当前位置:文档之家› 基于 HDF文件的组织方式与影像提取

基于 HDF文件的组织方式与影像提取

基于 HDF文件的组织方式与影像提取
基于 HDF文件的组织方式与影像提取

遥感影像处理步骤

3.2.3 遥感影像数据的获取 目前世界上用于民用的卫星很多,最常用于作物长势监测的是美国发射的一系列陆地卫星。本文使用的是2013年2月11日,NASA发射的Landsat 8卫星数据,Landsat 8上携带有两个主要载荷:OLI(陆地成像仪)和TIRS(热红外传感器)。OLI包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185×185 km。OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825 μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band1:0.433–0.453 μm)主要应用海岸带观测,短波红外波段(band9:1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近。 表3-2 Landsat8各波段的名称与用途 Table 3-2 The name and purpose of each band of Landsat8 (引自:张玉君,国土资源遥感,2013) 波段No 波段名称波长范围/nm 数据用途GSD地面 采样距离 /nm 辐射率/ (W·m-2sr-1u m-1)典型 SNR (典型) 1 NewDeep Blue 433-453 海岸区气溶胶30 40 130 2 Blue 450-515 基色/散射/海岸30 40 130 3 Green 525-600 基色/海岸30 30 100 4 Red 630-680 基色/海岸30 22 90 5 NIR 845-885 植物/海岸30 14 90 6 SWIR2 1560-1660 植物30 4.0 100 7 SWIR3 2100-2300 矿物/干草/无散射30 1.7 100 8 PAN 500-680 图像锐化15 23 80 9 SWIR 1360-1390 卷云测定30 6.0 130 10 TIR 10300-11300 地表温度100 11 TIR 11500-12500 地表温度100 本实验获取条带号和行编号为143/029,选取棉花蕾期、花铃期、吐絮期内无云、质量较好的影像数据,过境时间分别为2013年6月25日,8月5日,8月29日。 3.2.4 卫星影像处理 地面目标是个复杂的多维模型,具有一定的空间位置、形状、大小和相互关

MODIS影像处理流程——ok

1、同时期影像拼接、重投影、转格式(MRT) 黄土高原地区 Projected coordinate system name: Beijing_1954_3_Degree_GK_CM_108E Geographic coordinate system name: GCS_Beijing_1954 Map Projection Name: Transverse Mercator Scale Factor at Central Meridian: 1.000000 Longitude of Central Meridian: 108.000000 Latitude of Projection Origin: 0.000000 False Easting: 500000.000000 False Northing: 0.000000 北京54参考的椭圆: 椭球坐标参数:长半轴a=6378245m;短半轴=6356863.0188m 2、在Erdas中裁剪,得到研究区的原值NDVI -2000~9663 方法:aoi格式文件裁剪:在ERDAS图标面板工具条中单击Data Prep图标,Subset,打开Subset对话框。在Subset对话框中需要设置下列参数: ①输入文件名(input file) ②输出文件名(output file) ③单击aoi选中裁剪文件名:在choose aoi选项中选中文件名 ④其余的我选择默认,然后ok等结果 3、得到范围在-1~1的NDVI 方法:ENVI — Basic Tools — Band Math(波段运算,把负值去掉) 在弹出的对话框Band Math中,Enter an expression: (b1 lt 0)*0+(b1 ge 0)*(b1*0.0001)。 这个公式意思就是:要是值小于0 就乘以0,使其变为0;同时,值大于等于0的话就乘以0.0001

遥感影像图像处理流程

遥感影像图像处理(processing of remote sensing image data)是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理等一系列操作,以求达到预期目的的技术。 一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。

消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

遥感信息智能化提取方法

遥感信息智能化提取方法 目前,大部分遥感信息的分类和提取,主要是利用数理统计与人工解译相结合的方法。这种方法不仅精度相对较低,效率不高,劳动强度大,而且依赖参与解译分析的人,在很大程度上不具备重复性。尤其对多时相、多传感器、多平台、多光谱波段遥感数据的复合处理,问题更为突出。在遥感影像相互校正方面,一些商业化的遥感图像处理软件,虽然提供了简单的影像相互校正和融合功能,但均是基于纯交互式的人工识别选取同名点,不仅效率非常低,而且精度也难于达到实用要求。因此,研究遥感信息的智能化提取方法对于提高遥感信息的提取精度和效率具有重要意义。 1.遥感图像分类 遥感图像分类是遥感图像处理系统的核心功能之一,它实现了基于遥感数据的地理信息提取,主要包括监督分类,非监督分类,以及分类后的处理功能。非监督分类包括等混合距离法分类(Isodata)等。监督分类包括最小距离(Minimum Distance)分类、最大似然(Maximum Likehood)分类、贝叶斯(Bayesian)分类、以及波谱角分类、二进制编码分类、AIRSAR散射机理分类等。 自动分类是计算机图像处理的初期便涉及的问题。但作为专题信息提取的一种方法,则有其完全不同的意义,是从应用的角度赋予其新的内容和方法。传统的遥感自动分类,主要依赖地物的光谱特性,采用数理统计的方法,基于单个像元进行,如监督分类和非监督分类方法,对于早期的MSS这样较低分辨率的遥感图像在分类中较为有效。后来人们在信息提取中引入了空间信息,直接从图像上提取各种空间特征,如纹理、形状特征等。其次是各种数学方法的引进,典型的有模糊聚类方法、神经网络方法及小波和分形。 近年来对于神经网络分类方法的研究相当活跃。它区别于传统的分类方法在于:在处理模式分类问题时,并不基于某个假定的概率分布,在无监督分类中,从特征空间到模式空间的映射是通过网络自组织完成的,在监督分类中,网络通过对训练样本的学习,获得权值,形成分类器,且具备容错性。人工神经网络 (ANN) 分类方法一般可获得更高精度的分类结果,因此 ANN方法在遥感分类中被广泛应用,特别是对于复杂类型的地物类型分类,ANN 方法显示了其优越性。如 Howald(1989)、McClellad(1989)、 Hepner(1990)、T.Yosh ida(1994)、K.S.Chen(1995)、J.D.Paola(1997) 等利用 ANN 分类方法对 TM 图像进行土地覆盖分类,在不同程度上提高了分类精度;Kanellopoulos(1992) 利用 ANN方法对 SPOT 影像进行了多达20类的分类,取得比统计方法更精确的结果;G.M.Foody(1996)用ANN对混合像元现象进行了分解;L.Bruzzone 等 (1997) 在 TM-5 遥感数据、空间结构信息数据、辅助数据(包括高程、坡度等)等空间数据基础下,用 ANN 方法对复杂土地利用进行了分类,比最大似然分类法提高了 9% 的精度。与统计分类方法相比较,ANN 方法具有更强的非线性映射能力,因此,能处理和分析复杂空间分布的遥感信息。2.基于知识发现的遥感信息提取

水体提取方法

水体提取方法简单归纳总结 一、基于MODIS影像的几种提取方法。 最常用的水体提取方法: 波段阈值法、谱间关系法(波段组合法)和多光谱混合分析法 单波段阈值法是提取水体的最简单易行的方法。 基本原理:是利用水体在近红外波段上反射率较低,易与其它地物区分的特点,选取单一的红外波段, 通过反复试验, 确定一个灰度值,作为区分水体与其它地物的阈值即可。 缺点:是无法将水体与山区阴影区分开来,提取的水体往往比实际要多。 有些文献中叙述由于阀值随时间、地点变化的不确定性使得该方法具有局限性,但对于非山区的特定时相和区域里,尤其像MODIS 这样高光谱的遥感数据, 首先应选用阈值法进行试验,因为光谱的细分已经将上述问题大大减弱。若能获得较满意的提取效果,则很容易实现水体的自动提取。 对于用阈值法确实得不到理想效果的,则可以考虑谱间关系法和多光谱混合分析法。 利用谱间关系可建立的模型很多,如对波段进行如下组合运算CH7/CH6 ,CH7/CH5, CH6/CH5, 从而找出组合图像上水陆分界非常明显的影像。以CH7/CH6为例,可以采用如下方法剔除非水体: 在ENVI 软件下输入CH7 及CH6 波段, 运用波段计算功能,将公式CH7/CH6 输入,载入影像, 在放大窗口中,手工裁取明水水域范围, 生成多边形,对各多边形赋予一个感兴趣区( AOI) 文件, 并将其输出为EN-VI 等矢量文件即可。 对波段进行组合运算的目的,是为了增强水陆反差。MODIS 数据的波段1 是红光区( 0. 62 ~0.67um) ,水体的反射率高于植被, 波段2 是近红外区( 0. 841 ~0. 876um) ,植被

遥感地图处理步骤

一、正射矫正 首先打开envi然后找到索要校对的地图,首先把多光谱(MSS)的直接拖到界面中,然后把高程模型里(DEM)的hebei.tif拖入。高分模型的正射矫正是根据RPC和DEM进行矫正的。拖入之后选择在ToolBox中→选择Geometric Correction→Orthorectification→RPC Orthorectification. 选择完之后就会出现

intput file是你从哪里取得文件,不用在改变了。下面的dem file 选择dem中的一个波段,一般选择band1

然后选择ok。进行下一步,点击next。 然后选择advanced,output pixel size(输出的像素密度)因为MSS的像素密度为8故写上8(pan全色影像的像素密度为2)然后image Resampling(图像重采样)输出bilinear(双线性)。下一步选择Export 在选择out file中的tiff格式。输出地址在进行选择如下图, 应该保存在正射矫正。在选择地址时,直接从文家家的地址复制到所填框的地址,选择一下文件名,省的以后写就是绿色的MSS文件,然后文件名就会出现其对应的名字,在进入正射矫正,文件名就不用改了,然后点打开,就完成了,最后在点击finish就结束等待期运行完。 多光谱跟全色的操作一样。就是像素密度由8改为2

二、配准 同一区域里一幅图像(基准图像)对另一幅图像的校准,以使两幅图像中的同名像元配准,两幅影像经过校正后,达到了更好的精度要求。同时打开2米全色和8米多光谱影像,以2米全色影像作为基准图像,通过从两幅图像上选择同名点(控制点)来配准8米多光谱影像,使得相同地物出现在校正后的图像相同位置。 打开envi classic 从File→open image file→从正射矫正中选择全色(PAN)的图 然后 选择load band会加载出来

遥感专题讲座——影像信息提取(四、面向对象特征提取)

面向对象的影像分类技术 “同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。 本小节以ENVI中的面向对象的特征提取FX模块为例,对这种技术和处理流程做一个简单的介绍。 本专题包括以下内容: ??●面向对象分类技术概述 ??●ENVI FX简介 ??●ENVI FX操作说明 1、面向对象分类技术概述 面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:影像对象构建和对象的分类。

影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。 影像对象的分类,目前常用的方法是“监督分类”和“基于知识分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等信息。基于知识分类也是根据影像对象的熟悉来设定规则进行分类。 目前很多遥感软件都具有这个功能,如ENVI的FX扩展模块、易康(现在叫Definiens)、ERDAS的Objective模块、PCI的FeatureObjeX(新收购)等。 表1为三大类分类方法的一个大概的对比。 类型基本原理影像的最小单元适用数据源缺陷 传统基于光谱的分类方 法地物的光谱信息 特征 单个的影像像元 中低分辨率多光谱 和高光谱影像 丰富的空间信息利 用率几乎为零 基于专家知识决策树根据光谱特征、空 间关系和其他上 下文关系归类像 元 单个的影像像元多源数据知识获取比较复杂 面向对象的分类方法几何信息、结构信 息以及光谱信息 一个个影像对象 中高分辨率多光谱 和全色影像 速度比较慢

遥感影像处理步骤

一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

SPOT5遥感影像土地利用信息提取方法研究

第39卷 第6期2011年6月 西北农林科技大学学报(自然科学版) Jo ur nal of N o rthwest A&F U niver sity(N at.Sci.Ed.) Vo l.39N o.6 Jun.2011 SPOT5遥感影像土地利用信息提取方法研究 张伐伐a,李卫忠a,卢柳叶b,康 乐a (西北农林科技大学a林学院,b资源环境学院,陕西杨凌712100) [摘 要] 目的 探讨高分辨率遥感影像土地利用信息提取方法的优劣,为研究土地利用/覆盖动态变化提供参考。 方法 以结合纹理特征的支持向量机(Support vector machine,SV M)分类和多尺度分割的面向对象分类为主要技术,对陕西佛坪长角坝乡遥感影像的土地利用信息进行提取,并将分类结果与基于传统像元的最大似然法分类结果进行比较分析。 结果 面向对象分类法的总精度达到90.67%,较结合纹理特征的SV M法提高了8.34%,而与最大似然分类法相比提高了近20.32%,克服了其他分类方法存在的同谱异物现象及分类结果中地物破碎等缺点,取得了较好的分类结果。 结论 利用面向对象分类法不仅达到了提取土地利用信息的目的,而且精度高、速度快。 [关键词] 遥感影像;土地利用信息;支持向量机;纹理特征;多尺度分割;精度评价 [中图分类号] S127[文献标识码] A[文章编号] 1671 9387(2011)06 0143 05 Study on extraction methods of land utilization information based on SPOT5 ZHAN G Fa fa a,LI Wei zhong a,LU Liu ye b,KANG Le a (a College of F or estry,b Colleg e of Resourc es and Env ironment,N or th w est A&F Univ ersity,Yang ling,S haanx i712100,China) Abstract: Objective T he study explored the effect of ex tracting approach for info rmatio n o f land uti lization based on high resolution remo te sensing im ag e to provide evidence for studying land utilization and cov er dynam ic variatio n. M ethod T his paper ex tracted the info rmation o f land utilizatio n focused on Changjiaoba to w n,using SVM classification o f tex ture feature and object or iented classification o f multi resolution seg mentatio n.The classification result w as compared w ith m ax imum likelihood classification. Then the classification result w as analyzed. Result T he ov erall classification accuracy o f object o riented w as90.67%,w hich incr eased by8.34%compared w ith SVM classification of tex ture feature and increased by20.32%com pared w ith m ax imum likelihoo d classificatio n.T his kind of classification not o nly can g et o v er the disadvantages of other classificatio ns,e.g.Spectral Similar and Ground object Fragm entations,etc. but also acquire good effectiveness. Conclusion Using the classification of object oriented can realize the purpose o f ex tracting the land utilization information,and this m ethod is accurate and fast. Key words:rem ote sensing im ag e;inform ation o f land uatilization;support v ector m achine;tex tur e fea ture;multiresolution segm entation;accuracy assessment 土地利用信息的获取,是研究士地利用和土地覆盖动态变化的基础,将遥感、地理信息系统和全球定位系统相结合,开展国土资源和环境综合调查,具有现势性强、分类周期短、资源信息更新快等优势,从而可以以最快的速度动态监测土地资源利用及环境的变化情况,及时为社会经济发展决策和制定相关规 *[收稿日期] 2010 11 29 [基金项目] 国家林业局 948 项目(2009 4 45) [作者简介] 张伐伐(1985-),男,安徽怀远人,在读硕士,主要从事 3S 技术在资源与环境中的应用研究。 E mail:zhangfafa520@https://www.doczj.com/doc/f75520650.html, [通信作者] 李卫忠(1963-),男,陕西蒲城人,副教授,硕士生导师,主要从事森林经理学研究。E m ail:w eizhong_li@https://www.doczj.com/doc/f75520650.html,

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

遥感影像道路网自动提取的研究_李燕

收稿日期:2003-03-28作者简介:李燕(1977-),女,四川成都人,硕士研究生,主要从事遥感图像处理与应用、模式识别研究。 遥感影像道路网自动提取的研究 李 燕,余旭初 (解放军信息工程大学测绘学院,河南郑州 450052) Road Automatic Extraction from Remote Sensor Image LI Yan,YU Xu -chu 摘要:详细分析了道路的影像特征,建立了道路网描述模型。对道路模型的表达采用了模糊数学的方法,对知识的表达使用了带有置信度因子的模糊产生式规则,知识的推理使用了不确定性推理中的各种理论。本项研究力图模拟人的感知过程,以段的几何与灰度属性为主,并顾及局部上下文线索进行感知编组;基于道路模型对道路段进行识别;再利用道路的全局性约束知识对道路段进行重组,弥补了局部编组下的缺点。进行道路的分支和交叉的检测形成道路网。 关键词:影像理解;道路模型;感知编组;知识表达;知识推理;特征提取;几何结构信息中图分类号:P237 文献标识码:B 文章编号:1671-3044(2003)03-0011-05 1 引 言 近年来,遥感技术迅猛发展,而人们对遥感信息的认识和利用程度要远远落后于通过空间和航空系 统获取信息源的速度。从影像获取信息是人类获得知识的主要来源之一,如何自动处理、解译海量的图像数据是在整个社会信息化过程中面临的重要问题。从遥感图像中识别各种目标,是图像处理和目标识别的一个重要研究课题。道路自动识别是其中一个基本的、常见的问题。道路网是非常重要的基础地理信息,它的识别和精确定位对GIS 数据获取、影像理解、制图以及作为其他目标的参照体都有深远的意义。在过去的二十多年里,道路的提取在摄影测量界和计算机视觉界受到了广泛的重视,针对不同的影像类型,不同的影像分辨率,不同区域的影像和不同的道路类型,人们提出了许多从航空和遥感图像中自动提取道路的方法。但由于道路在遥感图像中的表现形式十分复杂,对不同比例尺的影像难以用固定的参数或特征描述,而只能用一些抽象的语句来描述。对于同一算法,不同的环境、不同的传感器、不同的图像、不同的成像条件等等会造成提取结果的极大差异,因而造成了自动识别的困难,使得自动提取道路信息成为一个难度很大的课题。目前仍然没有足够可靠和实用的自动识别软件。 本文以低分辨率影像乡村道路网的自动提取为对象,研究了以道路模型为基础,基于感知编组从遥感图像中自动提取道路网的方法。详细分析了道路的影像特征,建立了道路网描述模型。在道路识别过程中,对道路模型的表达采用了模糊数学的方法,对知识的表达使用了带有置信度因子的模糊产生式规则,知识的推理使用了不确定性推理中的各种理论。力图模拟人的感知过程,以段的几何与灰度属性为主,并顾及局部上下文线索进行感知编组,然后基于道路模型对道路段进行识别,再利用道路的全局性约束知识,如功能特征、拓扑特征、上下文特征等对道路段进行重组,弥补了局部编组下的缺点,最后进行道路的分支和交叉的检测形成道路网。2 道路描述模型 如何在实际图像中检测道路,关键问题是对现实世界中的道路进行正确的描述和理解,建立合适的道路模型。描述现实世界中的道路已经有很多学者做了研究,Garnesson 与Vosselman 等指出,道路的特征可以分为功能特征(functional)、几何特征(geometric)、辐射特征(photometric )、拓扑特征(topologic)、光谱特征和关联或上下文特征(contextual)等六个方面。本文重点研究低分辨率乡村主要道路的自动提取,我们抽象出道路的描述模 第23卷第3期2003年5月 海 洋 测 绘 H YDROGRAPHIC SURVEYING AND CHARTING V ol 123,No 13M ay ,2003

遥感矿物蚀变信息提取方法及ENVI下实现

遥感矿物蚀变信息提取方法及ENVI下实现

蚀变岩石是在热液作用影响下,使矿物成分、化学成分、结构、构造等发生变化的岩石。由于它们经常见于热液矿床的周围,因此被称为蚀变围岩,蚀变围岩是一种重要的找矿标志。利用围岩蚀变现象作为找矿标志已有数百年历史,发现的大型金属、非金属矿床更是不胜枚举:北美、俄罗斯的大部分斑岩铜矿、我国的铜官山铜矿、犹他州的大铝矿、西澳大利亚的大型金矿、墨西哥的大铂矿、美国许多白钨矿、世界大多数锡矿、哈萨克斯坦的刚玉矿等,都属于以围岩蚀变作为找矿标志发现的矿床。 国内外遥感工作者,都在不断地设计、研制和总结对这种遥感信息的提取和识别技术。矿化蚀变信息是找矿的一个重要标志,而这些对找矿有指导意义的矿化蚀变信息常常受其它地物信息的干扰,和受遥感图像的波谱分辨率和空间分辨率的制约,往往表现的很微弱。因此,国内外学者也在不断尝试各种技术方法提取这种矿化蚀变弱信息。 本文总结了遥感蚀变信息提取的各类方法,及其在ENVI软件中的实现。 ?原理 遥感技术主要是建立在物体反射和发射电磁波的原理之上。而地物波谱特性通常都是用地物反射辐射电磁波来描述。由于地物反射发射电磁波的特性不同,其反射波谱曲线形态也有千差万别。如植物的反射波谱曲线上,在绿光波段表现由于其叶绿素的存在表现为有一强反射峰,而在短波红外波段由于叶冠组织的相互作用表现为强反射峰,在红光波段则表现为强吸收谷。 遥感地质应用中,近矿围岩蚀变形成的蚀变岩石与其周围的正常岩石在矿物种类、结构、颜色等方面都有差异,这些差异导致了岩石反射光谱特征的差异,并且在某些特定的光谱波段形成了特定蚀变岩石的光谱异常。光谱异常为用遥感图像的异常信息提取提供了理论依据。 ?方法及实现 依据矿化蚀变岩与围岩的波谱特征的差异,可采用图像增强处理方法获取矿化蚀变信息增强的图像变量,从而最终实现提取矿化蚀变信息的目的。一般图像增强突出蚀变信息有以下几种方法。 (1)蚀变干扰信息剔除 遥感数据包含地表的信息,遥感在地质方面的应用就是提取用户需要的信息,提取矿化蚀变信息的过程是计算影像中所有像素信息统计归类分析的过程,蚀变异常信息的提取对遥感图像的质量要求较高,因此首先要对遥感数据进行严格的筛选,干扰噪声小的数据,一般要求遥感数据的时相是植被发育较弱、冰雪覆盖少的季节,同时该时相的云覆盖量较少。由于受地形地貌的影响,有些因素靠数据的时相选择却难以克服,例如阴影、河流水体、高山上的冰雪、白泥地等,可以采用相应的数学方法来解决,以使阴影、水体等干扰像素的数据不参与统计分析。一方面是选择较好的数据;另一方面是对数据进行数据预处理,包括大气校正、掩膜等。 利用ENVI软件的大气校正模块flassh能快速的消除大气影响,还原地物的真实面目。有利于蚀变信息的提取。

遥感卫星影像数据信息提取.

北京揽宇方圆信息技术有限公司 、 遥感卫星影像数据信息提取 北京揽宇方圆信息技术有限公司中科院企业,卫星影像数据服务全国领先。业务包括遥感数据获取与分发、遥感数据产品深加工与处理。按照遥感卫星数据一星多用、多星组网、多网协同的发展思路,根据观测任务的技术特征和用户需求特征,重点发展光学卫星影像、雷达卫星影像、历史卫星影像三个系列,构建由 26个星座及三类专题卫星组成的遥感卫星系统,逐步形成高、中、低空间分辨率合理配置、多种观测技术优化组合的综合高效全球观测和数据获取能力形成卫星遥感数据全球接收与全球服务能力。 (1光学卫星影像系列。 面向国土资源、环境保护、防灾减灾、水利、农业、林业、统计、地震、测绘、交通、住房城乡建设、卫生等行业以及市场应用对中、高空间分辨率遥感数据的需求,提供 worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、 ikonos、pleiades、spot1、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm、 landsat(etm、 rapideye、alos、Kompsat 卫星、北京二号、资源三 号、高分一号、高分二号等高分辨率光学观测星座。围绕行业及市场应用对基础地理信息、土地利用、植被覆盖、矿产开发、精细农业、城镇建设、交通运输、水利设施、生态建设、环境保护、水土保持、灾害评估以及热点区域应急等高精度、高重访观测业务需求,发展极轨高分辨率光学卫星星座,实现全球范围内精细化观测的数据获取能力。像国产的中分辨率光学观测星座。围绕资源调查、环境监测、防灾减灾、碳源碳汇调查、地质调查、水资源管理、农情监测等对大幅宽、快速覆盖和综合观测需求,建设高、低轨道合理配置的中分辨率光学卫星星座,实现全球范围天级快速动态观测以及全国范围小时级观测。

ASTER遥感影像水体信息提取方法研究

收稿日期:2008206204;修订日期:2008208225 基金项目:安徽省教育厅自然科学基金资助项目(K J 2007B219);安徽省教育厅教学研究项目(2007J YXM208)。 作者简介:黄海波(1982-)男,硕士研究生,主要从事遥感图像处理、土地利用/覆盖变化研究。E 2mail :hhb1001@https://www.doczj.com/doc/f75520650.html, 。 ASTER 遥感影像水体信息提取方法研究 黄海波1,2,赵 萍1,2,陈志英1,郭 伟1,2 (1.安徽师范大学国土资源与旅游学院,安徽芜湖 241000; 2.安徽师范大学GIS 重点实验室,安徽芜湖 241000) 摘要:以安徽省芜湖市为试验区,首先对试验区水体和其它各类地物的光谱特征进行分析,探讨水体在ASTER 遥感影像各个波段与其它地物之间的可分性,然后经过反复实验和分析,构建了基于波段阈值和谱间关系的水体提取模型:B2>B3,B1+B6<127,B3+B4<54和B3<24,最后将该方法提取结果与非监督分类、监督分类和植被指数法提取结果进行评价和比较。实验结果表明该方法可较好地提取研究区各类水体,分类精度明显优于传统提取方法,且简单实用,但在对光谱特征分析过程中样本点选取要求较高。 关 键 词:ASTER ;水体信息提取;谱间关系 中图分类号:TP 79 文献标志码:A 文章编号:100420323(2008)0520525204 1 引 言 水资源分布的调查与监测是控制水污染和生态 保护的前提,而卫星数据具有监测范围广、获取周期 短、地物信息丰富的特点,对调查与监测水资源分布 起着重要的作用。国内外众多学者对水体遥感专题 信息的提取进行了研究,如Bartolucci [1]等通过对 Landsat MSS 数据的研究,指出MSS 波段中近红外 波段为提取水体的最佳波段;秦其明[2]等通过像素 的重组,在区域分割和边界跟踪的基础上,对卫星图 像进行水体形状特征的抽取与描述,实现不同水体 类型的识别;陈华芳[3]等对Landsat ETM +影像,分 别采用了阈值法、差值法和阈值法的结合运用、多 波段谱间关系法和阈值法的结合这3种方法对湿 地进行识别;王志辉,易善祯[4]通过对5种不同水体提取模型(RV I ,NDV I ,NDWI ,MNDWI ,NDSI )原理分析,结合具体实例(洞庭湖水域)进行水体遥感提取来说明5种方法提取水体的差异,从而确定在不同时期和不同用途时所采用最佳的水体提取模型。本文从水体的遥感信息光谱特征入手,分析各地物类型在ASTER 数据各个波段所记录的波谱信息情况差异,探讨水体与其它地物的区分方法。ASTER 是搭载在Terra 卫星上的星载热量散发和反辐射仪,于1999年12月18日发射升空,由日本国际贸易和工业部制造。ASTER 通过从可见光到热红外14个频道获取整个地表的高分辨解析图像数据-黑白立体照片,为多个相关的地球环境资源研究领域提供科学、实用的卫星数据。其主要参数如表1[5]。 表1 ASTER 卫星主要参数表 T able 1 Main parameters table of ASTER satellite 波段 B1B2B3N B4B5B6B7B8B9B10B11B12B13B14波长(um )0.52 0.630.76 1.6 2.145 2.185 2.235 2.295 2.368.1258.4758.92510.2510.950.630.69 0.86 1.7 2.185 2.225 2.285 2.365 2.438.4758.8259.27510.9511.65分辨率(m )15 15153030303030309090909090第23卷 第5期2008年10月遥 感 技 术 与 应 用REMOTE SENSIN G TECHNOLOGY AND APPLICATION V ol.23 N o.5 Oct.2008

遥感影像成图步骤—以ETM为例

理塘-德巫断裂卫星影像地图制作(1:10万) ——以ETM数据为例 一、主流处理软件对比介绍 ENVI,ERDAS,PCI 软件功能不作具体说明,ENVI和ERDAS较为主流,各个软件各有自己的优缺点,比如ENVI中提供的数据融合方法就没有ERDAS中的多,ERDAS(破解版)中无法做DEM提取工作;ENVI的影像波段显示和数据操作较为简便,菜单功能有很多重复;PCI破解版本较低。另外,每个软件对不同类型的卫星遥感影像可能有各自的处理模块,所以也不能绝对就以某一类软件为主,如果遇到一些问题,一类软件解决不了,可以尝试用另一类软件。如在中科院网站下载的EOS原始卫星数据打不开,用PCI就能打开,然后转换成ENVI STANDSRD格式或者ERDAS IMAGINE格式,即可处理了。最后,哪种能免费下载,哪种版本功能多,就用哪种吧,没的讲究。 二、数据准备(建议查看百度文库:《遥感影像的获取及处理sky》) (1)介绍 (2)来源 A https://www.doczj.com/doc/f75520650.html,/cs_cn/ https://www.doczj.com/doc/f75520650.html,/cs_cn/中科院对地中心 B https://www.doczj.com/doc/f75520650.html,/EarthExplorer/ USGS网站 C Ftp://https://www.doczj.com/doc/f75520650.html,马里兰大学FTP(Landsat 4-7数据存放于WRS2下,建议用360浏览器浏览,) 说明:A, B注册后,方可下载。USGS上的数据比对地中心要新一些,格式种类要多,有许多是经过正射矫正(Orthorectified)的数据,做图可以直接拿来用,另外,landsat 7在2003年以后的数据(SLC-off)由于卫星故障,有条带,虽然修复过,最好不用,具体说明见中科院对地中心数据下载网站。C里面数据类型丰富,包括ASTER,QUICKBIRD,EOS等等,可以作为练习数据使用。 D 下载前准备:查询数据行列号(Path/Row)以下是Landsat 7 影像行列号

遥感信息提取资料

遥感图像信息提取方法综述 0、遥感图像分析 遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。 在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。 1、遥感信息提取方法分类 常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。 1.1目视解译 目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非

遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。 1)遥感影像目视解译原则 遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。在此基础上,再进行地质、地貌等专门要素的判读。 2)遥感影像目视解译方法 (1)总体观察 观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。 (2)对比分析 对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。

相关主题
文本预览
相关文档 最新文档