效)

6.4.6 U2sl:失灵负序电压闭锁(相电压),按连接本母线上的最长线路末端不对称故障发生短路故障时有足够的灵敏度整定,并应躲过母线正常运行时最大不平衡电压的负序分量。

6.4.7 IslXX:失灵起动相电流,应保证本线路末端或本变压器低压侧故障时有足够的灵敏度。

6.4.8 I0slXX:失灵起动零序电流,应保证本线路末端或本变压器低压侧单相接地故障时有足够的灵敏度。

6.4.9 I2slXX:失灵起动负序电流,应保证本线路末端或本变压器低压侧相间故障时有足够的灵敏度。6.4.10 投零序电流判据:当失灵起动相电流元件躲不过负荷电流时投入使用。

6.4.11 投负序电流判据:当失灵起动相电流元件躲不过负荷电流和零序电流元件(如不接地变压器)不能满足灵敏度要求时投入使用。

6.4.12投不经电压闭锁:考虑到主变低压侧故障高压侧开关失灵时,高压侧母线的电压闭锁灵敏度有可能不够,因此可选择主变支路跳闸时失灵保护不经电压闭锁。

注意:1、由于各线路(或元件)断路器失灵保护共用电压闭锁定值,故整定时应保证在最大运行方式下,各线路末端发生故障时电压闭锁元件均能够开放。

2、所有电流定值均要求由一次电流根据基准TA变比规算至二次侧,零序电流定值按3I0整定,负序电流定值按I2整定。

3、当母联代路时,被代支路的失灵保护由旁路保护的跳闸接点起动,此时应根据被代支路参数整定代路失灵保护整定值。

4、如果每个元件已有失灵起动装置,可以将失灵起动接点接至本装置相应元件的三跳失灵开入(这种情况下,如不想使用本装置的失灵电流起动判据,可将所有的失灵电流定值整定为0)。

定值单见表6.4。

8调试大纲

8.1试验注意事项

1)试验前请仔细阅读本试验大纲及有关说明书。

2)尽量少拔插装置模件,不触摸模件电路,不带电插拔模件。

3)使用的电烙铁、示波器必须与屏柜可靠接地。

4)试验前应检查屏柜及装置在运输中是否有明显的损伤或螺丝松动。

8.2交流回路校验

以下试验在不作说明时,均断开保护屏上的出口压板。

1)进入“保护状态”菜单中“保护板状态”的“交流量采样”子菜单,在保护屏端子上分别加入各母线

电压和各支路元件及母联电流,在液晶显示屏上显示的采样值应与实际加入量相等,其误差应小于±5%。

2) 同1项所述方法一样校验管理板的交流量采样精度,其误差应小于±5%。

8.3输入接点检查

1) 进入“保护状态”菜单中“保护板状态”的“开入量状态”子菜单,在保护屏上分别进行刀闸位置接

点、失灵接点的模拟导通和各压板的投退,在液晶显示屏上显示的开入量状态应有相应改变。

2) 同1项所述方法一样校验管理板的开入量状态。

8.4整组试验

8.4.1母线差动保护

投入母差保护压板及投母差保护控制字。

1)区外故障

短接元件1的I 母刀闸位置及元件2的II 母刀闸位置接点。

将元件2TA 与母联TA 同极性串联,再与元件1TA 反极性串联,模拟母线区外故障。通入大于差流起动高定值的电流,并保证母差电压闭锁条件开放,保护起动。

2)区内故障

短接元件1的I 母刀闸位置及元件2的II 母刀闸位置接点。

将元件1TA 、母联TA 和元件2TA 同极性串联,模拟I 母故障。通入大于差流起动高定值的电流,并保证母差电压闭锁条件开放,保护动作跳I 母。

将元件1TA 和元件2TA 同极性串联,再与母联TA 反极性串联,模拟II 母故障。通入大于差流起动高定值的电流,并保证母差电压闭锁条件开放,保护动作跳II 母。

投入单母压板及投单母控制字。重复上述区内故障,保护动作切除两母线上所有的连接元件。

3)比率制动特性

短接元件1及元件2的I 母刀闸位置接点。

向元件1TA 和元件2TA 加入方向相反、大小可调的一相电流,则差动电流为2

1I I +,制动电流为()

2

1I I K +?。分别检验差动电流起动定值Hcd I 和比率制动特性。 4)电压闭锁元件

在满足比率差动元件动作的条件下,分别检验保护的电压闭锁元件中相电压、负序和零序电压定值,误差应在±5%以内。

5) 投母联带路方式

将“投母联兼旁路主接线”控制字整定为1,投入母联带路压板,短接元件1的I 母刀闸位置和I 母带路开入。

将元件1TA 和母联TA 反极性串联通入电流,装置差流采样值均为零,将元件1TA 和母联TA 同极性串联通入电流,装置大差及I 母小差电流均为两倍试验电流;投入带路TA 极性负压板,将元件1TA 和母联TA 同极性串联通入电流,装置差流采样值均为零,将元件1TA 和母联TA 反极性串联通入电流,装置大差及I 母小差电流均为两倍试验电流。

按类似试验方法检验母联II 母带路时的差流情况。

8.4.2 母联充电保护

投入母联充电保护压板及投母联充电保护控制字。

短接母联TWJ 开入(TWJ =1),向母联TA 通入大于母联充电保护定值的电流,同时将母联TWJ 变为0,母联充电保护动作跳母联。

8.4.3母联过流保护

投入母联过流保护压板及投母联过流保护控制字。

向母联TA通入大于母联过流保护定值的电流,母联过流保护经整定延时动作跳母联。

8.4.4母联失灵保护

按上述试验步骤模拟母线区内故障,保护向母联发跳令后,向母联TA继续通入大于母联失灵电流定值的电流,并保证两母差电压闭锁条件均开放,经母联失灵保护整定延时母联失灵保护动作切除两母线上所有的连接元件。

8.4.5母联死区保护

1)母联开关处于合位时的死区故障

用母联跳闸接点模拟母联跳位开入接点,按上述试验步骤模拟母线区内故障,保护发母线跳令后,继续通入故障电流,经整定延时Tsq母联死区保护动作将另一条母线切除。

2)母联开关处于跳位时的死区故障

短接母联TWJ开入(TWJ=1),按上述试验步骤模拟母线区内故障,保护应只跳死区侧母线。(注意:故障前两母线电压必须均满足电压闭锁条件)

8.4.6母联非全相保护

投入母联的非全相保护压板及投母联非全相保护控制字。

保证母联非全相保护的零序或负序电流判据开放,短接母联的THWJ开入,非全相保护经整定时限跳开母联。分别检验母联非全相保护的零序和负序电流定值,误差应在±5%以内。

8.4.7断路器失灵保护

投入断路器失灵保护压板及投失灵保护控制字,并保证失灵保护电压闭锁条件开放。

对于分相跳闸接点的起动方式:短接任一分相跳闸接点,并在对应元件的对应相别TA中通入大于失灵相电流定值的电流(若整定了经零序/负序电流闭锁,则还应保证对应元件中通入的零序/负序电流大于相应的零序/负序电流整定值),失灵保护动作。

而对于三相跳闸接点的起动方式:短接任一三相跳闸接点,并在对应元件的任一相TA中通入大于失灵相电流定值的电流(若整定了经零序/负序电流闭锁,则还应保证对应元件中通入的零序/负序电流大于相应的零序/负序电流整定值),失灵保护动作。

失灵保护起动后经跟跳延时再次动作于该线路断路器,经跳母联延时动作于母联,经失灵延时切除该元件所在母线的各个连接元件。

在满足电压闭锁元件动作的条件下,分别检验失灵保护的相电流、负序和零序电流定值,误差应在±5%以内。

在满足失灵电流元件动作的条件下,分别检验保护的电压闭锁元件中相电压、负序和零序电压定值,误差应在±5%以内。

8.4.8交流电压断线报警

1)模拟单相断线,母线电压3U2大于12V,即断线相残压<44V时,延时1.25秒报该母线TV断线。

2)模拟三相断线,|U a|=|U b|=|U c| < 18V,并在母联TA通入大于0.04I N电流。延时1.25秒报该母线

TV断线。

8.4.9交流电流断线报警

1)在电压回路施加三相平衡电压,向任一支路通入单相电流>0.06In,延时5秒发TA断线报警信号。2)在电压回路施加三相平衡电压,在任一支路通入三相平衡电流>IDX,延时5秒发TA断线报警信号。3)在任一支路通入电流>IDXBJ,延时5秒发TA异常报警信号。

8.5输出接点检查

1)短接支路01的刀闸位置,将装置定值“系统参数”中“线路01TA调整系数”整定为1,在支路01TA

中通入大于差流起动高定值的电流,元件01的两对跳闸接点应由断开变为闭合(应根据屏图检查到相应的屏端子上,下同)。短接支路02的刀闸位置,仍在支路01TA中通入故障电流,元件02的两对跳闸接点应由断开变为闭合。按此方法依次检查所有的跳闸接点。

2)关掉装置直流电源,装置闭锁的远动、事件记录和中央信号接点应由断开变为闭合。

3)模拟交流回路断线,交流断线报警的远动和事件记录信号以及报警中央信号接点应由断开变为闭合。

4)改变任一刀闸位置开入,刀闸位置报警的远动和事件记录信号以及报警中央信号接点应由断开变为闭

合。

5)短接任一有效失灵接点,经10秒装置发“保护板DSP2长期起动”、“管理板DSP2长期起动”报警

信息,其它报警的远动、事件记录和中央信号接点应由断开变为闭合。

6)投入母差保护压板及投母差保护控制字,模拟I母故障,保护动作跳I母,母差跳I母的远动和事件

记录信号以及差动动作中央信号接点应由断开变为闭合。

7)按6所述方法检查母差跳II母的远动和事件信号接点。

8)投入母联充电保护压板及投母联充电保护控制字,模拟母联充电到故障母线,母联充电保护动作跳母

联,母联保护的远动、事件记录和中央信号接点应由断开变为闭合。

9)投入断路器失灵保护压板及投失灵保护控制字,模拟I母连接元件断路器失灵,失灵保护动作,失灵

跳I母的远动、事件记录和中央信号接点应由断开变为闭合。

10)按9所述方法检查失灵跳II母的远动、事件记录和中央信号接点。

11)模拟失灵保护动作,线路跟跳的远动、事件记录和中央信号接点应由断开变为闭合。

8.6开关传动试验

投入母差保护压板及投母差保护控制字,投入跳闸出口压板,模拟母线区内故障进行开关传动试验。

8.7带负荷试验

母线充电成功带负荷运行后,进入“保护状态”菜单查看保护的采样值及相位关系是否正确。

KV线路光纤差动保护原理

首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。 但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。纵联保护的通道一般有以下几种类型: 1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号; 2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输; 3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道; 4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。 差动保护 差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。

中文名 差动保护 外文名 Differential protection 目录 1.1概述 2.2原理 3.3技术参数 4.?环境条件 1.?工作电源 2.?控制电源 3.?交流电流回路 4.?交流电压回路 5.?开关量输入回路 1.?继电器输出回路 2.4功能 3.5主要措施 4.6缺点 概述编辑

电流差动保护是继电保护中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。 差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,上位机报警保护出口动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。 原理编辑 差动保护

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

母线差动保护的整定计算

母线差动保护的整定计算 计算母差保护的主要工作量在于以下几个值的计算,计算方法如下: 1 比率差动元件的比率差动门坎按包括检修方式的各种运行方式下,母线发生各种类型短路的最小总短路电流(相电流)有足够灵敏度计算,灵敏度≥4,并尽可能躲过母线出线最大负荷电流。 比率差动门坎要整定得躲过母线出线最大负荷电流是为了防止CT断线时母线差动保护误动。 2低电压闭锁元件 以电流判据为主的差动元件,可以用电压闭锁元件来配合,提高保护整体的可靠性。复合电压闭锁包括母线线电压(相间电压),母线三倍零序电压,和母线负序电压。其动作表达式为: 以上三个判据中的任何一个被满足,则该段母线的电压闭锁元件动作。 U set按母线对称故障有足够灵敏度整定,灵敏度≥1.5。且应在母线最低运行电压下不动作,而在故障切除后能可靠返回。一般取65%至70%U e。 U0set按母线不对称故障有足够灵敏度整定,灵敏度≥4。且应躲过母线正常运行时最大不平衡电压的零序分量。一般取6至10V。 U2set按母线不对称故障有足够灵敏度整定,灵敏度≥4。且应躲过母线正常运行时最大不平衡电压的负序分量。一般取4至8V。 1. 电流变化量起动值:按躲过正常负荷电流波动最大值整定,一般整定为0.2In,定值范围为0.1In~0.5In。 2. 零序起动电流:按躲过最大零序不平衡电流整定,定值范围为0.1In~0.5In。 3. 失灵保护零序定值:按躲过最大零序不平衡电流整定, 定值范围为0.1~20A。 4. 低功率因素角定值:整定值范围为45~ 90 ,整定步长为1度。 5. 低功率因素过流定值:表示线路有流,定值范围为0.1~20A 。 6. 负序过流定值:按躲过最大不平衡负序电流整定,定值范围为0.1~20A 。 7. 失灵跳本开关时间:失灵保护动作时,将以该时间定值跳开本开关。定值范围为0.01~20S,整定步长为0.01S。 8. 失灵动作时间:失灵保护动作时,将以该时间定值跳开相邻开关。定值范围为0.01~20S,整定步长为0.01S。

双母线电流差动保护的基本原理及发展过程

第3期(总第147期) 2008年6月 山 西 电 力 SHANXI EL ECTRIC POWER No 13(Ser 1147) J un 12008 双母线电流差动保护的基本原理及发展过程 王为华1,刘云峰2,郭小丽3 (11山西电力科学研究院,山西太原 030012;21晋城供电分公司,山西晋城 048000; 31太原供电分公司,山西太原 030012) 摘要:介绍了不同时期母线保护采用的技术,并进行了比较,分析了母线保护技术的发展趋势,阐述了母线微机保护技术的特点及其优越性。 关键词:母线保护;基本原理;发展过程中图分类号:TM77 文献标识码:A 文章编号:167120320(2008)0320066203 收稿日期:2008201205,修回日期:2008204202 作者简介:王为华(19632),男,山西榆社人,2000年毕业于太 原理工大学计算机及应用专业,工程师; 刘云峰(19782),男,山西晋城人,2000年毕业于华北电力大学电气专业,助理工程师; 郭小丽(19692),女,山西太原人,1990年毕业于临汾电力技校输配电运行与检修专业。 1 双母线完全电流差动保护和母联相位比 较式保护 20世纪70至80年代,双母线完全电流差动 和母联相位比较式母线保护,因其原理及二次接线简单等特点,在电网上广泛应用。111 元件固定连接的母线完全差动保护11111 工作原理(见图1) 双母线同时运行时,将元件固定连接于2条母线上,这种母线称为固定连接母线。其差动保护称为固定连接方式的母线完全差动保护 。 图1 原理接线图 在正常运行及区外故障时,启动元件KA ,选择元件KA1,KA2均无电流通过。区内母线1故障时,启动元件KA ,选择元件KA1均有故障电流通过,选择元件KA2的电流为零,因此母联断 路器及连接在1母上元件的断路器均动作跳闸。同理区内母线2故障时,将母联断路器及连接在2母 上元件的断路器动作跳闸。11112 双母线完全电流差动保护的评价 双母线完全电流差动保护的优点是: a )接线比较简单,调试方便,运行人员易于掌握; b )当元件固定连接时,母差保护有很好的选择性; c )当母联断路器断开时,母线差动保护仍有选择能力;在2组母线先后发生短路时,母线差动保护仍能可靠的动作。 其缺点是:当元件固定连接方式破坏时,若任1组母线上发生短路故障时,就会将2组母线上的连接元件全部切除,因此它适应运行方式变化的能力较差。 112 母联相位比较式母线差动保护11211 工作原理 总差动电流回路由母线上连接元件(不包括母联断路器)的电流互感器的二次回路组成,母联断路器的电流互感器的二次回路单独引出,接入相位比较回路(见图2)。 a 交流电流回路 · 66·

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

母线差动保护的工作原理和保护范围

母线保护装置是正确迅速切除母线故障的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行的一些切换、投退操作则往往认识模糊. 1 母线差动保护范围是否是确定的,保护对象是否是不变的 通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器,按差接法接线,正常运行以及保护范围以外故障时,差电流等于零,保护范围内故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定. 但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的范围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些

必要的切换投退操作肯定就认识模糊、甚至趋于盲目了. 2 母线倒闸操作时是否须将母线差动保护退出 “在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因为一些运行人员曾看到过,甚至在母线倒闸操作时发生过母线差动保护误动,但其根本原因是对母线差动保护缺乏正确认识.母线倒闸操作如严格按照规定进行,即并、解列时的等电位操作,尽量减少操作隔离开关时的电位差,严禁母线电压互感器二次侧反充电,充分考虑母线差动保护非选择性开关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护的工作原理如不遭到破坏,一般应投入运行.根据历年统计资料看,因误操作引起母线短路事故,几率还很高.尽管近几年为防止误操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线差动保护投入有着极其重要的现实意义.投入母线差动保护倒母线,可以在万一发生误操作造成母线短路时,由保护装置动作,切除故障,从而避免事故的进一步扩大,防止设备严重损坏、系统失去稳定或发生人身伤亡事故. 事实上,与其说母线倒闸操作容易引起母线差动保护误动,倒不如说,母线倒闸操作常常会使母线差动保护失去选择性而误切非故障母线. 3 母线倒闸操作后,是否要将母线差动保护的非选择性开关合入

母线差动保护调试方法

母线差动保护调试方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值,大差比例低值,小差比例高值,小差比例低值,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

母线差动保护原理及说明书。

3.2 原理说明 3.2.1 母线差动保护 母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。 1)起动元件 a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为: △u >△U T +0.05U N 其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。 b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为: Id > I cdzd 其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。 母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。 2)比率差动元件 a ) 常规比率差动元件 动作判据为: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2) 其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。) 其动作特性曲线如图3.2所示。 ∑j I j I cdzd I 图3.2 比例差动元件动作特性曲线 为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。 小差比例差动元件则固定取比率制动系数高值。 b ) 工频变化量比例差动元件 为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为:

继电保护原理6—母线保护全解

第六章母线保护

第一节概述 一、母线保护的概述 母线是发电厂和变电站的重要组成部分。在母线上连接着电厂和变电所的发动机、变压器、输电线路和调相设备,母线的作用是汇集和分配电能。 如果母线的短路故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故。 二、母线的主接线形式 单母线;单母分段(专设分段、分段兼旁路、旁路兼分段);单母多分段;双母线(专设母联、母联兼旁路、旁路兼母联);双母单分段(专设母联、母联兼旁路);双母双分段(按两面屏配置);3/2接线(按两套单母线配置)。 1、单母线 图6-1-1 单母线 2、单母分段(专设母联) 图6-1-2 单母分段(专设母联)

3、单母分段(母联兼旁路) 图6-1-3 单母分段(母联兼旁路)4、单母分段(旁路兼母联) 图6-1-4 单母分段(旁路兼母联)5、单母三分段 图6-1-5 单母三分段 6、双母线(专设母联)

图6-1-6 双母线(专设母联) 7、双母线(母联兼旁路) 图6-1-7 双母线(母联兼旁路)8、双母线(旁路兼母联) 图6-1-8 双母线(旁路兼母联)9、双母线单分段(专设母联)

图6-1-3 双母单分段(专设母联)10、双母线单分段(母联兼旁路) 图6-1-10 双母单分段(母联兼旁路)11、双母双分段 图6-1-11 双母双分段 三、母线保护的硬件组成 1、标准配置 1.1 保护箱

图6-1-12 保护箱(一)插件布置图(后视图) 1.1.1交流变换插件(NJL-801/NJL-818):将系统电压互感器、电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。该插件共有8 路电流通道、6 路电压通道。 1.1.2交流变换插件(NJL-817/NJL-819):将系统电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。该插件共有15 路电流通道。 1.1.3 CPU 插件(NPU-804):在单块PCB 板上完成数据采集、I/O、保护及控制功能等。 1.1.4 采保插件(NCB-801):将由变换器来的弱电信号经过低通滤波后,由多路转换开关对信号进行选通,然后通过电压跟随器对信号进行处理,以提高其负载能力。该插件还有+5V、-15V、+15V 及累加和自检功能。此外通过运算放大器过零比较检测电路可实现基频测量。能够完成80 路模拟信号采集,模拟量的输出幅值范围为-10V~+10V。 1.1.5 开入插件(NKR-810):每个开入插件提供30 路开关量输入回路。开入电源为直流220V 或110V;其正电源连接到开入节点,负电源接到31-32 端子。 1.1.6 开入插件(NKR-812):每个开入插件提供64 路开关量输入回路。开入电源为直流24V。 1.1.7 信号插件(NXH-808):主要提供保护的信号接点,共三组信号接点,两瞬动一保持。 1.1.8 通讯插件(NTX-803):提供的通讯接口有:一个就地打印口(RS232),两个GPS对时口(RS485、RS232),及与保护管理机通讯的LON网接口,与变电站自动化系统通讯的双通道接口(RS485,RS232,以太网口)。另外,必要时端子04、05可作为码对时通讯口。 1.1.9 稳压电源插件(NDY-801):直流逆变电源插件。直流220 V 或110 V 电压输入经抗

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

一次母线差动保护动作事故分析

一次母线差动保护动作事故分析 摘要:2001年茂名500 kV变电站因雷击引起一次母线故障。此次雷击事故非常罕见,造成线路和母线同时发生故障。通过分析各种装置记录的故障数据和信号,对故障进行分析和推理,从而正确判断故障的性质,并且强调在数字式故障记录装置的条件下,如何更好地、更全面地采集故障数据,满足事故调查的技术要求。 关键词:线路;母线;差动保护;故障;变电站 1事故情况 2001年8月12日4时26分,500 kV江茂线发生故障跳闸。具体信号如下:江茂线两侧主保护I、主保护II两套装置设备动作;茂名侧距离保护I段动作,选L1, L2相保护装置三相跳闸;线路故障的同时,茂名双套500 kV母线差动保护(简称母差保护)动作出口跳闸。 2现场检查 故障到底在线路还是在母线是否存在保护误动这都是本次故障需要澄清的关键问题。通过雷电定位系统,确认了在2001年8月12日4时21分至4时31分期间,江茂线两侧3 km范围内有2个落雷:第一个落雷时间是在2001年8月12日4时24分7秒,发生在533~540号塔,雷击电流为-,距离线路1. 2 km;第二个落雷时间在4时28分5秒,发生在510~513号塔,雷击电流为-48 kA,距离线路0.58 k m。登塔检查发现542号塔(酒杯塔)L1相绝缘子均压环有放电痕迹,L2相绝缘子与横担连接金具处有灼烧痕迹,可以明确肯定线路确实存在故障,且线路保护装置动作正确。考虑到母线与线路同时故障的可能性极小,基本肯定500 kV母差保护属误动,为此,着重检查母差保护的误动原因。 3线路母差保护配置及其运行情况检查 由于茂名500 kV变电站只有一个完整串,为增加其运行的灵活性,将变电站500 kV部分接线由一个完整串与I母线和II母线之间的一条跨线组成,见图1。 在实际运行中,由于两条母线之间的跨线相当于单母线,其母差保护配置为上海继电器厂的RADSS /S型中阻母差保护装置。5021,5022,5023断路器各自装有许继四方公司的CSI121断控单元。这次事故

母线差动保护原理及说明书。

3.2 原理说明 3.2.1 母线差动保护 母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。 1)起动元件 a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为: △u >△U T +0.05U N 其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。 b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为: Id > I cdzd 其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。 母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。 2)比率差动元件 a ) 常规比率差动元件 动作判据为: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2)

其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。) 其动作特性曲线如图3.2所示。 ∑j I j I cdzd I 图3.2 比例差动元件动作特性曲线 为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。 小差比例差动元件则固定取比率制动系数高值。 b ) 工频变化量比例差动元件 为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为: cdzd T m j j DI DI I +?>?∑=1 (1) ∑∑==?'>?m j j m j j I K I 1 1 (2) 其中K '为工频变化量比例制动系数,母联开关处于合闸位置以及投单母或刀闸双跨时K '取0.75,而当母线分列运行时则自动转用比率制动系数低值,小差则固定取0.75;△I j 为第j 个连接元件的工频变化量电流;△DI T 为差动电流起动浮动门坎;DI cdzd 为差流起动的固定门坎,由I cdzd 得出。 3)故障母线选择元件

10kV母线速断保护动作的分析与处理

10kV母线速断保护动作的分析与处理 发表时间:2019-05-20T10:12:00.813Z 来源:《电力设备》2018年第34期作者:冯庆宏[导读] 摘要:本文通过分析10kV母线速断保护动作,跳开主变10kV侧501开关,同时闭锁10kV备自投,造成10kV母线失压的事故,然后根据设备的实际现场情况推理出各种可能的故障原因,并提出了相应的处理措施。 (广东电网有限责任公司东莞供电局 523000)摘要:本文通过分析10kV母线速断保护动作,跳开主变10kV侧501开关,同时闭锁10kV备自投,造成10kV母线失压的事故,然后根据设备的实际现场情况推理出各种可能的故障原因,并提出了相应的处理措施。 关键词:母线速断 一、事件现象 某110kV变电站10kV1M母线速断保护动作,#1主变10kV侧501开关跳闸,同时闭锁10kV分段500开关备自投,造成10kV1M母线失压,运行人员到达现场检查10kV 1M母线无异常,但10kV F7线路保护装置的动作灯亮,707开关在合闸位置,其它保护装置无异常信号。 二、技术分析 10kV母线快速保护不是单独保护装置,它由动作元件和闭锁元件两部分组成,即嵌入主变变低后备保护装置中的动作元件和嵌入在10kV间隔(包括10kV线路、站用变、接地变、电容器组等)保护装置中的闭锁元件组成。10kV母线快速保护典型逻辑关系如图1所示。 图1 10kV母线快速保护典型逻辑 其中,动作元件反应流经主变变低开关的电流增大,当10kV母线上发生任何相间短路时,都能够反应。闭锁元件反应10kV间隔电流增大,当10kV间隔发生任何相间短路时,闭锁元件瞬时动作发出闭锁信号,该信号被瞬时传送到变低后备保护装置中10kV母线快速保护的逻辑回路中,起到闭锁10kV母线快速保护的作用。 在10kV母线快速保护功能设置为投入、10kV分段开关处于分闸位置、无10kV母线快速保护闭锁信号输入的情况下,当发生10kV母线短路故障时,10kV母线快速保护的动作元件动作,10kV母线快速保护经延时T1跳开主变变低开关,并同时闭锁10kV备自投。 当10kV间隔保护范围内短路故障或10kV分段开关在合闸位置时,闭锁元件瞬时发出闭锁信号并传送至主变变低后备保护装置,闭锁10kV母线快速保护。 110kV某变电站10kV母线快速保护与各10kV间隔单元闭锁元件之间的闭锁信号传送,采用硬接点方式,将所有10kV间隔单元保护装置中的闭锁元件瞬时动作出口接点并联后,接入主变变低后备保护装置的10kV母线快速保护闭锁开入回路,以闭锁变低后备保护装置中的10kV母线快速保护。 1、运行方式: 事故前,某110kV变电站#1、#2、#3主变各带本段10kV母线运行,各10kV母线分列运行,10kV分段500、550开关均在分闸位置,各主变变低501、502甲、502乙、503开关在合闸位置,如图2。 图2 事故前运行方式 事故后,该站#1主变10kV侧501开关跳闸,造成10kV1M母线失压,#2、#3主变各带本段母线运行,10kV分段500、550开关在分闸位置,如图3。 图3 事故后运行方式 2、10kV母线快速保护动作原因分析:

一次母线差动保护动作事故分析

摘要:2001年茂名500 kV变电站因雷击引起一次母线故障。此次雷击事故非常罕见,造成线路和母线同时发生故障。通过分析各种装置记录的故障数据和信号,对故障进行分析和推理,从而正确判断故障的性质,并且强调在数字式故障记录装置的条件下,如何更好地、更全面地采集故障数据,满足事故调查的技术要求。 关键词:线路;母线;差动保护;故障;变电站 1事故情况 2001年8月12日4时26分,500 kV江茂线发生故障跳闸。具体信号如下:江茂线两侧主保护I、主保护II两套装置设备动作;茂名侧距离保护I段动作,选L1, L2相保护装置三相跳闸;线路故障的同时,茂名双套500 kV母线差动保护(简称母差保护)动作出口跳闸。 2现场检查 故障到底在线路还是在母线?是否存在保护误动?这都是本次故障需要澄清的关键问题。通过雷电定位系统,确认了在2001年8月12日4时21分至4时31分期间,江茂线两侧3 km范围内有2个落雷:第一个落雷时间是在2001年8月12日4时24分7秒,发生在533~540号塔,雷击电流为-26.7kA,距离线路1.2 km;第二个落雷时间在4时28分5秒,发生在510~513号塔,雷击电流为-48 kA,距离线路0.58 km。登塔检查发现542号塔(酒杯塔)L1相绝缘子均压环有放电痕迹,L2相绝缘子与横担连接金具处有灼烧痕迹,可以明确肯定线路确实存在故障,且线路保护装置动作正确。考虑到母线与线路同时故障的可能性极小,基本肯定500 kV母差保护属误动,为此,着重检查母差保护的误动原因。 3线路母差保护配置及其运行情况检查 由于茂名500 kV变电站只有一个完整串,为增加其运行的灵活性,将变电站500 kV部分接线由一个完整串与I母线和II母线之间的一条跨线组成,见图1。 在实际运行中,由于两条母线之间的跨线相当于单母线,其母差保护配置为上海继电器厂的RADSS/S 型中阻母差保护装置。5021,5022,5023断路器各自装有许继四方公司的CSI121断控单元。这次事故发生后,获取与故障有关的信息包括:两套母差保护装置的动作信号;5021,5022,5023断路器断控单元的采样报告;江茂线线路保护的动作报告及采样值报告;江茂线及2号主变压器的故障录波显示结果。针对这些检查结果,对两套母差保护装置进行了认真的试验和全面的检查,均未发现任何异常情况。鉴于故障期间两套母差的差动元件同时动作的情况,把怀疑的焦点集中在两套母差保护装置的公共部分上,也就是在5021,5023断路器的TA及其回路上。是否由于TA回路的问题, 比如,是否存在二次回路分流?是否TA多点接地等问题造成母差保护受到不平衡电流冲击,令保护误动呢?根据当时负荷电流较小的情况,我们切开5022断路器,检验了5021,5023断路器的TA电流在正常运行时的平衡性,结果是平衡性良好。

35kV 母线差动保护的调试

35kV母线差动保护的调试 周剑平(镇海炼化检安公司) 摘要: 对BUS1000母线差动保护继电器的原理进行分析,介绍了镇海炼化公司第二热电站35kV母线差动保护的调试方法。通过合理的调试,减少由于35kV母线差动保护出现误动而引起故障。关键词:继电器差动保护调试 1概述 镇海炼化公司第二热电站35kV及110kV母线的差动保护采用美国通用电气公司(GE)生产的BUS1000保护装置,BUS1000保护装置是一种高速静态保护系统,动作时间可达到10毫秒,灵敏度高,防误动性能好,运行中如出现电流回路断线,经10秒延时即闭锁继电器出口,防止误动作。BUS1000保护装置对电流互感器的要求不高,允许各回路的电流互感器具有不同的变比,但变比差异不能超过10倍,互感器的最小饱和电压应大于100V。 2000年8月,发生炼油303线电缆炸裂事故,二电站的35kV母差保护出现误动,至使部分装置失电,影响到生产。因此,搞清BUS1000保护装置误动的原因及采取何种方法解决,如何通过合理的调试来验证保护装置的完好显得尤为重要。 2BUS1000保护装置的动作原理 图1和图2分别为BUS1000保护装置内部故障及外部故障的原理图。

图1内部故障时BUS1000原理图 图2外部故障时BUS1000原理图

被保护母线上各线路的电流互感器(即主电流互感器)二次电流经BUS1000装置中的辅助电流互感器转换为统一的0~1A的电流,再经电流/电压转换板变成0~1V交流电压信号,经整流后成为直流电压信号。由图中可以看出,整流后的直流电压VF与各线路的电流之和成正比,V D 与各线路的电流之差成正比。BUS1000保护装置是一个比率制动差动保护,用VF作制 动量,反应制动电流I F ,V D 作动作量,反应差动电流I D ,V D 和V F 经加法器和电平比较器后获得 以下动作特性: I D -KI F ≥0.1 式中:I D -差动回路电流; I F -制动回路电流; K-比率制动系数。 电平比较器是一个固定门槛的比较器,当输入差流大于0.1安培时输出信号,继电器动作。比率制动系数K可在0.5~0.9之间调节,它决定了继电器的动作特性和灵敏度。图3为继电器的动作特性曲线(图中电流值为辅助电流互感器二次值)。 图3BUS1000的比率差动特性曲线图

什么是差动保护

差动保护 [1]电流差动保护是中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是和电流的之间的角加上180度,就是反相功率,而不是逆相序。 差动保护是根据“电路中流入电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,保护动作,将被保护设备的各侧跳开,使故障设备断开电源。 差动保护原理 差动保护 差动保护是利用电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动不动作。当时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于,差动继电器动作。 差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护。另外差动保护还有线路差动保护、差动保护等等。 变压器差动保护是防止变压器内部故障的主保护。其接线方式,按原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,如果忽略,在两个互感器的二次回路臂上没有差电流流入继电器,即:iJ=ibp=iI-iII=0。 如果内部故障,如图ZD点短路,流入继电器的电流等于短路点的总电流。即:iJ=ibp=iI2+iII2。当流入继电器的电流大于,保护动作断路器跳闸。 技术参数 1.环境条件 正常温度: -10℃~55℃ 极限温度: -30℃~70℃ 存储温度: -40℃~85℃ 相对湿度:≤95%,不凝露 大气压力: 80~110kPa 2.工作电源 电压范围: 85~265V(AC或DC) 正常功耗:<10W 最大功耗:<20W 电源跌落:200ms 上电冲击:4A 隔离耐压:3kV

母线差动保护动作跳闸原因分析

母线差动保护动作跳闸原因分析 【摘要】母线差动保护是电力系统的重要保护,当系统发生故障其应当正确迅速切除母线故障元件,它的拒动和误动都将给电力系统带来严重危害。本文分析了母线差动保护动作跳闸原因,提出了相应的处理措施。 【关键词】电力系统;母线差动保护;跳闸;处理措施 0 前言 母线差动保护基本原理.用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围。 1 母线差动保护动作跳闸的分析及处理 1.1 母线差动保护动作跳闸的原因 母线差动保护动作跳闸有以下十项原因:母线上设备引线接头松动造成接地;母线绝缘子及断路器靠母线侧套管绝缘损坏或发生闪络;母线上所连接的电压互感器故障:连接在母线上的隔离开关支持绝缘子损坏或发生闪络故障;母线上的避雷器、及支持绝缘子等设备损坏;各出线(主变压器断路器)电流互感器之间的断路器绝缘子发生闪络故障:二次回路故障;误拉、误合、带负荷拉、合隔离开关或带地线合隔离开关引起的母线故障;母线差动保护误动;保护误整定。 1.2 母线故障跳闸的处理 1.2.1 母线故障时,故障电流很大。在母差保护动作的同时,相邻线路/元件都会启动或发信,故障录波器因其具有更高的灵敏度必然启动;如果相邻线路/元件保护不启动或很少启动,故障录波图上没有明显的故障波形,则可认为母差保护有误动可能或因其他原因造成非故障跳闸。此时,值班人员可在停用母差保护、排除非故障原因并确认该母线上所有断路器均已跳闸后,要求调度选择合适的电源并提高其保护灵敏度后对停电母线进行试送,试送成功后-逐一送出停电线路。 1.2.2 利用备用电源或合上母线分段(或母联)断路器,先对失压的中、低压侧母线及分路恢复供电,并优先恢复站用电。 1.2.3 对跳闸母线的母差保护范围内的设备,认真地进行外部检查。检查有

差动保护试验方法

差动保护试验方法 国测GCT-100/102差动保护装置采用的是减极性判据,即规定各侧均已流出母线侧为正方向,从而构成180度接线形式。 1. 用继保测试仪差动动作门槛实验: 投入“比率差动”软压板,其他压板退出,依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流0.90A ,步长+0.01A ,观察差流,缓慢加至差动保护动作,记录动作值。 说明: 注意CT 接线形式对试验的影响。 若CT 接为“Y-△,△-Y 型”,则在系统信息——变压器参数项目下选择“Y/D-11”,此时高侧动作值为:定值×√3,即1.73动作,低测动作值为定值,即1.00动作 若CT 接为“Y-Y 型”,则在系统信息——变压器参数项目下选择“无校正”,此时高低侧动作值均为定值,即1.00动作 2. 用继保测试仪做比率差动试验: 分别作A ,B ,C 相比率差动,其他相查动方法与此类似。 以A 相为例,做比率差动试验的方法:在高,低两侧A 相同时加电流(测试仪的A 相电流接装置的高压侧A 相,B 相电流接装置的低压侧A 相),高压侧假如固定电流,角度为0度,低压侧幅值初值设为x ,角度为180度,以0.02A 为步长增减,找到保护动作的临界点,然后将x 代入下列公式进行验证。 0Ir Ir Id Id k --= 其中: Id :差动电流,等于高侧电流减低侧电流 Id0:差动电流定值 Ir :制动电流,等于各侧电流中最大值 Ir0:制动电流定值 K :制动系数 例如: 定值:Id0=1(A ); Ir0=1(A ); K =0.15 接线:测试仪的Ia 接装置的高压侧A 相,Ib 接装置的低压侧A 相 输入:Ia =∠0 o5A Ib =∠180 o5A 步长Ib =0.02A 试验:逐步减小Ib 电流,当Ib=3.4A 时装置动作。 验证:Id =5-3.4=1.6A Id0=1A Ir =5A Ir0=1A 15.04 6.0151)4.35(==---=k 3. 用继保测试仪做差动速断试验 投入“差动速断”压板,其他压板退出。依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流9.8A ,每次以0.01A 为步长缓慢增加电流值至动作,记录动作值。 例如:

相关主题
文本预览
相关文档 最新文档