当前位置:文档之家› 火焰原子吸收分光光度法测定水中铜的不确定度评定

火焰原子吸收分光光度法测定水中铜的不确定度评定

火焰原子吸收分光光度法测定水中铜的不确定度评定
火焰原子吸收分光光度法测定水中铜的不确定度评定

火焰原子吸收分光光度法测定水中铜的不确定度评定

1 方法原理

原子吸收是原子蒸汽受具有特征波长的光源照射后,原子能够从入射辐射中吸收能量产生共振吸收,从而产生吸收光谱。各种元素的共振线因吸收能量的不同而具有不同的特征性,对大多数元素来说,共振线是元素的灵敏线。原子吸收分光光度法就是利用基态的待测原子蒸汽对光源辐射的共振线的吸收来分析的。将样品或消解处理过的样品直接吸入火焰中,在火焰中形成的原子对特征电磁辐射产生吸收,将测得的样品和标准溶液的吸光度进行比较,确定样品中被测元素的浓度。

2 操作流程

若测定溶解的铜,取过滤酸化后的样品直接测试。

测定铜总量时,若样品不需消解时可取酸化后的样品直接测定。如果样品需要消解,将酸化样品混匀后分取适量样品于烧杯中。每l00ml水样加5ml浓硝酸,置于电热板上加热消解,确保样品不沸腾,蒸至10ml左右,加入浓硝酸5ml和高氯酸2ml,继续消解,蒸至1m1左右。如果消解不完全,再加入浓硝酸5m1和高氯酸2ml,再蒸至lm1左右。取下冷却,加水溶解残渣,通过中速滤纸(预先用酸洗)滤入100ml容量瓶中,用水稀释至标线,于324.8nm波长,以1+99硝酸调零,测量溶液吸光度。

3 校准曲线

3.1 铜标准使用液的配制

直接购买有证标准物质1000mg/L的铜标准溶液,用10ml无分度吸管准确吸取10.00ml 铜标准溶液至100ml容量瓶中,用二次水稀释至刻度,摇匀,此溶液为铜标准中间液,浓度为100mg/L。再用5mg/L有分度吸管准确吸取5.00ml标准中间液至100ml容量瓶中,用1+99硝酸溶液稀释至刻度,摇匀,

此溶液为铜标准使用液,浓度为5.00mg/L。

3.2 校准曲线的绘制

于一组7个100m1容量瓶中,依次加入0、2.00、4.00、8.00、10.00、15.00、20.00ml 铜的标准使用液,得到浓度分别为0、0.10、0.20、0.40、0.50、0.75、1.00mg/L的标准系列,绘制校准曲线,调节仪器最佳工作状态,注入补测样品,由吸光度根据校准曲线算出补测样品的浓度。

4 测量数据

通过校准曲线拟合,用火焰原子吸收分光光度法测量试样中铜的浓度,得平行数据如表1所示。

表1 试样测量结果表

5 建立数学模式

水中铜浓度计算公式如下:

(1)

式中:m — 水样中铜的质量,μg ;

v — 水样体积,ml ;

c — 水样中铜的浓度,mg/L 。

(2) 式中:u(c) —的标准测量不确定度;

u(m) — m 的标准测量不确定度; u(v) — v 的标准测量不确定度。 6 测量水样中铜的质量m 的标准不确定度分量

测量水样中铜的标准不确定度分量由三部分构成,其一是由标准溶液的质量—吸光度拟合的直线求得铜的浓度时所产生的不确定度,记为u 1(m);其

二是由铜标准溶液配制成不同浓度的标准溶液系列时所产生的测量不确定度,记为u 2(m):其三是平行试验数据重复性引起的测量不确定度,记为u 3(m)。 6.1 校准曲线拟合的不确定度u 1(m)的计算

铜校准曲线方程表示为:y=bx+a (3) 式中:x — 溶液中铜的质量;

y — 吸光度;

V

m C =2

2

v u(v)m u(m)c u(c)??

????+??????=

b — 曲线的斜率,b=0.00125; a — 曲线的截距,a=0.00067。

表2 校准曲线各标准点下吸光度测量值

本次实验,对m 进行5次吸光度测量,m=(50.31+49.52+50.31+48.74 +50.31)/5=49.84μg ,则u 1(m)计算公式表示为:

(4) 式中:

x 0=m=49.84μg ; p=5,对m 进行5次测量; n=7,校准曲线浓度点总量次数;

S R =8.353×10-4;

将上述各值代入公式(4)得出: u 1(m)=0.396μg;

u 1(m)/m=0.396/49.84=0.0079。

∑=??? ?

?-??? ??-++=n 1i 2_i 2

_

0R x x x x n 1p 1b S u(m)()[]

2

n bx a y S 2

n

1

i i

R -+-=

∑=14

.42n x

x n

1

i i

_

==

∑=∑==??

?

?

?

-n

1

i 2

_

i

86.7792x x

第3页共9页

6.2 标准溶液配制引起的标准不确定度u 2(m)的计算

绘制校准曲线的标准系列,其铜的质量可用下式来表示:

m i =C i ×V i (5) 以校准曲线中0.50mg/l 浓度点为例: 式中:C i — 铜标准使用液的浓度,0.50mg/L ;

V i — 校准曲线标准对应点的铜标准使用液的体积,ml ;

m i — 校准曲线标准系列中0.50 mg/l 浓度点对应的铜的质量,μg 。

0.50 mg/L 铜标准使用液是由标准贮备液经过三步稀释得到的,购买1000μg/ml 铜标准溶液作为贮备液,第一步稀释10倍,第二步稀释20倍、第三步稀释10倍,得到0.50 mg/L 的铜标准使用液。第一步是用100ml 容量瓶和10ml 无分度试管来完成的,第二步是用100ml 容量瓶和5ml 有分度试管来完成的,第三步是用100ml 容量瓶和10ml 有分度试管来完成的。所以得到如下公式:

(6) 则相对标准不确定度计算为:

(7)式中:C 贮 ——

铜贮备液的浓度,1000mg/L ;

u(C 贮) — 为铜贮备液的标准不确定度;

V i — 校准曲线标准对应点的铜标准使用液的体积,ml ; V 100 — 为100ml 容量瓶的体积,ml ;

u(V 100) — 为100ml 容量瓶的体积测量产生的标准不确定度; V 5 — 为5ml 有分度吸管的体积,ml ;

u(V 5) — 为5ml 有分度吸管的体积测量产生的标准不确定度; V 10,V 10′— 分别为10ml 无分度及有分度吸管的体积,ml ;

u(V 10),u(V 10′) — 分别为10ml 无分度及有分度吸管的体积测量产生的标准不确定度。

6.2.1 铜贮备液的不确定度u(C 贮)分析

铜贮备液是直接购买1000mg/l 的铜标准物质,按标准值的2%给定标准不确定度,则 u(C 贮)=1000×2%=20mg/L 则

2

'10'102

1001002

552

10102

2

2)()(3)()()()()

(????????+??????+??????+??????+??????+??????=V V u V V u V V u V V u V V u C C u m m u i i i i 贮贮100

10

100510010V V V V V V V C m i i ????=贮

=0.020 6.2.2 校准曲线标准对应点的铜标准使用液的体积u(V i )分析

假定以100.00ml 标准溶液为例阐述不确定度的大小,V i =100.00ml(容量瓶体积),使用100.00ml 配制溶液,其不确定度主要包括三个部分:第一,容量瓶体积的不确定度,按制造商给定容器容量允差为+0.069ml 时,按照均匀分布换算成标准偏差为0.069/3=0.04m1;第二,充满液体至吸管刻度的估读误差,按照均匀分布换算成标准偏差为0.005V 100/3=0.29m1(均匀分布);第三,吸管和溶液的温度与校正时的温度不同引起的体积不确定度,假设差为2℃,对水体积膨胀系数为2.1×10-4/℃,则95%置信概率(k=1.96)时体积变化的区间为±100×2×2.1×10-4=±0.042(m1),转换成标准偏差为0.042/1.96=0.021ml 。

以上三项合成得出:

u(V i )=222021.029.004.0++=0.29ml

6.2.3 100m1容量瓶标准不确定度u(V 100)的分析

同6.2.2

6.2.4 5ml 有分度吸管标准不确定度u(V 5)的分析

使用5m1有分度吸管量取溶液,其不确定度主要包括三个部分:第一,吸管体积的不确定度,按制造商给定容器容量允差为+0.019ml ;按照均匀分布换算成标准偏差为0.019/3=0.011ml ;第二,充满液体至吸管刻度的估读误差,估计为±0.005V 5,转化成标准偏差,按均匀分布计算为0.005 V 5/3=0.025/3=0.014ml ;第三,吸管和溶液的温度与校正时的温度不同引起的体积不确定度,假设差为2℃,对水体积膨胀系数为2.1×10-4/℃,则95%置信概率(k=1.96)时体积变化的区间为±5×2×2.1×10-4=±0.0021(m1),转换成标准偏差为0.0021/1.96=0.0011ml 。以上三项合成得出:

u(V 10)=2

220011.0014.0011.0++= 0.018ml

贮C

C u )

(0029.0100

29

.0)(==

i

i V V u 0029

.0100

29.0)(100100==V V u 0.00365

0.018V )u(V 1010==

6.2.5 10m1无分度吸管标准不确定度u(V 10)的分析

使用10m1无分度吸管量取溶液,其不确定度主要包括三个部分:第一,吸管体积的不确定度,按制造商给定容器容量允差为-0.020ml ;按照均匀分布换算成标准偏差为0.020/3=0.012ml ;第二,充满液体至吸管刻度的估读误差,估计为±0.005V 10,转化成标准偏差,按均匀分布计算为0.005 V 10/3=0.05/3=0.029ml ;第三,吸管和溶液的温度与校正时的温度不同引起的体积不确定度,假设差为2℃,对水体积膨胀系数为2.1×10-4/℃,则95%置信概率(k=1.96)时体积变化的区间为±10×2×2.1×10-4=±0.0042(m1),转换成标准偏差为0.0042/1.96=0.0021ml 。以上三项合成得出:

u(V 10)=2

220021.0029.0012.0++=0.031ml

6.2.6 10m1有分度吸管标准不确定度u(V 10′)的分析

使用10m1有分度吸管量取溶液,其不确定度主要包括三个部分:第一,吸管体积的不确定度,按制造商给定容器容量允差为+0.025ml ;按照均匀分

布换算成标准偏差为0.025/3=0.014ml ;第二,充满液体至吸管刻度的估读误差,估计为±0.005V 10′,转化成标准偏差,按均匀分布计算为0.005 V 10/3=0.05/3=0.029ml ;第三,吸管和溶液的温度与校正时的温度不同引起的体积不确定度,假设差为2℃,对水体积膨胀系数为2.1×10-4/℃,则95%置信概率(k=1.96)时体积变化的区间为±10×2×2.1×10-4=±0.0042(m1),转换成标准偏差为0.0042/1.96=0.0021ml 。以上三项合成得出:

u(V 10′)=2220021.0029.0014.0++=0.032ml

将以上六项不确定度分量代入公式,得到:

=2222220032.00031.00036.00029.030029.0020.0+++?++

0.003110

0.031

V )u(V 1010

==0.003210

0.032

V )u(V '

10

'10==

2

'10'102

10010025521010222)()(3)()()()()

(???

?????+??????+??????+??????+??????+??????=V V u V V u V V u V V u V V u C C u m m u i i i i 贮贮

=0.022 列表如下:

6.3 平行试验重复性引起的标准不确定度u 3(m)的计算

平行试验重复性引起的标准不确定度u 3(m)可通过多次平行试验得出,取五次平行试验测量值为:49.84μg ,单次实验标准差为 0.441μg 。 实际测量情况为:

测量结果采用五次平行试验测量值的平均值。 u=0.0441/5=0.197μg u 3(m)/49.84 μg=0.004 则相对标准不确定度计算为:

=222004.0022.00079.0++ =0.024

u(m)=0.024×49.84=1.196(μg)

7 测量水样体积V 的标准不确定度分量

V 的标准测量不确定度分量主要有三部分构成;其一,容器体积的不确定度;其二,充满液体至容器刻度的估读误差;其三是容器和溶液温度与校正温度不同引起的不确定度。

用100ml 容量瓶取样品分析,根据6.2.3条计算,容量瓶体积的不确定度,按制造商给定容器容量允差为±0.10ml 时,按照均匀分布换算成标准偏差为0.10/3=0.058m1;

2

3222

1)()()()

(??????+??????+???

?????=i i i i m m u m m u m m u m m u

u 1(v)按照均匀分布换算为0.10/3=0.058m1,u 1(v)/v=0.058/100=0.00058;液体充满至容量瓶刻度的不确定度

u 2(v)=0.005V 100/

3=0.29m1(均匀分布),

u 2(v)/v=0.29/100=0.0029;容量瓶和溶液温度与校正温度不同引起的不确定度u 3(v)=0.042/1.96=0.021m1,u 3(v)=0.021/100=0.00021。则100ml 容量瓶取样产生的相对标准不确定度分量:

u(v)/v=2

2200021

.00029.000058.0++=0.0030 u(v)=0.0029×100=0.30(ml) 8 相对标准不确定度分量一览表

9 相对合成标准不确定度

=220030.0024.0+=0.024

u c (c)=0.024×0.498=0.012(mg/l) 10 扩展不确定度分析

取包含因子K=2(近似95%置信概率),则 U=0.012×2=0.024mg/L

报告的扩展不确定度是根据合成标准不确定度乘以包含因子K=2得到,它达到的置信概率近似为95%。不确定度分量之中含有近似于均匀分布的组分。鉴于本监测的目的,在测量最后结果中做简化处理,不再考虑实际分布形式,统一按近似于正态分布处理。

2

2

)()()(??

?

???+??????=v v u m m u c c u c

11 最后结果

测量结果:0.498mg/L;测量扩展不确定度:0.024mg/L(k=2)。

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

汞的测定(冷原子吸收法)复习试题(精)

1 汞的测定(冷原子吸收法复习试题 一、填空题 1.冷原子吸收光度法测汞的适应范围较宽,适用于水、水、水、及。答:地面;地下;饮用;生活污水;工业废水。 2.国家颁布测定水质总汞的标准方法是,方法的国标号码为。答:冷原子吸收分光光度法;GB7468-87。 3.本方法最低检出浓度为含汞g/L,在最佳条件下(测汞仪灵敏度高,基线噪音及试剂空白极低,当试样体积为200ml时,最低检出浓度为。答:0.1;。 4.本方法在含量较高,消解试剂最大量尚不足以之时,不适用。答:有机物;氧化。 5.配制试剂或试样稀释定容,均使用水,试剂一律盛于瓶。答:无汞蒸馏;磨口玻璃试剂。 二、选择、判断题 1.在用冷原子吸收法测定汞时,不饱合芳香族的有机物、CO2、SO2、Cl2、NOx和水气等能使测定结果。 A、偏高; B、偏低; C、不变; D、影响不一定答:A 2.在用冷原子测定汞时,如测定液中存在NO-、Cl-、Br-和I-,会使结果。 A、偏高;B、偏低;C、不变;D、影响不一定答:B 3.判断下列说法是否正确。

⑴汞对人体的危害与汞的化学形态、环境条件以及摄入途径有关。( ⑵用冷原子吸收法测定汞时,反应瓶体积的大小应根据测定试样体积而定,并且还要选择适宜的气液比,经验证明,气液比越大,灵敏度越低。( 答:⑴√⑵× 三、问答题 1.简述冷原子吸收法测定总汞的方法原理。 答:汞原子蒸气对波长253.7nm的紫外光具有强烈的吸收作用,汞蒸气浓度与吸收值成正比。 在硫酸-硝酸介质及加热条件下,用高锰酸钾和过硫酸钾将试样消解;或用溴酸钾和溴化钾混合试剂,在以上室温和0.6-2mol/L的酸性介质中产生溴,将试样消解,使所含汞全部转化成二价汞。 用盐酸羟胺将过剩的氧化剂还原,再用氯化亚锡将二价汞还原成金属汞。 在室温通入空气或氮气流,将金属汞汽化,载入冷原子吸收测汞仪,测量吸收值,可求得试样中汞的含量。 2.如何制备无汞蒸馏水? 答:二次重蒸馏水或电渗析去离子水,可达此纯度,可将蒸馏水加盐酸酸化至 pH=3,然后通过巯基棉纤维管除汞。 3.请问测汞装置中填有变色硅胶的U型管的作用是什么?答:可消除水雾及微量易挥发性有机物干扰,使零点稳定。 4.增加进入吸收池内汞原子蒸气的瞬时浓度可提高测量灵敏度、降低检出限,欲达到此目的可采取什么措施?

火焰原子吸收分光光度法测定人发中锌含量

火焰原子吸收分光光度法测定人发中锌含量 一实验目的 1.掌握火焰原子吸收分光光度法测定发锌的基本原理和操作技术 2.熟悉发样的预处理方法 3.熟悉原子吸收分光光度计的基本结构和使用方法 二基本原理 原子吸收分光光度法是基于锐线光源辐射出待测元素的特征谱线通过样品的原子蒸气时,蒸气中待测元素的基态原子吸收该谱线,其吸光度与基态原子浓度成正比,而基态原子浓度又与样品溶液浓度成正比,故吸光度A与溶液浓度C成正比,符合朗伯-比尔定律。即 A=KLC 当基态原子蒸气的厚度L一定时,与K合并,得 = A' K C 此式为原子吸收分光光度法的定量依据。 锌是人体所必需的重要微量元素之一。火焰原子吸收分光光度法是测定人发中微量锌的较好方法之一。 三仪器与试剂 1.仪器 原子吸收分光光度计,锌空心阴极灯,空气压缩机,乙炔钢瓶,电热烘箱,马弗炉,5ml刻度吸管,10ml移液管,25ml容量瓶,50ml烧杯 2.试剂 锌标准贮备液(1.000mg/ml) 称取0.1000g金属锌于烧杯中,用少量盐酸(1﹕1)溶解(必要时可加热),完全溶解后,定量转移到100ml容量瓶中,2%盐酸定容,摇匀。 锌标准应用液(10.00μg/ml) 取1.00ml锌标准贮备液于100ml容量瓶中,用2%盐酸定容,摇匀。 2%盐酸 取20ml浓盐酸,加980ml水,混匀。 金属锌、盐酸为优级纯或光谱纯,水为去离子水或双蒸水。 四操作步骤: 1.发样的采集与处理 取受检者枕部距头皮1~3cm的头发0.3g,放入50ml烧杯中,加入约30ml50~60℃5%中性洗涤剂溶液浸洗30min,并不断搅拌,然后用双蒸水反复洗至无泡沫,滤干后置于烘箱中,105℃条件下干燥30min,取出后剪成3~5mm备用。 称取发样约50mg于坩埚中,置于马弗炉中于540~560℃灰化5h,至样品全部变成白色或灰白色残渣。取出放冷,准确移取10.00 ml 2%盐酸溶解残渣,待测。 2.配制标准系列溶液 分别取锌标准应用液0.00、0.50、1.00、2.00、3.00、4.00ml于25ml容量瓶中,用2%盐酸定容,摇匀。此系列锌浓度分别为0.00、0.20、0.40、0.80、1.20、1.60μg/ml。 3.仪器调试和操作条件 按仪器说明书调节仪器于操作条件下(见下表),预热20~30min。

火焰原子吸收法测定痕量银、镉锂

火焰原子吸收法测定痕量银、镉锂 1、方法提要 样品经氢氟酸、盐酸、硝酸、高氯酸分解。在10%的盐酸介质中,利用碘化钾作为富集剂,甲基异丁基酮萃取,在偏光塞曼原子线吸收光谱仪上测定银、镉(锂经分取溶液后用发射法测定)。 2、仪器及工作条件 仪器:日立180—80偏光塞曼原子吸收光谱仪。银、镉、空心阴极灯(上海产)。 工作条件: 灯电流(mA )波长 (nm) 狭缝 (nm ) 燃烧器高 (格) 乙炔压 力 (Pa) 空气压 力 (Pa) 拟合 型式 Ag 8.0 328.1 1.3 7.5 0.9M 1.60M 直线Cd 7.5 228.8 1.3 7.5 0.9M 1.60M 直线 3、药品及试剂 (1)药品:盐酸GR(北京)、硝酸GR(北京)、高氯酸GR(北京)、氢氟酸AR(北京)、甲基异丁基酮AR、抗坏血酸AR(上海)。

(2)试剂: 15%KI-10%VC-3%硫脲混合溶液:分别称取3g硫脲,15gKI,10gVc溶于100ml纯水中。 混合标准溶液:准确吸取每毫升含2微克银1微克镉的标准溶液10毫升,放入100毫升容量瓶中用10%的盐酸溶液稀释至刻度,摇匀。该混合标准溶液浓度:ρ(Ag)=0.200μg/ml,ρ(Cd)=0.100μg/ml(置于暗处保存)。 4、操作步骤 称取1.0000克试样于100毫升聚四氟乙烯烧杯中,用去离子水润湿,加入20毫升浓盐酸,5毫升氢氟酸,在电热板上加热蒸发至体积约为10毫升,取下,加10毫升硝酸,5毫升氢氟酸,3毫升高氯酸;在电热板上继续加热至高氯酸烟冒尽,取下加入2毫升浓盐酸,用15毫升左右去离子水冲洗杯壁,低温溶解,移入25毫升比色管中,用去离子水稀释至20毫升,摇匀,加入3毫升15%KI-10%VC-3%硫脲混合液,摇匀,放置1分钟,加入4毫升萃取液,剧烈震荡160次,放置10分钟后,上仪器进行测量。 标准系列: 分别吸取标准混合溶液0.00、1.00、2.00、3.00毫升;于25毫升比色管中,用10%盐酸稀释至20毫升,摇匀,其它手续同操作步骤。该系列银为0.000、0.200、0.400、0.600μg/ml,镉为0.000、0.100、0.200、0.300μg/ml。

火焰原子吸收光谱法

火焰原子吸收光谱法测定自来水中的钙.镁含量

实验目的 z1、了解原子吸收分光光度计的基本结构和原理。z2、掌握火焰原子吸收光谱分析的基本操作。 z3、熟悉用标准曲线法进行定量测定的方法。

实验原理 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律 A= -lg I/I = -lgT= KCL 式中I为透射光强度,I 0为发射光强度,T为透射比, L为光通过原子化器光程由于L是不变值所以A=KC。 原子吸收分光光度分析具有快速.灵敏.准确.选择性好.干扰少和操作简便等优点。

操作要点 z标准溶液的配制 (1)钙标准溶液系列;准确吸取2.00.4.00.6.00.8.00.10.0ml钙的标准使用液(100ug/ml)分别置于5只25ml容量瓶中,用去离子水稀释至刻度。 (2)镁标准溶液系列;准确吸1.00.2.00.3.00.4.00.5.00ml镁的标准使用液(50ug/ml)分别置于5只25ml 容量瓶中,用去离子水稀释至刻度。 (3)配制自来水样溶液;准确吸取5ml自来水置于25ml容量瓶中,用去离子水稀释至刻度。 根据实验条件将原子吸收分光光度计按仪器操作步骤进行调节,待仪器电路和气路系统达到稳定时,即可进样。 分别测定各标准溶液系列溶液的吸光度和自来水样的吸光度。

实验数据及处理 z从计算机上列表记录钙.镁标准溶液系列溶液的吸光度,然后,分别以吸光度为纵坐标,标准溶液系列浓度为横坐标,用坐标纸绘制标准曲线。 z测定自来水样的吸光度,然后,在上述标准曲线上查得水样中钙.镁浓度(ug/ml),经稀释需乘上倍数,求得原始自来水中钙.镁含量。

海水汞的测定冷原子吸收光谱法

FHZDZHS0002 海水汞的测定冷原子吸收光谱法 F-HZ-DZ-HS-0002 海水—汞的测定—冷原子吸收光谱法 1 范围 本方法适用于大洋、近岸及河口区海水中汞的测定。 检出限:1×10-3μg/L。 1 原理 水样经硫酸一过硫酸钾消化,在还原剂氯化亚锡的作用下,汞离子被还原为金属汞,采用气一液平衡开路吸气系统,在253.7nm波长测定汞原子特征吸收值。 3 试剂 除非另作说明,本法所用试剂均为分析纯,水为无汞纯水或等效纯水。 3.1 过硫酸钾(K2S2O8)。 3.2 无水氯化钙(CaCl2):用于装填干燥管。 3.3 低汞海水:表层海水经滤纸过滤,汞含量应低于0.005μg/L。 3.4 硝酸(1+19)。 3.5 硫酸(1+1)。 3.6 硫酸(0.5mol/L):在搅拌下将28ml硫酸(ρ1.84g/mL)缓慢地加到水中,并稀释至1L。 3.7 盐酸(1+1)。 3.8 盐酸羟胺溶液(100g/L):称取25g盐酸羟胺(NH2OH·HCI)溶于水中,并稀释至250mL。 3.9 氯化亚锡溶液:称取100g氯化亚锡(SnCl2)置于烧杯中,加入500mL盐酸(1+1),加热至氯化亚锡完全溶解,冷却后盛于试剂瓶中,临用时加等体积水稀释。汞杂质高时,通入氮气除汞,直至汞含量检不出。 3.10 汞标准溶液 3.10.1 称取0.1354g氯化汞(HgCl2,预先在硫酸干燥器中干燥)于10mL烧杯中,用硝酸(1+19)溶解,移入100mL容量瓶中,用硝酸(1+19)稀释至刻度,摇匀。盛于棕色硼硅玻璃试剂瓶中。此溶液1mL含1.00mg汞。保存期为一年。 3.10.2 移取1.00mL汞标准溶液(1mL含1.00mg汞)于100mL容量瓶中,加硝酸(1+19)稀释至刻度,摇匀。此溶液1.00mL含10.0μg汞,保存期一星期。 3.10.3 移取1.00mL汞标准溶液(1.00mL含10.0μg汞)于100mL容量瓶中,加0.5mol/L硫酸并稀释至刻度,摇匀。此溶液1.00mL含0.100μg汞.现用现配。 4 仪器设备 4.1测汞装置 测汞装置见图1。

石墨炉原子吸收法测定大米中铅镉

不同消化方法-石墨炉原子吸收法测定大米中镉的比较 秦品芝1 摘要采用干法灰化法、湿法消解法及微波消解法作为前处理方式,石墨炉原子吸收光谱法测定大米中的镉。试验结果表明,干法消解法准确度和回收率均偏低;湿法消解法空白值较高,试剂消耗量大,前处理时间长;微波消解法具有准确度高,回收率好,操作简单快速,试剂消耗小等特点。 关键词镉;微波消解;湿法消解;干法灰化 镉是食品卫生标准中的重要限量指标,国标分析方法中镉的测定有石墨炉原子吸收光谱法、火焰原子吸收光谱法、比色法和原子荧光法[1]。石墨炉原子吸收光谱法具有较高的灵敏度,已成为日常工作中测定食品中镉的首选方法。所以,本次实验采用石墨炉原子吸收法测定大米中的镉。 前处理时元素及有机物分析测试过程中不可或缺的关键步骤,也是样品分析整个过程中最费力、费时的部分,同时也会对分析结果的准确性有着较大的直接影响,预处理方法与手段的好坏将直接在测试结果中体现[2],样品前处理方法通常是干灰化法或湿消解法[3],这些方法操作繁琐,试剂用量较大,危险性高,易受沾污和损失,测定周期较长,影响因素多,测定的准确度不易控制。微波消解技术是近年来发展成熟的新的试样消解技术[4],样品在密闭消解罐中,用硝酸和过氧化氢在高温高压下对待测样品进行消化处理[5]。其优点是消解速度快,试剂用量少,操作简单安全,大大减少易挥发元素的损失和实验环境对样品的污染,降低了空白值,提高了方法的灵敏度和准确度[6]。 实验原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm 共振线,在一定浓度范围,其吸收值与镉含量成正比,与标准系列比较定量。 2.实验材料 2.1仪器 原子吸收分光光度计;电子天平(精确度:0.01g);微波消解仪;马弗炉;超纯水器;可调式电热板;电子控温加热板。 2.2试剂 硝酸(分析纯);高氯酸(分析纯);盐酸(优级纯);过氧化氢;镉标准溶液;大米标准物质。 3.实验方法 3.1样品前处理 3.1.1干灰化法 首先将大米样品粉碎,然后准确称取2.00g~5.00g样品于瓷坩埚中,先在可控温电热板上小心加热至样品完全炭化,然后移入马弗炉中,在500~550℃灰化约8小时,冷却后取出。然后用硝酸将灰分小心溶解,若有少量样品灰化不完全,再补加一定量硝酸,在可控温电热板上小心加热,直至消化完全,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.2湿消解法 准确称取已粉碎的大米样品1.00g~2.00g于锥形瓶中,加盖小漏斗,加入体积比为5∶1硝酸高氯酸混合消化液15mL,于电热板上缓慢加热,反应趋于缓和后,慢慢加入1mL过氧化氢,继续加热消化直至溶液澄清,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.3微波消解法

火焰原子吸收光谱法实验报告

原子吸收光谱实验报告 一、实验目的 1. 学习原子吸收光谱分析法的基本原理; 2.了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法; 3.掌握以标准曲线法测定自来水中钙、镁含量的方法。 二、实验原理 1.原子吸收光谱分析基本原理 原子吸收光谱法(AAS)是基于:由待测元素空心阴极灯发射出一定强度和波长的特征谱线的光,当它通过含有待测元素的基态原子蒸汽时,原子蒸汽对这一波长的光产生吸收,未被吸收的特征谱线的光经单色器分光后,照射到光电检测器上被检测,根据该特征谱线光强度被吸收的程度,即可测得试样中待测元素的含量。 火焰原子吸收光谱法是利用火焰的热能,使试样中待测元素转化为基态原子的方法。常用的火焰为空气—乙炔火焰,其绝对分析灵敏度可达10-9g,可用于常见的30多种元素的分析,应用最为广泛。 2.标准曲线法基本原理 在一定浓度范围内,被测元素的浓度(c)、入射光强(I0)和透射光强(I)符合Lambert-Beer定律:I=I0×(10-abc)(式中a为被测组分对某一波长光的吸收系数,b为光经过的火焰的长度)。根据上述关系,配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测定其吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。 三、仪器与试剂 1. 仪器、设备: TAS-990型原子吸收分光光度计;钙、镁空心阴极灯;无油空气压缩机;乙炔钢瓶;容量瓶、移液管等。 2.试剂 碳酸镁、无水碳酸钙、1mol?L-1盐酸溶液、蒸馏水 3.标准溶液配制 (1)钙标准贮备液(1000μg?mL-1)准确称取已在110℃下烘干2h的无水碳酸钙0.6250g于100mL烧杯中,用少量蒸馏水润湿,盖上表面皿,滴加1mol?L-1盐酸溶液,至完全溶解,

HJ 597-2011 水质 总汞的测定 冷原子吸收分光光度法

中华人民共和国国家环境保护标准 HJ 597—2011 代替GB 7468—87 水质 总汞的测定 冷原子吸收分光光度法 Water quality—Determination of Total mercury —Cold atomic absorption spectrophotometry 本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。 2011-02-10发布 2011-06-01实施 环 境 保 护 部 发布

目 次 前言..............................................................................................................................................II 1 适用范围 (1) 2 术语和定义 (1) 3 方法原理 (1) 4 干扰和消除 (1) 5 试剂和材料 (1) 6 仪器和设备 (3) 7 样品 (3) 8 分析步骤 (5) 9 结果计算与表示 (6) 10 精密度和准确度 (6) 11 质量保证和质量控制 (7) 12 废物处理 (7) 13 注意事项 (7) 附录A(资料性附录)密闭式反应装置 (9)

前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水中总汞的测定方法,制定本标准。 本标准规定了测定地表水、地下水、工业废水和生活污水中总汞的冷原子吸收分光光度法。 本标准是对《水质总汞的测定冷原子吸收分光光度法》(GB7468—87)的修订。 本标准首次发布于1987年,原标准起草单位为湖南省环境保护监测站。本次为第一次修订。修订的主要内容如下: ——增加了方法检出限; ——增加了干扰和消除条款; ——增加了微波消解的前处理方法; ——增加了质量保证和质量控制条款; ——增加了废物处理和注意事项条款。 自本标准实施之日起,原国家环境保护局1987年3月14日批准、发布的国家环境保护标准《水质总汞的测定冷原子吸收分光光度法》(GB7468—87)废止。 本标准的附录A为资料性附录。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:大连市环境监测中心。 本标准验证单位:沈阳市环境监测中心站、鞍山市环境监测中心站、抚顺市环境监测中心站、丹东市环境监测中心站、长春市环境监测中心站和哈尔滨市环境监测中心站。 本标准环境保护部2011年2月10日批准。 本标准自2011年6月1日起实施。 本标准由环境保护部解释。

第09节 火焰原子吸收分光光度法

第九节火焰原子吸收分光光度法 (一)基础知识 分类号:W9-0 一、填空题 1.原子吸收光谱仪由光源、、和检测系统四部分组成。 答案:原子化器分光系统 2.原子吸收光谱仪的火焰原子化装置包括和。 答案:雾化器燃烧器 3.火焰原子吸收光谱仪的原子化器的作用是,用以吸收来自锐线源的。答案:产生基态原子共振辐射 4.火焰原子吸收光度法常用的锐线光源有、和蒸气放电灯3种。 答案:空心阴极灯无极放电灯 5.火焰原子吸收光度法分析过程中主要干扰有:物理干扰、化学干扰、和 等。 答案:电离干扰光谱干扰 6.原子吸收仪的空心阴极灯如果长期闲置不用,应该经常开机预热,否则会使谱线,甚至不再是光源。 答案:不纯锐线 7.火焰原子吸收光度法分析样品时,灯电流太高会导致和。使灵敏度下降。 答案:谱线变宽谱线自吸收 8.火焰原子吸收光度法中扣除背景干扰的主要方法有:双波长法、、和自吸收法。 答案:氘灯法塞曼效应法 9.火焰原子吸收光度法塞曼效应校正背景的光来自同一谱线的,而且在光路上通过原子化器。 答案:分裂同一 10.火焰原子化器装置中燃烧器类型有型和型。 答案:预混合全消耗 11.火焰原子吸收光度法分析样品时,确定空心阴极灯达到预热效果的标志是观察是否稳定、是否稳定和灵敏度是否稳定。 答案:发射能量仪器的基线 12.原子吸收光度法分析样品时,物理干扰是指试样在转移和过程中,由于试样的任何物理特性的变化而引起的吸收强度下降的效应。 答案:蒸发原子化 13.火焰原子吸收光度法中光谱干扰是指待测元素的光谱与干扰物的不能完全分离所引起的干扰。 答案:发射或吸收辐射光谱

1.火焰原子吸收光谱仪中,大多数空心阴极灯一般是工作电流越小,分析灵敏度越低。()答案:错误 正确答案为:大多数空心阴极灯一都是工作电流越小,分析灵敏度越高 2.火焰原子吸收光谱仪中,分光系统单色器所起的作用是将待分析元素的共振线与与光源中的其他发射线分开。() 答案:正确 3.火焰原子吸收光度法分析中,用HNO3-HF-HClO4消解试样,在驱赶HClO4时,如将试样蒸干会使测定结果偏高。() 答案:错误 正确答案为:在驱赶HClO4时,如将试样蒸干会使测定结果偏低。 4.火焰原子吸收光度法中,空气-乙炔火焰适于低温金属的测定。() 答案:正确 5.火焰原子吸收光度法分析样品时,提高火焰温度使分析灵敏度提高。() 答案:错误 正确答案为:火焰原子吸收光度法分析样品时,在一定范围周内提高火焰温度,可以使分析灵敏度提高。 6.火焰原子吸收光谱仪原子化器的效率对分析灵敏度具有重要的影响。() 答案:正确 7.火焰原子吸收光谱仪燃烧器上混合气的行程速度稍大于其燃烧速度时,火焰才会稳定。() 答案:正确 8.火焰原子吸收光度法分析样品时,为避免稀释误差,在测定含量较高的水样时,可选用次灵敏线测量。() 答案:正确 三、选择题 1.原子吸收光度法用的空心阴极灯是一种特殊的辉光放电管,阴极是由制成。( ) A. 待测元素的纯金属或合金 B. 金属铜或合金 C. 任意纯金属或合金 答案:A 2.火焰原子吸收光度法测定时,当空气与乙炔比大于化学计量时,称为火焰。() A. 贫燃型 B. 富燃型 C. 氧化型 D. 还原型 答案:A. 3.火焰原子吸收光度法测定时,光谱干扰是指待测元素发射或吸收的光谱与干扰物的 光谱不能完全分离所引起的干扰。() A. 电离 B. 散射 C. 辐射 D.折射 答案:C. 4.火焰原子吸收光度法测定时,氘灯背景校正适合的校正波长范围为nm。 A. 100-200 B. 220 -350 C. 200-500 D. 400-800 答案:B 5.火焰原子吸收光度法测定时,增敏效应是指试样基体使待测元素吸收信号的现象。() A. 减弱 B. 增强 C. 降低 D.改变

(完整word版)土壤质量 铜、锌的测定 火焰原子吸收分光光度法

火焰原子吸收分光光度法测定土壤中的铜和锌 一、实验目的: 1.掌握原子吸收分光光度法的基本原理 2.了解原子吸收分光光度计的主要结构及操作方法 3.学会土样的消解及重金属的测定方法。 二、仪器和仪器: 1.仪器:100 mL容量瓶、移液管、玻璃棒、聚四氟乙烯坩埚、电热板 novAA 400原子吸收分光光度计、铜-空心阴极灯、锌-空心阴极灯 2.试剂: (1)盐酸,优级纯; (2)硝酸,优级纯; (3)去离子水;(4)氢氟酸,ρ=1.49g/ml; (6)高氯酸,ρ=1.68 g/ml。 (7)硝酸镧水溶液:称取3g硝酸镧(La(NO3)·6H2O)溶于42ml水中。(没用吧,应去掉) (8)2%(v/v)硝酸溶液:移取20 ml浓硝酸(优级纯)于980 ml去离子水中。 (9)国际标准样品-锌-单元素标准溶液,1000 ug/mL。 (10)国家标准样品-铜-单元素标准溶液,1000 ug/mL。 (11)铜、锌混合标准使用液:分别移取10ml铜和4ml锌单元素标准溶液于 25 mL容量瓶中,用2%的稀硝酸稀至刻度,配制铜、锌混合标准工作液,使 铜、锌浓度分别为100 ug/ml、40 ug/ml,待用。 四、实验原理: 采用盐酸-硝酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素全部进入试液中。然后,将土壤消解液喷入空气-乙炔火焰中。在火焰的高温下,铜、锌化合物离解为基态原子,该基态原子蒸汽对相应的空心阴极灯发生的特征谱线产生选择性吸收。在选择的最佳测定条件下,测定铜、锌的吸光度。 五、操作方法: 1.土壤样品的处理:

将采集的土壤样品(一般不少于500g)倒在塑料薄膜上,晒至半干状态,将土块压碎,除去残根、杂物,铺成薄层,经常翻动,在阴凉处使其慢慢风干。然后用有机玻璃棒或木棒将风干土样碾碎,过2 mm尼龙筛,去掉2 mm以上的砂砾和植物残体。将上述风干细土反复按四分法弃取,最后约留下100 g土样,进一步用研钵磨细,通过100目尼龙筛,装于瓶中(注意在制备过程中不要被沾污)。取20~30 g土样,在105℃下烘4~5 h,恒重。 2.土样的消解: 准确称取0.2—0.5g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入10ml浓盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩3ml左右时,取下稍冷,然后加入5ml浓硝酸,5ml氢氟酸,3ml高氯酸,加盖后于电热板上中温加热。1h后,开盖,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚,当加热至冒浓厚白烟时,加盖,使黑色有机碳化合物分解。待坩埚壁上的黑色有机物消失后,开盖赶高氯酸白烟并蒸至内容物呈粘稠状。视消解情况可再加入3ml浓硝酸,3ml氢氟酸,1ml高氯酸,重复上述消解过程。当白烟再次基本冒尽且坩埚内容物呈粘稠状时,取下稍冷,用水冲洗坩埚盖和内壁,并加入1ml 2%硝酸溶液温热溶解残渣。然后将溶液转移至50ml容量瓶中,冷却后用2%硝酸定容至标线,摇匀,待测。 由于土壤种类较多,所以有机质差异较大,在消解时,要注意观察,各种酸的用量可视消解情况酌情增减。土壤消解液应呈白色或淡黄色(含铁量高的土壤),没有明显的沉积物存在。 注意:电热板温度不宜太高,否则会使聚四氟乙烯坩埚变形。 3.测定步骤: (1)仪器操作条件的设置(计算机操作) 在工作站上设置分析条件参数:如波长(Cu为324.8 nm,Zn为213.9 nm)、狭缝(Zn 1.2 nm、Cu 0.2 nm)、空心阴极灯工作电流(Zn 10 mA、Cu 3 mA)、燃烧头高度(6 mm)、气体压力(乙炔为0.1-0.15 Mpa,空气为0.5 MPa),标样个数(4个)、读数次数(各3次)等等。 (2)绘制工作曲线(铜锌标液浓度及样品含量按这次测定结果记录和处理)在5根50 ml比色管中,从第二个起分别加入铜、锌混合标准工作液0.5 ml,1 ml,2 ml,3 ml,以 2% 的稀硝酸定容至刻度线,摇匀,此时加入的铜标液浓

冷原子吸收分光光度法测汞题库及答案

冷原子吸收分光光度法测汞 主要内容 ①环境空气汞的测定金膜富集-冷原子吸收分光光度法《空气和废气监测分析方法》 (第四版) ②固定污染源废气汞的测定冷原子吸收分光光度法(暂行) (HJ543-2009) 一、填空题 1.高锰酸钾溶液吸收-冷原子吸收分光光度法测定废气颗粒物中汞时,颗粒物由于橡皮管对汞有吸附,所以采样管与吸收管之间要采用材质的管连接,且接口处用材质的生料带密封。② 答案:聚乙烯(或聚四氟乙烯) 聚四氟乙烯 2.冷原子吸收分光光度法测定环境空气或废气颗粒物中汞含量时,含汞废气在排出之前应该先用吸附,以免污染空气,为了保证其吸附效果,使用月后,应重新更换。①② 答案:碘-活性炭 1~2 3.用金膜富集-冷原子吸收分光光度法测定环境空气颗粒物中汞含量时,捕集效率与采样流量有关,一般采样流量不宜过大,流量1L/min以下时捕集效率可以达到%,1.5L/min捕集效率为%,2L/min时捕集效率为%。① 答案: 100 95 90 二、判断题 1.用高锰酸钾溶液吸收-冷原子吸收分光光度法测定废气中的汞,当汞浓度较高时,可以使用大型冲击式吸收采样瓶采样。( )② 答案:正确 2.高锰酸钾溶液吸收-冷原子吸收分光光度法测定废气颗粒物中汞含量时,测定样品前必须做空白试验,空白值应不超过0.005mg汞。( )② 答案:错误 正确答案为:空白值应不超过0.005pg汞。 3.用高锰酸钾溶液吸收-冷原子吸收分光光度法测定废气中的汞,采样时串联两支各装10m1吸收液的大型气泡式吸收管,以0.5L/min流量采样。( )② 答案:错误 正确答案为:应以0.3L/min流量采样。

火焰原子吸收光谱法测定头发中的铜或锌

火焰原子吸收光谱法测定头发中的铜或锌 一、目的要求 1.了解火焰原子吸收光谱法的原理,掌握仪器的正确操作方法。 2.学习生化样品的处理方法。 3.通过头发中锌含量的测定,掌握标准曲线法在实际样品分析中的应用。 二、实验原理 根据原子吸收光谱法的原理,在使用锐线光源条件下,基态原子蒸气对共振线的吸收符合朗伯-比尔定律: 00lg KLN I I A == 在试样原子化时,火焰原子温度低于3000 K 时,对大多数元素来说,原子蒸气中基态原子的数目实际上接近原子总数。在固定的实验条件下,待测元素的原子总数与该元素在试样中的浓度成正比。因此,上式可以表示为: c K A '= 这就是原子吸收定量分析的依据。 测定头发中的铜(锌)含量,首先要处理样品。本实验中的发样用湿法处理,选用HNO 3/H 2O 2混酸体系消化样品。使其中的金属元素以可溶的状态存在。测定时,先将试液喷射成雾状进入燃烧火焰中,雾滴在火焰温度下,挥发并解离成铜(锌)原子蒸气。再用铜(锌)空心阴极灯作光源,辐射出具有铜(锌)的特征谱线的光,通过一定厚度的锌原子蒸气时,部分光被蒸气中的基态铜(锌)原子吸收而减弱,通过单色器和检测器测得特征谱线光被减弱的程度,即可计算出试样中铜(锌)的含量。 三、仪器和试剂 仪器: 仪器:WFX-130B 型原子吸收分光光度计;空气压缩机;乙炔钢瓶。;锌空心阴极灯;电热板;容量瓶;锥形瓶;刻度移液管;洗瓶;胶头滴管;洗耳球。 试剂:铜(锌)储备液(称取光谱纯铜1.0000 g ,溶于20 mL 6 mol/mL 盐酸,移入1000 mL 容量瓶中,用去离子水稀释至刻度,摇匀,含Cu 2+ 1.000 mg/mL )用时稀释至10.0 μg/m L 。浓HNO 3(G.R );30% H 2O 2;去离子水。

固体废物 总汞的测定 冷原子吸收分光光度法

固体废物总汞的测定冷原子吸收分光光度法 作业指导书 1 主题内容与适用范围 1.1 本标准规定了测定固体废物浸出液中总汞的高锰酸钾-过硫酸钾消解冷原子吸收分光光度法。 1.2 本标准方法适用于固体废物浸出液中总汞的测定。 1.2.1 在最佳条件下(测汞仪灵敏度高,基线漂移及试剂空白值极小),当试样体积为200m L时,最低检出浓度可达0.05μg/L。在一般情况下,测定范围为0.2~50μg/L。 1.2.2 干扰 碘离子浓度等于或大于3.8μg/L时明显影响精密度和回收率。若有机物含量较高,规定的消解试剂最大量不足以氧化样品中的有机物,则方法不适用。 2 原理 汞原子蒸气对波长253.7nm的紫外光具有强烈的吸收作用,汞蒸气浓度与吸收 值成正比。在硫酸-硝酸介质及加热条件下,用高锰酸钾和过硫酸钾将试样消解:或 用溴酸钾和溴化钾混合试剂,在20℃以上室温和0.6~2mol/L的酸性介质中产生溴,将试样消解,使所含汞全部转化为二价汞。用盐酸羟胺将过剩的氧化剂还原,再用氯化亚锡鼗二价汞还原成金属汞。在室温通入空气或氮气流,将金属汞汽化,载入冷原子吸收测汞仪,测量吸收值,可求得试样中汞的含量。 3 试剂 除另有说明,分析中仅使用符合国家标准或专业标准的分析纯试剂,其中汞含量要尽可能少。如采用的试剂导致空白值偏高,应改用级别更高或选择某些工厂生产的汞含量更低的试剂,或自行提纯精制。配制试剂或试样稀释定容,均使用无汞蒸馏水(3.1)。试样一律盛于磨口玻璃试剂瓶。 3.1 无汞蒸馏水。二次重蒸馏水或电渗析去离子水通常可达到此纯度。也可将蒸馏水加盐酸酸化至PH3,然后通过巯基棉纤维管(3.2)除汞。

火焰原子吸收分光光度法

实验二火焰原子吸收光谱法测定CuSO4溶液的浓度 1、实验目的 1.1 掌握火焰原子吸收光谱仪的操作技术; 1.2 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 1.3 熟悉原子吸收光谱法的应用。 2、实验原理 原子吸收光谱法是一种广泛使用的测定元素的方法,是基于在蒸气状态下对待测元素基态原子共振辐射吸收进行定量分析的方法。为了能够测定吸收值,试样需要转变为一种在合适介质中存在的自由原子。化学火焰是产生基态原子的方便方法。 待测试样溶解后以气溶胶的形式引入火焰中,产生的基态原子吸收适当光源发出的辐射后被测定。原子吸收光谱中一般采用空心阴极灯这种锐线光源。这种方法快速、选择性好、灵敏度高且有着较好的精密度。 然而,在原子光谱中,不同类型的干扰将严重影响测定方法的准确性。干扰一般分为三种:物理干扰、化学干扰和光谱干扰。物理和化学干扰改变火焰中原子的数量,而光谱干扰则影响原子吸收信号的准确性。干扰可以通过选择适当的实验条件和对试样进行适当处理来减少或消除。所以,应从火焰温度和组成两方面作慎重选择。 3、实验仪器及试剂 仪器:AA320原子吸收分光光度计,上海精密科学仪器有限公司生产 CuSO4标准溶液:使用已有的浓度为100 ppm的CuSO4标准溶液,通过加去离子纯水稀释的方法配制浓度分别为0.80、1.60、2.40、3.20和4.00 ppm的标准溶液。 试样:未知浓度的含铜离子水溶液。

4、实验步骤 预先调整好狭缝的宽度和空心阴极灯的位置,在波长为324.7 nm处测定标准溶液的吸收。 1. 火焰的选择:火焰组成对原子吸收分光光度法的测定有影响。通过溶液雾化方式引入 2.0 ppm的CuSO4标准溶液到空气-乙炔火焰中,小幅调节乙炔的流速,每次读数前用去离子纯水重新调零,以吸光度对流速作图。 2. 标准曲线和试样测定:选择最佳的流速和燃烧高度。在一系列测定前,用去离子纯水调零,同时如果在测量过程中有延误,需要重新调零。在连续的一系列测定中,记录每种溶液的吸收值,每次每份试样重复3次后转入下一个测定: ●标准曲线系列:标准空白和标准溶液 ●试样空白和试样溶液 ●重复 3. 精密度:用低浓度和高浓度溶液测定精密度,每样读数3次。 4. 检出限:对空白溶液进行3次测试,计算均值。 5、结果与讨论 1. 标准曲线:记录实验中所得的标准溶液读数,并与对应的浓度值进行线性回归,得到标准曲线。用此标准曲线来测定试样中铜离子浓度(以CuSO4计),并通过重复测试取平均值的方法,得到测定值。 2. 精密度:用低浓度和高浓度溶液测定精密度,每样读数3次,计算每个浓度的RSD(%)。 3. 检出限:检出限以能够区分背景的RSD的最小浓度来表示,计算公式为 DL(检出限)=3×S b(背景值SD)/S(标准曲线斜率) 6、思考 1. 火焰原子吸收光谱法具有什么样的特点,其主要测定对象是什么? 2. 火焰原子吸收分光光度法测量灵敏度的主要影响因素有哪些?一般要做哪些条件实验?

(作业指导书)土壤质量 铜、锌的测定 火焰原子吸收分光光度法测定 GBT 17138-1997

作业指导书 土壤质量铜、锌的测定火焰原子吸收分光光度法测定 GB/T 17138-1997 一、实验目的: 1.掌握原子吸收分光光度法的基本原理 2.了解原子吸收分光光度计的主要结构及操作方法 3.学会土样的消解及重金属的测定方法。 二、仪器和仪器: 1.仪器:100 mL容量瓶、移液管、玻璃棒、聚四氟乙烯坩埚、电热板novAA 400原子吸收分光光度计、铜-空心阴极灯、锌-空心阴极灯 2.试剂: (1)盐酸,优级纯 (2)硝酸,优级纯; (3)去离子水; (4)氢氟酸,ρ=1.49g/ml; (6)高氯酸,ρ=1.68 g/ml。 (7)硝酸镧水溶液:称取3g硝酸镧(La(NO3)·6H2O)溶于42ml水中。 (8)2%(v/v)硝酸溶液:移取20 ml浓硝酸(优级纯)于980 ml去离子水中。 (9)国际标准样品-铜-单元素标准溶液,1000 mg/L。 (10)国家标准样品-锌-单元素标准溶液,1000 mg/L。 (11)铜、锌混合标准使用液:铜20mg/L,锌120mg/L;用硝酸溶液(2)逐级稀释铜、锌标准储备液(9)(10)待用。 四、实验原理: 采用盐酸-硝酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素部进入试液中。然后,将土壤消解液喷入空气-乙炔火焰中。在火焰的高温下,铜、锌化合离解为基态原子,该基态原子蒸汽对相应的空心阴极灯发生的特征谱线产生选择性吸收。在择的最佳测定条件下,测定铜、锌的吸光度。 五、操作方法 1.土壤样品的处理: 将采集的土壤样品(一般不少于500g)倒在塑料薄膜上,晒至半干状态,将土块压碎,去残根、杂物,铺成薄层,经常翻动,在阴凉处使其慢慢风干。然后用有机玻璃棒或木棒将土样碾碎,过2 mm尼龙筛,去掉2 mm以上的砂砾和植物残体。将上述风干细土反复按四法弃取,最后约留下100 g土样,进一步用研钵磨细,通过100目尼龙筛,装于瓶中(注意在制备过程中不要被沾污)。取20~30 g土样,在105℃下烘4~5 h,恒重。 2.土样的消解: 准确称取0.2—0.5g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入10ml浓盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩3ml左右时,取下稍冷,然后加入5ml浓硝酸,5ml氢氟酸,3ml高氯酸,加盖后于电热板上中温加热。1h后,开盖,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚,当加热浓厚白烟时,加盖,使黑色有机碳化合物分解。待坩埚壁上的黑色有机物消失后,开盖赶高酸白烟并蒸至内容物呈粘稠状。视消解情况可再加入3ml浓硝酸,3ml氢氟酸,1ml高氯酸,重复上述

土壤中镉的测定原子吸收分光光度法

土壤中镉的测定(原子吸收分光光度法) 原理:土壤样品用HNO3-HF-HClO4或HCl-HNO3-HF-HClO4混酸体系消化后,将消化液直接喷入空气-乙炔火焰。在火焰中形成的Cd基态原子蒸汽对光源发射的特征电磁辐射产生吸收。测得试液吸光度扣除全程序空白吸光度,从标准曲线查得Cd含量。计算土壤中Cd含量。 该方法适用于高背景土壤(必要时应消除基体元素干扰)和受污染土壤中Cd的测定。方法检出限范围为0.05—2mgCd/kg。 仪器 1.原子吸收分光光度计,空气-乙炔火焰原子化器,镉空心阴极灯。 2.仪器工作条件 测定波长228.8nm 通带宽度1.3nm 灯电流7.5mA 火焰类型空气-乙炔,氧化型,蓝色火焰 试剂 1.盐酸:特级纯。 2.硝酸:特级纯。 3.氢氟酸:优级纯。 4.高氯酸:优级纯。 5.镉标准贮备液:称取0.5000g金属镉粉(光谱纯),溶于25mL(1+5)HNO3(微热溶解)。冷却,移入500mL容量瓶中,用蒸馏去离子水稀释并定容。此溶液每毫升含1.0mg镉。 6.镉标准使用液:吸取10.0mL镉标准贮备液于100mL容量瓶中,用水稀至标线,摇匀备用。吸取5.0mL稀释后的标液于另一100mL容量瓶中,用水稀至标线即得每毫升含5?g镉的标准使用液。 测定步骤

1.土样试液的制备:称取0.5—1.000g土样于25mL聚四氟乙烯坩埚中,用少许水润湿,加入10mLHCl,在电热板上加热(<450℃)消解2小时,然后加入15mLHNO3,继续加热至溶解物剩余约5mL时,再加入5mLHF并加热分解除去硅化合物,最后加入5mLHClO4加热至消解物呈淡黄色时,打开盖,蒸至近干。取下冷却,加入(1+5)HNO31mL微热溶解残渣,移入50mL容量瓶中,定容。同时进行全程序试剂空白实验。 2.标准曲线的绘制:吸取镉标准使用液0、0.50、1.00、 2.00、 3.00、 4.00mL分别于6个50mL容量瓶中,用0.2%HNO3溶液定容、摇匀。此标准系列分别含镉0、0.05、0.10、0.20、0.30、0.40?g/mL。测其吸光度,绘制标准曲线。 3.样品测定 (1)标准曲线法:按绘制标准曲线条件测定试样溶液的吸光度,扣除全程序空白吸光度,从标准曲线上查得镉含量。 式中:m——从标准曲线上查得镉含量(?g); W——称量土样干重量(g)。 (2)标准加入法:取试样溶液5.0mL分别于4个10mL容量瓶中,依次分别加入镉标准使用液(5.0?g/mL)0、0.50、1.00、1.50mL,用0.2%HNO3溶液定容,设试样溶液镉浓度为c x,加标后试样浓度分别为c x+0、c x+c s、c x+2c s、c x+3c s,测得之吸光度分别为A x、A1、A2、A3。绘制A-C图(见图1)。由图知,所得曲线不通过原点,其截距所反映的吸光度正是试液中待测镉离子浓度的响应。外延曲线与横坐标相交,原点与交点的距离,即为待测镉离子的浓度。结果计算方法同上。 注意事项 1.土样消化过程中,最后除HClO4时必须防止将溶液蒸干涸,不慎蒸干时Fe、Al盐可能形成难溶的氧化物而包藏镉,使结果偏低。注意无水HClO4会爆炸! 2.镉的测定波长为228.8nm,该分析线处于紫外光区,易受光散射和分子吸收的干扰,特别是在220.0—270.0nm之间,NaCl有强烈的分子吸收,覆盖了228.8nm线。另外,Ca、Mg的分子吸收和光散射也十分强。这些因素皆可造成镉的表观吸光度增大。为消除基体干扰,可在测量体系中加入适量基体改进剂,如在标准系列溶液和试样中分别加入0.5gLa(NO3)3、6H2O。此法适用于测定土壤中含镉量较高和受镉污染土壤中的镉含量。 3.高氯酸的纯度对空白值的影响很大,直接关系到测定结果的准确度,因此必须注意全过程空白值的扣除,并尽量减少加入量以降低空白值。

相关主题
文本预览
相关文档 最新文档