当前位置:文档之家› 锂电池行业综述报告

锂电池行业综述报告

锂电池行业综述报告
锂电池行业综述报告

锂电池行业综述报告 The final edition was revised on December 14th, 2020.

锂电池行业综述报告

一、锂电池分类和结构

锂电池主要是指在电极材料中使用了锂元素作为主要活性物质的一类电池,包括锂原电池与锂二次电池。锂原电池是不能充电重复使用的,二次电池是可以多次充放电使用的。锂原电池主要有锂锰电池、锂硫电池、锂亚硫酰氯电池、锂硫酰氯电池等。手表、计算器、计算机主板CMOS 中用到的3V 锂电池,主要是锂锰电池。而通常所说的锂电池,如手机锂电池,笔记本锂电池,属于锂二次电池。锂二次电池中最常见,也是应用最广泛的是锂离子二次电池,简称锂离子电池。

由于锂离子电池具备可反复充放电的性质,而且在其工作过程中碳排放为零,因此在日常生活中,特别是大型储能设备如车载用电池中得到广泛应用。另外,由于锂离子电池环保安全及循环使用的特点,在电动工具、电动车、路灯备用电源、大型电力储能设备以及手机、数码相机、笔记本计算机等电子产品中得到广泛应用,本文将重点着力于介绍锂离子电池。

锂离子电池在结构上主要有五大块:正极、负极、电解液、隔膜、外壳与电极引线。电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由钴酸锂(或镍钴锰酸锂、锰酸锂、磷酸亚铁锂等)及铝箔组成的电流收集极。负极由石墨化碳材料和铜箔组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC 元件(正温度系数热敏电阻),以便电池在不正常状态及输出短路时保护电池不受损坏。单节锂电池的电压为(磷酸亚铁锂正极的为)。由于电池容量也不可能无限大,因此常常将单节锂电池进行串、并联处理,以满足不同场合的要求。

(一)正极材料

1.钴酸锂(LiCoO2)

钴酸锂也是目前应用最为广泛的正极材料,钴产生的电压平台,对钴酸锂而言,对应于其理论容量,高达274mAh/g,实际容量可达155mAh/g,具有很高的能量密度。主要应用于便携电池领域:如手机、PDA、移动DVD、MP3/MP4和笔记本电脑等。

2.镍酸锂(LiNiO2)

在镍酸锂电池中,化学离子对Ni4+/Ni3+可产生的电压平台,提供接近200mAh/g 的循环容量。但在实际中,很难得到这个结果。首先在高温下,由于Li的挥发,很难合成化学计量比LiNiO2,高温时六方相的LiNiO2 晶体很容易转变为立方相的LiNiO2 晶体。这种锂镍置换的立方的没有电化学活性,而且该反应的逆过程很慢并且不完全。此外在充放电过程中,LiNiO2 还可能发生其他一系列的结构变化,而导致嵌锂容量的损失。因此实际上镍酸锂无太大实用价值。

3.镍钴二元复合材料

考虑到钴酸锂价格昂贵,镍酸锂合成困难,研究人员开发出镍钴二元材料结合了二者的优点,用价格相对低廉的镍替代部分钴,合成具有LiCoO2 一样的优良电化学性能的正极材料,那么将具有广阔的应用前景。

4.尖晶石锰酸锂(Li2Mn2O4)

尖晶石锰酸锂能够产生的电压平台,与钴酸锂相当,理论容量148mAh/g,实际容量120mAh/g 左右,比现在所用的钴酸锂稍低。与钴酸锂和镍酸锂相比,锰酸锂原料来源广泛,价格非常便宜(只有钴的10%),而且没有毒性,对环境友好。曾一度被认为是替代LiCoO2 的首选锂离子电池正极材料。但是尖晶石Li2Mn2O4容量容易衰减的。

5.磷酸铁锂(LiFePO4)

1997 年,Goodenough 等研究人员首次报道了橄榄石型的磷酸铁锂(LiFePO4)可用于锂离子电池正极材料,其中的锂离子可以完全从晶格中脱出形成层状FePO4,其相对于锂的电极电压为,理论容量为170mAh/g。

6.材料性能综合评价

综上所述,LiCoO2 的研究比较成熟,综合性能优良,但价格昂贵,容量较低,毒性较大。LiNiO2 成本较低,容量较高,但制备困难,材料性能的一致性和重现性差,存在较为严重的安全问题。镍钴二元复合材料,兼有LiNiO2 和LiCoO2 的优点,但仍存在较为苛刻的合成条件,综合性能有待改进。同时由于含较多昂贵的Co,成本也较高。尖晶石Li2Mn2O4 成本低,安全性好,但循环性能尤其是高温循环性能差,在电解液中有一定的溶解性,储存性能差。因此上述钴酸锂、镍酸锂、锰酸锂及其同类正极材料尚不能满足要求。磷酸铁锂作为锂离子电池的正极材料是近几年才出现的事,国内开发出大容量磷酸铁锂电池是2005 年7月(比亚迪公司)。其充放循环寿命达2000 次,过充电压30V下不燃烧,穿刺不爆炸。磷酸铁锂正极材料类锂离子电池更

易串联使用,以满足电动车频繁充放电的需要。由于同时具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,磷酸铁锂可视为是新一代锂离子电池的理想正极材料。

(二)负极材料

目前,锂离子电池所采用的负极材料一般都是碳素材料,如石墨、软碳(如

焦炭等)、硬碳等。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡基氧化物、锡合金,以及纳米负极材料等。作为锂离子电池负极材料要求具有以下基本性能:

(1)锂离子在负极基体中的插入氧化还原电位尽可能低,接近金属锂的电位,从而使电池的输出电压高;

(2)在基体中大量的锂能够发生可逆插入和脱插以得到高容量密度;

(3)氧化还原电位不会发生显着变化,可保持较平稳的充电和放电;

(4)插入化合物应有较好的电导率和离子电导率,这样可减少极化并能进行大电流充放电;

(5)从实用角度而言,主体材料应该便宜,对环境无污染;

碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,将比容量从原来的理论值372mAh/g,大大提高到700mAh/g~1000mAh/g,同时使锂离子电池的比能量大大增加。

目前,已研究开发的锂离子电池负极材料主要有:石墨、石油焦、碳纤维、热解炭、中间相沥青基炭微球(MCMB)、炭黑、玻璃炭等,其中石墨和石油焦最有应用价值。一般来说,根据石墨化程度,可将碳负极材料分成石墨、软碳和硬碳。石墨材料导电性好,结晶度较高具有良好的层状结构,充放电容量可达300mAh/g 以上,充放电效率在90%以上,可与提供锂源的正极材料钴酸锂、锰酸锂、镍酸锂等匹配,组成的电池平均输出电压高,是目前锂离子电池应用最多的负极材料。软碳材料为容易石墨化的碳素材料,是指在2500℃以上的高温下经过石墨化转变的无定形碳。软碳的石墨化程度低,与电解液的相容性好。常见的软碳有石油焦、针状焦、碳纤维、碳微球等。而硬碳材料是指难于石墨化的碳素材料,是由高分子聚合物经过热分解形成的,锂容

量很大(500~1000mAh/g)。这类碳在2500℃以上的高温也难以石墨化,常见的硬碳有树脂碳(酚醛树脂、环氧树脂、聚目前,已研究开发的锂离子电池负极材料主要有:石墨、石油焦、碳纤维、热解炭、中间相沥青基炭微球(MCMB)、炭黑、玻璃炭等,其中石墨和石油焦最有应用价值。

(三)电解液基质

目前锂电池电解液基质绝大多数使用六氟磷酸锂,其分子式为LiPF6,白色晶体,稳定性较差,易与水反应,加热分解。六氟磷酸锂可溶于无水氟化氢、低烷基醚、腈、吡啶和醇等非水溶剂,但难溶于烷烃和苯等有机溶剂。LiPF6 易与酸反应生成PF5 和锂盐,含有LiPF6 的有机电解液因具有良好的导电性和电化学稳定性,被选定为锂离子电池的电解质。综上,锂离子电池各部分材料市场价格如下:

(四)隔膜

锂电池隔膜是锂电池结构中最重要的一部分。现在要求隔膜的厚度一般为25微米,单层隔膜可能达到的厚度为7-40 微米。隔膜通常有两种类型。一、选用聚乙烯-聚丙稀-聚乙烯三层合拼隔膜纸,目前有美国Celgard 及日本UBE。制造此类型隔膜特点在于降低成本,但制造工艺复杂,对超薄16 微米以下尤为难做到。二、单层聚乙烯隔膜,目前有日本的旭化成、东燃、美国的ENTEK 三家公司。此类型隔膜由于是单层聚乙烯,故生产成本较高。日本优质电池隔膜几乎全部采用单层聚乙烯隔膜。WIDE 公司的隔膜纸产品也采用单层聚乙烯隔膜。

电池的正负极之间的隔膜,首先它必须具备良好的电绝缘性,其次由于它在电解液中处于浸湿状态,必须具备良好的耐碱性,并且要有良好的透气性等。因此电池制造商在选择隔膜时多选用在较广的温度范围内(-55℃~85℃)保持电子稳定性、体积稳定性、和化学稳定性。隔膜性能的好坏在很大程度上将影响电池的循环寿命和自放电状况。因此,透气性、厚度、阻抗的设计成为判别电池品质好坏的重要指标。对于锂电池,如果隔膜的隔膜孔洞不好,将影响锂离子在正负极之间的传递,继而影响锂电池的充放电。

二、锂电池产业发展分析

(一)国内锂电池发展刺激政策

电动汽车对中国战略意义重大,政府动作频频。作为汽车生产和消费大国,中国由于在传统汽车制造领域处于绝对落后,因此政府非常重视电动汽车的研发,希望借此实现跨越式发展,缩小汽车这个支柱产业与世界先进水平的差距。从近些年政府政策制定看,对电动汽车的支持力度很大。继2009年1月,由科技部、财政部、发改委、工业和信息化部共同启动十城千辆工程之后,2010年6月,财政部、科技部、工业和信息化部、国家发展改革委联合发布了《关于开展私人购买新能源汽车补贴试点的通知》,备受关注的新能源汽车补贴实施细则正式出台。实施细则确定在上海、长春、深圳、杭州、合肥等5个城市启动私人购买新能源汽车补贴试点工作,政策明显倾向发展锂电池电动汽车,对插电式混合动力乘用车及纯电动车每辆最高补贴5万和6万元,对弱混电动车每辆仅补贴3000元。

为了加速本国电动汽车产业发展,占领未来行业竞争的制高点,西方各国纷纷推出电动汽车产业扶持政策,加大在相关领域的研发投入。从政策着力点考虑,政策可包括2 方面:供给端政策和需求端政策。供给端政策主要是加大基础材料的研发投入,加快充电站等相关配套设施建设和相关人员培训等。需求端政策主要是购车补

贴,税收优惠,政府采购电动车等措施。

(三)锂离子电池市场现状及需求前景分析

锂离子电池具有工作电压高、体积小、无记忆效应、无污染、自放电小、循环寿命长等优点,目前已广泛应用于手机、笔记本电脑、PDA、数码相机和携带式电动工具等领域,其中笔记本电脑占23%,手机占50%,为最大应用领域。

锂离子电池自1992 年由索尼公司产业化以来,全球锂电池市场基本由日本独霸天下。近年来,随着中国和韩国的迅速崛起,日本锂电池的市场分额逐渐减少,全球锂电池产业形成了中、日、韩三分天下的格局。随着手机、笔记本电脑等便携电器设备的发展,全球锂离子电池的市场规模广阔。

目前锂电池的主要应用领域为笔记本电脑和手机。1998 年至今,全球锂离子电池需求量持年均两位数以上的增长。在全球新一代3G移动通讯技术、互联网、数字化娱乐便携设备逐步普及的情况下,笔记本电脑、手机、上网本、数码产品、游戏机等消费电子领域的需求将继续保持旺盛的增长。

电动汽车对锂电池材料消耗量相当于传统电池的上万倍。由于电动汽车需要的是大功率电能,因此实际使用过程中,往往使用上千个电芯串联成电池组以保证能量的供应。以日本尼桑公司2010 年推出纯电动车型LEAF 为例,锂电池容量为24kWh,是标准手机电池容量的12000 倍。因此,电动汽车对锂离子电池材料的需求很大。据测算,一台纯电动汽车需要40-50 公斤的正极材料和电解液,是单个手机电池耗用量的

一万倍左右。

根据测算,仅生产100 万辆电动车所需的锂离子电池相关材料,就将是目前全球锂电池材料总需求量的数倍。因此,电动汽车的推广将带动锂离子电池相关材料的需求呈现爆发性增长。

三、锂电池技术分析

(一)材料比较

锂电池的市场将会爆发性增长,已经无需置疑。电动汽车产量的快速扩张必将带动对锂电池材料的需求。锂电池主要由4 部分构成,即电极、电解液、隔膜和包装材料。其中,包装材料和石墨负极技术相对成熟,成本占比不高。锂离子电池的核心材料主要是正极材料、电解液和隔膜。其中,正极材料是锂离子电池电化学性能的决定性因素。

正极材料占锂电池成本的比例超过40%,是最主要的构成部分。电解液和隔膜,成本占比分别为10%和20%。

由于目前锂电池核心材料仍处于研发阶段,离大规模成熟应用于电动汽车仍有一定距离,国内企业仍需要持续研发,改进工艺,以满足电动汽车对材料的更高要求。综合技术、产品盈利能力和需求增长幅度,对各子行业排序如下:

1.从技术成熟度考虑,电解液>磷酸铁锂=六氟磷酸锂>隔膜。电解液主要是复配技术,技术最为成熟,不存在新产品替代的风险,风险因而最低;与之相对,磷

酸铁锂的技术路线风险最高,日韩企业基本采取三元材料和高端锰酸锂的技术路线。另一方面,国内磷酸铁锂的生产取得一定突破,但一致性目前仍未得到有效解决,国内绝大多数生产企业都还处于小量送样阶段,未实现工业化量产;六氟磷酸锂的技术路线风险相对较低,但产品要求严格,工业化生产难度很高;隔膜的难点不在合成而在于工艺,国内相对落后的应用研究,导致隔膜成为锂电池核心材料中,国产化率最低,也是生产难度最大的材料。

2.从产品收益率考虑,隔膜>六氟磷酸锂>磷酸铁锂>电解液。技术门槛的高低,决定了产品盈利的高低。因此,佛塑股份的隔膜虽然质量落后于国际巨头,定位中端,仍然具有60%以上的毛利率。而江苏国泰的电解液,定位高端,毛利率预计在30%-40%左右。六氟磷酸锂和磷酸铁锂,预计盈利能力介于两者之间。

3.从动力电池带来的需求增长幅度考虑,磷酸铁锂>隔膜>电解液=六氟磷酸锂。由于磷酸铁锂不能用于传统小型锂电池,因此动力电池对其的需求拉动最为显着;动力电池对隔膜安全性要求很高,目前主要使用3 层复合隔膜,因此大大提升了隔膜的需求量。而传统锂电池领域的约亿平米左右的需求量,决定了其需求弹性略低于磷酸铁锂;六氟磷酸锂与电解液基本保持1:10 的比例,因此两者的需求弹性相同。

(二)存在问题

磷酸铁锂的一致性问题有待解决。国内目前对于锂离子电池的研究,大多数集中于正极材料。各种正极材料都有各自的优缺点,因此都需要通过工艺改进提高其性能。目前,通过掺混技术、碳包覆、纳米制程以及一些其它工艺,改善正极材料的循环寿命、提高电化学性能成为研究热点。对企业而言,掌握合成工艺仅仅是第一步,大批量供货的情况下,如何保证产品质量的批次稳定性是更为重要的环节。由于磷酸铁锂对合成工艺条件的要求更为苛刻,这就对企业从原料采购、工艺控制、现场管理、产品检验等各方面都提出更高要求。

六氟磷酸锂质量难控制,合成难度高。锂电池的电解质主要是六氟磷酸锂,其生产的主要原料为无水氢氟酸和五氟化磷,均为氟化工产品。生产过程中,反应流程长,工艺条件严苛,产品纯度要求高。目前行业标准要求水分小于30ppm,游离酸小于10ppm,要求极为苛刻。因此生产企业若没有重化工生产经验,尤其是氟化工的技术积累,很难做到稳定高效的生产出合格产品。

隔膜生产工艺极难掌握,技术壁垒很高。生产隔膜的原理并不复杂,主要难点在

于提高隔膜孔隙率、降低隔膜厚度的同时还要保证隔膜的机械强度。由于原理简单,理论研究很少。而生产工艺难度极高,核心技术掌握在少数几家手中,因此应用经验也很少。

(三)正极材料发展分析

1.钴酸锂:目前最成熟的,唯一商品化的锂离子电池正极材料,主要应用于手机、笔记本电脑、数码相机等便携式数码产品以及电动玩具等。

优点:材料的加工性能很好,密度高,比容量相对较高,材料的结构稳定,循环性能好,材料的电压平台较高且比较稳定

缺点:价格昂贵、容量几乎发挥到了极限、资源紧缺、安全性差。

未来方向:在传统锂离子电池领域,镍钴锂和镍钴锰锂三元材料是最有希望代替。钴酸锂的正极材料。安全性差和过高的成本,限制了其在动力电池领域的大规模应用。传统电池领域,钴酸锂也面临成本更低的三元材料和锰酸锂的挑战。由于钴酸锂工艺成熟,基数较大,因此未来数年内仍将占有正极材料大部分市场份额。根据IIT 报告的预测,到2012 年,全球对正极材料的需求量约为万吨,其中钴酸锂需求量约3 万吨,占比约40%,仍旧是第一大消费品种。09 年到2012年,钴酸锂复合增长率%,多元材料复合增长率%,锰酸锂复合增长率%,磷酸铁锂复合增长率%。磷酸铁锂和锰酸锂的增速明显高于其它产品,主要得益于其在动力电池中的应用。

2.锰酸锂和三元材料

锰酸锂是除钴酸锂外研究最早的正极材料,适合于电动工具、矿灯电池和手机电池等对容量要求不高的领域。

优点:安全性较高,尤其是高温下的稳定性较好。电解锰目前价格仅万元,具

有明显成本优势。

缺点:比容量较低,高温循环性能目前还没有得到较好的解决,

未来方向:小型锂电池市场,日本研发的高端锰酸锂材料可用于动力电池。

镍钴锰三元材料同样也是非常有前途的正极材料,有望在小型锂电池领域替代钴酸锂。

优点:高容量的正极材料,比容量可以达到180mAh/g 以上,安全性较好,成本低,与电解液的相容性好,循环性能优异,

缺点:合成困难、合成条件苛刻、合成材料的稳定性差;电压平台相对较低,只有左右;密度相对较低;充电电压较高,达到了左右。

未来方向:主要是小型锂离子电池市场,也有望进入动力电池市场。

3.磷酸铁锂:磷铁酸锂材料是最近两年才快速发展起来的正极材料,其低廉的价格,较高的安全性能,较好的结构稳定性,优越的循环性能使得其作为动力电池和备用电源领域有广阔的应用前景。

高安全性和热稳定性是磷酸铁锂的突出优点。在针刺和挤压实验中,磷酸铁锂电池不发热、不冒烟、不起火。在过充实验中,将电池过充到,过放至0V,电池循环100 次,外观无任何异常,容量保持率达到84%,表现堪称优异。对于动力电池领域,安全性是首要考虑的因素。正是凭借磷酸铁锂在安全性方面的优势,基本确立了其现阶段汽车动力锂电池的正极材料首选的地位。

磷酸铁锂的主要缺点是振实密度低,体积比容量低,电导率低,低温放电性能差,倍率放电差等问题。其中,振实密度和体积比容量低对动力电池来说,问题并不严重。

目前,磷酸铁锂已经成为我国动力锂电池行业的主流选择,比亚迪的电动汽车正是采用这种材料。

全球供给高度集中。由于磷酸铁锂能量密度较低,需要采用碳包覆等技术对其进行改性,提高了磷酸铁锂的生产难度和成本。目前,国际上磷酸铁锂的生产商主要有美国的A123、Valence 和加拿大的phostech 公司。据估计,A123 和威能公司产能合计约1000 吨,phostech 公司产能约750 吨。由于A123 和威能的磷酸铁锂全部自用,不对外销售原料,因此国内磷酸铁锂的供应主要靠phostech、天津斯特兰公司和北大先行等极少数几家。phostech、天津斯特兰产能均为500 吨,北大先行宣称产能2000吨,实际产量大大低于产能。国内市场群雄并起,行业格局有待规范。合成难度大,产品供不应求,导致全球磷酸铁锂价格居高不下。磷酸铁锂目前国内厂家的产品一般在15-18 万/吨,美国A123系统公司和Valence 公司报价在20-30 万/吨。目前,由于磷酸铁锂尚处于市场导入期,前期研发和市场开拓费用较高,行业内公司,无论是国际巨头如A123 和valence还是国内企业如天津斯特兰和北大先行,普遍亏损。磷酸铁锂未来广阔的前景,吸引众多资本热情投入。据粗略统计,国内目前从事磷酸铁锂合

成的公司多达100 家左右。由于正极材料规模效应显着,未来行业必将进行整合,仅有少数技术和产品质量领先的公司能够笑到最后。

(四)电解液发展分析

电解液主要原材料为六氟磷酸锂,占电解液成本的50%左右,其生产成本为10 万元/吨,售价为40 万元/吨,毛利率高达75%。六氟磷酸锂合成难度较高,整个生产过程涉及高温、低温、真空、高压、腐蚀性强、易燃易爆和剧毒化学品,对设备和人员要求高、工艺难度极大。森田化工在张家港的建设年产300 吨六氟磷酸锂的工厂,照搬日本工厂的成熟设备和工艺,仍然历时3 年才稳定达产,可见工艺难度之高。

难点在于杂质控制。电解液对六氟磷酸锂的纯度要求极高,行业标准要求水分小于30ppm,游离酸小于10ppm。由于六氟磷酸锂本身具有吸潮性,因此高纯原料的获取和生产过程中杂质控制和产品提纯都是关键因素。较高的技术门槛,导致极高的市场集中度,市场主要被关东电化学工业、STELLA、森田化学等几家日本企业垄断。

国内目前仅有天津金牛能实现工业化生产,产量约80 吨,产品全部自用不对外销售。江苏国泰和多氟多正在进行中试生产。

发展趋势:长期看,新电解质体系的开发将是大势所趋。六氟磷酸锂材料的热稳定性较差,从60℃开始就有少量分解,在较高温度或恶劣的环境下,分解的比例大大增加,产生氢氟酸等游离酸,会使电解液酸化,最终导致电极材料的损坏以及电池性能的急剧恶化。同时六氟磷酸锂易潮解,而水分是电解液的大敌。近些年,草酸硼酸锂盐在电解液中的应用逐渐引起关注。用草酸硼酸锂盐配制成的电解液有抗过充、阻燃等功能,形成的SEI 膜非常稳定,满足动力电池高安全性的要求。更长远看,聚合物锂电池可能成为锂电池未来的发展方向。由于用固体电解质代替了液体电解质,与液态锂离子电池相比,聚合物锂离子电池具有可薄形化、任意面积化与任意形状化等优点,也不会产生漏液与燃烧爆炸等安全上的问题,因此外壳材质可以更轻,从而可以提高整个电池的比容量。此外,聚合物锂离子电池在工作电压、充放电循环寿命等方面都比普通锂离子电池有所提高。

(五)隔膜发展分析

隔膜生产难度最高,盈利最丰厚。在锂电池中主要作用是防止正负极短路,同时在充放电过程中提供离子运输的电通道。由于锂离子电池具有工作电压高,隔膜材料与高电化学活性的正负极材料应具备优良的相容性,同时还应具备优良的稳定性、耐

溶剂性、离子导电性、电子绝缘性、较好的机械强度、较高的耐热性及熔断隔离性。满足锂电池的特殊需求的同时,还要满足制膜工艺的可行性,涉及多学科领域,因此隔膜研发进展缓慢。目前一般采用聚丙烯、聚乙烯单层微孔膜,以及由两者复合制成多层微孔膜作为隔膜。以聚丙烯为例,原料成本仅8 千元/吨,而加工制成隔膜后,价格可达300 万元/吨,升值数百倍。

锂电池隔膜供给高度集中,严重依赖进口。隔膜的主要技术掌握在少数企业手中,集中度很高。国外的隔膜生产主要集中在美国的celgard 公司和日本的旭化成、东燃和宇部。由于技术壁垒较高,投资风险大,国内企业的投资热情并不高。国内能够生产锂电池隔膜的,仅有佛山金辉高科(佛塑股份的子公司)、新乡格瑞恩、桂林新时代和深圳星源材质4 家公司,产品质量与国外同类相比,仍存在较大差距。其中,佛山金辉的产品质量相对较好,供应中低端市场。国内中高端市场,主要由东燃、旭化成和celgard 公司垄断。根据国内锂离子电池产量估算,国内隔膜的年需求量约2 亿平米左右。国内龙头佛山金辉的产量仅1200 万平米,即使考虑其它几家公司有限的产量,供给也远低于需求。佛山金辉的产品虽然主要用于中低端市场,毛利率仍然高达60%以上。

未来发展方向:更薄、更安全。锂离子电池隔膜的发展,是随着电池需求的不断变化而不断发展的。从需求看,锂电池正朝着更安全和更轻薄两个方向发展。数码产品电池方面,为迎合美观和便携的需求,未来的锂电池将朝着小型化方向发展。为追求单位体积下的高能量,锂电池隔膜当然需要越薄越好。与此同时,要保证隔膜的机械强度和吸液性能。动力电池领域,大功率恶劣工况的使用条件下,锂电池安全性尤为重要。因此,动力电池隔膜往往使用厚度在40 微米以上、PE 与PP 多层复合的隔膜,以获得良好的机械性能、热关断性能和热稳定性。德固萨公司结合有机物的柔韧和无机物热稳定性好的特点,制备出有机底膜和无机涂层复合的锂离子电池隔膜,为解决动力电池安全性提供了一个可行的解决方案,有望成为未来的重点发展方向。四、投资风险

投资锂动力电池的风险,首先来源于产品的创新性和探索性所带来的风险。当然,在市场经济条件下,任何投入都是有风险的,只不过投资锂动力电池与其它产业相比,风险比较突出。这主要来源于高度探索性带来的技术风险。在探索开发的过程中,开发的产品成功与否具有不确定性。锂动力电池做为高科技项目,仍然没有成熟

的技术,仍然存在着安全隐患,仍然需要深入研发和探索。不管是电池使用的原材料、配方、涂膜,以及其制作过程,仍然还处于开发完善的阶段。这种研发完善的过程,也就是资本投入的过程。谁进入了这个过程,谁就进入了投资风险。所以说,投资锂动力电池风险,首先来源于探索性带来的技术风险。高新科技项目,最明显的特性就是探索性和创新性。投资商在选项和资本运作上,同样存在着探索性和创新性。对项目管理和资本运作,来不得半点马虎和盲目。对研发人员除了高薪善待,还必须建立切实可行的管理机制,投资锂动力电池产业,不但研发探索过程存在风险,投资商的管理同样存在着风险。特别对研发过程不能进入有效的管理,则企业夭折的可能性会更大。

投资锂动力电池同样也存在着相当大的市场风险。锂动力电池不管是军工还是民用,所有便携式移动电源均可使用。其使用面之广,应用范围之大。然而,锂动力电池存在一个通病,这就是产品成本较高。锂动力电池比铅酸动力电池成本要高出倍左右(以能量价格比)。一辆普通锂动力电动轿车比一辆普通燃油轿车的一次性投资也要高出五万元左右。这就在人们的意识上,普遍存在着“这玩意儿贵”的想法。用一辆铅酸电池组合的电动自行车,与用锂动力电池装配的电动自行车对比,铅酸电动自行车的成本在800 元左右,而锂动力自行车的成本就是1800 元左右。在人们消费意识模糊的情况下,大多数人仍然选择铅酸电动自行车。这就为锂动力电池的营销市场带来了相当大的障碍。要想提高人们对这种高质量高品位产品的认识,还需要时间,还需要做大量的工作。这就产生营销成本,广告费用,同时也产生了市场回报周期过长,需要大量资本支持的问题。一旦长时期得不到市场回报,同样会产生支持不住,最后失败的风险。仅靠锂动力电池产品和制作设备做担保,是很难得到银行多次贷款的。所以说,投资锂动力电池,也存在市场回报周期过长,资金周转不畅的市场风险。

综上所述,投资锂动力电池产业,存在着技术探索的风险,管理运作的风险,以及市场开拓周期过长的风险。锂动力电池产业,需要社会各行各业的支持,也需要各级政府各部门的支持,特别是需要足够量的资金支持。

锂电池行业深度报告 23

长城证券 23 请参考最后一页评级说明及重要声明 图19:光伏行业产能退出路径 数据来源:长城证券研究所 我们认为,准入条件和融资能力是2013年产能退出的关键因素,也是我们判断行业供需格局继续向平衡态发展的依据。 4.企业盈利改善,扭亏为盈可期 4.1企业盈利改善已得到确认 产能利用率重返高位 2012年在行业处于低谷之际,不仅中小企业停产减产,一二线企业同样降低开工率;在2012年三季度,鲜有企业开工率达到八成。 2012年12月以来,行业整体需求转暖,企业订单增加,产能利用率重返高位,英利等龙头企业目前已经满产运营,这从各上市公司一季报的出货量以及全年出货计划中均有所反映。产品价格企稳反弹 图20:多晶硅价格(国内元/kg ,国外美元/kg ) 图21:硅片价格(元/片) 六月/12六月/12六月/12七月/12七月/12八月/12八月/12九月/12九月/12十月/12十月/12十 一月/12十一月/12十一月/12十二月/12十二月/12一月/13一月/13二月/13二月/13三月/13三月/13四月/13四月/13五月/13五月/13五月/13 110_ 120_ 130_140_150_160_170_15_18_21_ 24_ 国内(含税)国外(不含税) 六月/12六月/12六月/12七月/12七月/12八月/12八月/12九月/12九月/12十 月/12十月/12十一月/12十一月/12十一月/12十二月/12十二月/12一月/13一月/13二月/13二月/13三月/13三月/13四月/13四月/13五月/13五月/13五月/13 4_ 6_ 8_10_ 12_多晶八寸 单晶六寸半 单晶八寸

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

2020年动力电池行业研究报告

2020年动力电池行业专题研究报告 一、特斯拉引领全球电动化进程,动力电池需求爆发 (一)全球新能源汽车市场高速发展,新一波产品周期特斯拉引领衔 1、全球新能源汽车高速增长,销量6年增长近11倍。从2011年以来,以特斯拉、比亚迪等为代表的新能源汽车高速发展,全球新能源汽车销量从2013年的20.2万辆上升至2019年的221万辆,年均复合增速达到150%。从国家来看,中国在此期间大力发展新能源车,销量从2013年的1.7万辆提升到了2019年的120.6万辆,其中2019年的销量占全球销量的比例达到了54.6%,已经成为全球最大的新能源汽车市场。 2、Model 3 已经成为爆款电动车型,特斯拉夺 19 年销量桂冠。全球市场看,19 年销量TOP20 的车企占据了全球新能源车总销量的83.5%,行业集中度明显提升。其中,自Model 3 车型发售以来,特斯拉2019 年总销量为36.8 万辆,连续两年成为全球车企销量第一;比亚迪销量为 22.95 万辆,位居全球第二;而北汽新能源则以 16.03 万辆排名第三。从具体车型来看,特斯拉 19 年 Model 3 车型共售出 30.01 万辆,真正意义上成为爆款电动车型,尤其在美国市场,是全美中小型豪华车型的销量冠军,超过了宝马2/3/4/5 系销量

之和,超过奥迪 A3/4/5/6 销量之和,超过奔驰 C 级、CLA、CLS、E-class 销售之和,同时在国内市场,Model 3 上险数量也超过了 4600 辆,力压蔚来 ES8/6、小鹏 G3、威马 EX5 等国内造车新势力。 3、国内销量节节攀升,规模效应促使Tesla 国内建厂。Tesla 入华,整车销量不断攀升,占全球的比重也逐步提升,预测今年中国的市场份额占全球的20%以上。对应公司在在国内的营收也是逐步增加,营收中有相当一部分就是物流和整车进口关税,预估国产化后能节省物流及关税费用约 45%(根据此部分比例进行测算)。规模体量小的时候,影响很小,可以沿用全进口模式,但是规模销量大的时候,就必须要考虑在当地投资建厂,对比全球一线整车,比如奔驰,宝马,奥迪等车型,在国内车型销量达到一定规模,超过 10 万以上,考虑经济性,体积大,运输成本高的商品就需要考虑经济性了;从另一方面,中国有完整的新能车产业链,经过多年的发展,从2014 年-2019 年整个电动车的制造成本五连降,所以 Tesla 国产化是必然趋势。工厂一期建成建筑面积15.7 万平方米,规划产能 25 万辆,Model3 一月份产量 1000 辆/周,正在进行产能爬坡,2020 年 5 月有望爬升至 3000辆/周;下半年 Model Y 正式导入,10 月份达到周产量 1000 辆/月,年底有望升至 2000 辆/月。

中国锂电池行业上下游产业链分析报告

深圳中企智业投资咨询有限公司

中国锂电池行业上下游产业链分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.doczj.com/doc/f47751670.html, 1

目录 中国锂电池行业上下游产业链分析 (3) 第一节锂电池行业上下游产业链概述 (3) 第二节锂电池上游行业发展状况分析 (3) 一、上游原材料市场发展现状 (3) 1、正极材料 (4) 2、负极材料 (4) 3、电解液 (5) 4、隔膜 (6) 二、上游原材料供应情况分析 (6) 三、上游原材料价格走势分析 (7) 第三节锂电池下游行业需求市场分析 (7) 一、下游行业发展现状分析 (7) (1)手机市场 (8) (2)平板电脑和笔记本电脑市场 (8) (2)电动自行车市场 (9) 二、下游行业需求状况分析 (9) 三、下游行业需求前景分析 (10) 2

中国锂电池行业上下游产业链分析 第一节锂电池行业上下游产业链概述 锂电池上游是金属矿产资源,下游为各种数码产品、电动工具以及电动汽车行业。 图表- 1:锂电池行业产业链 锂电池上游材料包含正极材料、负极材料、电解液、隔膜以及其他材料,而其行业源头则为金属矿产资源行业。金属矿产资源行业为锂电池制造行业提供了锂、镍、锌等初始原料。 锂电池的下游客户包含电子产品行业、电动工具制造行业、新能源汽车制造业以及相关新能源存储行业。 除此之外,一个完整的锂电池产业链还应包括锂电池的回收利用。 第二节锂电池上游行业发展状况分析 一、上游原材料市场发展现状 目前中国在四大关键材料领域中,正极材料、负极材料和电解液都已逐步自给,只有隔膜材料还高度依赖进口,但是发展速度也非常快。 3

揭秘!锂电池制造工艺全解析

揭秘!锂电池制造工艺全解析 锂电池结构 锂离子电池构成主要由正极、负极、非水电解质和隔膜四部分组成。目前市场上采用较多的锂电池主要为磷酸铁锂电池和三元锂电池,二者正极原材料差异较大,生产工艺流程比较接近但工艺参数需变化巨大。若磷酸铁锂全面更换为三元材料,旧产线的整改效果不佳。对于电池厂家而言,需要对产线上的设备大面积进行更换。

锂电池制造工艺 锂电池的生产工艺比较复杂,主要生产工艺流程主要涵盖电极制作的搅拌涂布阶段(前段)、电芯合成的卷绕注液阶段(中段),以及化成封装的包装检测阶段(后段),价值量(采购金额)占比约为(35~40%):(30~35)%:(30~35)%。差异主要来自于设备供应商不同、进口/国产比例差异等,工艺流程基本一致,价值量占比有偏差但总体符合该比例。 锂电生产前段工序对应的锂电设备主要包括真空搅拌机、涂布机、辊压机等;中段工序主要包括模切机、卷绕机、叠片机、注液机等;后段工序则包括化成机、分容检测设备、过程仓储物流自动化等。除此之外,电池组的生产还需要Pack 自动化设备。 锂电前段生产工艺 锂电池前端工艺的结果是将锂电池正负极片制备完成,其第一道工序是搅拌,即将正、负极固态电池材料混合均匀后加入溶剂,通过真空搅拌机搅拌成浆状。配料的搅拌是锂电后续工艺的基础,高质量搅拌是后续涂布、辊压工艺高质量完成的基础。 涂布和辊压工艺之后是分切,即对涂布进行分切工艺处理。如若分切过程中产生毛刺则后续装配、注电解液等程序、甚至是电池使用过程中出现安全隐患。因此锂电生产过程中的前端设备,如搅拌机、涂布机、辊压机、分条机等是电池制造的核心机器,关乎整条生产线的质量,因此前端设备的价值量(金额)占整条锂电自动化生产线的比例最高,约35%。

锂离子电池三元正极材料的研究进展

锂离子电池三元正极材料的研究进展 2009年09月01日作者:丁楚雄/孟秋实/陈春华来源:《化学与物理电源系统》编辑:樊晓琳 摘要:本文综述了锂离子电池正极材料层状三元过渡金属氧化物 Li-Ni-Co-Mn-O的研究进展,讨论了三元材料的结构特性与电化学反应特征,重点介绍了三元材料的制备方法和掺杂、表面修饰等改性手段,并分析了三元材料目前存在的问题和未来的研究重点。 关键词:锂离子电池;Li-Ni-Co-Mn-O;层状结构;制备方法;改性 Abstract: The research progress of the ternary transition metal oxides LiNi1-x-yCoxMnyO2 as layered cathode materials for lithium ion batteries is reviewed. The structure and electrochemical performances of the materials are discussed. Various synthesis methods, doping and surface-modification approaches are introduced in detail. Finally, the current main problems and further research trend of the materials are pointed out. Key words: lithium ion battery; cathode; layered structure; synthesis methods; modification 1、引言 锂离子电池因其电压高、能量密度高、循环寿命长、环境污染小等优点倍受青睐[1, 2],但随着电子信息技术的快速发展,对锂离子电池的性能也提出了更高的要求。正极材料作为目前锂离子电池中最关键的材料,它的发展也最值得关注。 目前常见的锂离子电池正极材料主要有层状结构的钴酸锂、镍酸锂,尖晶石结构的锰酸锂和橄榄石结构的磷酸铁锂。其中,钴酸锂(LiCoO2)制备工艺简单,充放电电压较高,循环性能优异而获得广泛应用。但是,因钴资源稀少、成本较高、环境污染较大和抗过充能力较差,其发展空间受到限制[3, 4]。镍酸锂(LiNiO2)比容量较大,但是制备时易生成非化学计量比的产物,结构稳定性和热稳定性差[5]。锰酸锂除了尖晶石结构的LiMn2O4外,还有层状结构的LiMnO2。其中层状LiMnO2比容量较大,但其属于热力学亚稳态,结构不稳定,存在Jahn-Teller效应而循环性能较差[6]。尖晶石结构LiMn2O4工艺简单,价格低廉,充放电电压高,对环境友好,安全性能优异,但比容量较低,高温下容量衰减较严重[7]。磷酸铁锂属于较新的正极材料,其安全性高、成本较低,但存在放电电

2017年动力锂电池市场研究报告

2017年动力锂电池市场研 究报告 2016年12月

目录 前言 (6) 1.动力锂电池产能阶段性过剩,高能量密度三元电池是发展方向 (8) 1.1磷酸铁锂电池市占率暂时领先,高性能三元电池后来居上 (8) 1.1.1 14-15年国内新能源汽车行业维持高增长 (8) 1.1.2新能源客车和乘用车对动力电池需求量较大 (9) 1.1.3磷酸铁锂动力电池装载比例暂具优势 (10) 1.1.4三元材料动力锂电池能量密度优于磷酸铁锂 (11) 1.22020国内动力锂电池需求84GW H,其中三元需求65GW H (13) 1.2.1预计2017年国内新能源汽车产销量达到66万辆 (13) 1.2.2预计2017年国内动力锂电池需求量约30GWh (14) 1.316年底国内动力锂电池产能估算超过100GW H,其中三元产能约39GW H (17) 1.3.1动力锂电池产能主要以磷酸铁锂和三元为主 (17) 1.3.2达到8GWh产能锂电池企业目前仅3家 (17) 1.4锂电池产能过剩推动行业洗牌,高镍NCM和NCA三元电池迎来发展 .. 19 1.4.1 17-18年国内磷酸铁锂和三元锂电池产能均处于过剩 (19) 1.4.2三元需求仍有增长空间,看好高镍NCM和NCA三元材料电池 (20) 1.4.3 17年动力锂电池价格下调压力较大,预计毛利率可维持相对稳定 (21) 2.政策护航,引导锂电池行业健康可持续发展 (23) 2.1新能源汽车补贴政策调整,对电池系统能量密度提出更高要求 (23) 2.1.1新能源客车补贴退坡较大,能量密度要求提升推动磷酸铁锂电池行业洗 牌 (23)

锂离子电池行业研究报告20081016.doc

锂离子电池行业研究报告20081016 OO锂离子电池行业研究报告 10(四)全球锂离子电池行业发展趋势 11三、我国锂离子电池行业发展状况 13(一)我国锂离子电池发展现状 13(二)我国锂离子电池出口情况 13(三)我国锂离子电池重点厂商 13(四)我国锂离子电池行业面临的问题 14四、锂离子电池上游原材料分析................................................................... ................................... 15 (一)锂离子电池正极材料................................................................... ................................... 15 (二)锂离子电池负极材料................................................................... ................................... 19 (三)锂离子电池隔膜材料................................................................... ................................... 22 (四)锂离子电池电解液 26(五)锂离子电池粘结剂 27五、锂离子电池原料矿资源分析................................................................... ................................... 28 (一)锂资源市场分析 28(二)钴资源市场分析 32(三)镍资源市场分析 35(四)锰资源市场分析 39六、锂离子电池下游产业市场分析 43(一)手机市场 43(二)手提电脑市场 44(三)电动工具市场 45(四)电动自行车市场 47(五)电动汽车市场 48七、锂离子电池行业发展前景 51(一)行业发展有利和不利因素 51(二)行业发展前景总体展望 52锂离子电池行业研究报告所谓锂离子电池实际上是一种锂离子浓度差电池,正负两极由两种锂离子嵌入化合物组成。充电时,锂离子从正极脱嵌经过电解质嵌入负极,负极处于富锂态,正极处于贫锂态,同时电子的补偿电荷从外电路供给到碳负极,保证负极的电荷平衡,放电时则相反,锂离子从负极脱嵌,经电解质嵌入正极(这种循环被形象的称为摇椅式机制)。在正常的充放电情况下,锂离子在层状结构的碳材料和层状结构氧化物层间嵌入嵌出,因为过渡金属氧化物如LiCoO2、LiNiO2 中低自旋配合物多,晶格体积小,在锂离子嵌入脱嵌时,晶格膨胀收缩性小,结晶结构稳定,因此循环性能好,而且充放电过程中,负极材料化学结构基本不变,因此从充放电反应的可逆性看锂离子电池反应是一种理想的可逆过程。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。 1-1 锂离子电池行业研究报告锂离子电池主要由七部分材料构成:(1)电池上下盖(2)正极——活性物质如钴酸锂、锰酸锂、镍酸锂及其复合氧化物、磷酸铁(3)隔膜——一种特殊的复合膜(4)负极——活性物质为碳或石墨(5)有机电解液(6)粘结剂(7)电池壳(分为钢壳和铝壳两种)根据锂离子电池所用电解质材料不同,锂离子电池可以分为液态锂离子电池(lithium ion battery,简称为LIB)和聚合物锂离子电池(polymer lithium ion battery,简称为LIP)两大类。其中,液态锂离子电池由于工艺上的原因,厚度很难降低,一般做到5-6mm 的多,再想做薄就比较困难了。新一代的聚合物锂离子电池在聚合物化的程度上已经很高,所以形状上可做到薄形化(最薄

2017年三元锂电池行业前景分析报告

2017年三元锂电池行业前景 分析报告 (此文档为word格式,可任意修改编辑!) 2017年8月

正文目录 一、全球视角:汽车电动化浪潮来袭,新能源汽车产业崛起 (6) (一)全球的汽车电动化浪潮正在来袭 (6) (二)我国已成为全球最大的新能源汽车消费国 (9) 二、我国情况:政策风云发幻,产业运行砥砺前行 (11) (一)政策引领我国新能源汽车行业砥砺前行 (12) (二)新能源汽车产销量逐步恢复,下半年逐月增长 (14) 三、三元锂电池大势所趋,行业回暖高增长可持续 (15) (一)三元锂具备高能量密度,引领电池技术发展方向 (17) (二)三元锂贴合政策要求,推荐目录见微知著 (19) 2.1 补贴政策——高能量密度电池车型可获得1.1~1.2倍补贴 (20) 2.2 积分政策——高能量密度电池车型获得1.2倍积分概率更大 (21) 2.3推荐目录——三元锂电池比例提升至约70% (23) (三)海外Model 3放量在即,指明三元锂方向 (26) (四)三元锂材料价格已进入上行通道,印证行业需求持续回暖 (28) (五)三元锂需求测算,到2020年渗透率达80%,复合增速88% (30) 四、湿法隔膜锦上添花,逐步突破海外封锁 (33) (一)隔膜决定电池安全性能,行业壁垒较高 (33) (二)湿法隔膜能够提升能量密度,干法工艺转湿法有难度 (35) (三)湿法隔膜国产化率有望稳步提升,未来三年需求持续增长 (38) 五、主要公司分析 (40) (一)当升科技 (40) (二)国轩高科 (41) (三)科恒股份 (42) (四)创新股份 (43) 六、风险提示 (44)

锂电池行业市场现状及预测分析报告

锂电池行业市场现状及预测分析报告 (2012-2016)

锂电池行业市场现状及预测分析报告 前言 锂电池性能优越,用途广泛,前景最为广阔。相对于铅酸电池、镍镉电池、镍氢电池等二次电池,锂电池具有能量密度高、循环寿命长、自放电率小、无记忆效应和绿色环保等突出优势。锂电池随着技术的不断进步已经在人们的生活中得到了广泛的应用,如便携式电子产品、新能源交通工具等领域。 工信部牵头制定的《节能与新能源汽车产业规划(2011-2020年)》已基本完成。发展新能源汽车已经上升为国家战略,国家已提出了发展方向、战略目标、主要任务及政策措施,新能源汽车发展正面临千载难逢的历史机遇。随着一系列新能源汽车扶持政策即将出台,中国新能源汽车在“十二五”期间将快速发展,届时将带动锂电池材料快速增长。 全球锂电行业现状:电芯和材料市场是日、韩、中占据绝对份额,日、韩企业的技术处于领先地位。全球锂电池产业目前主要集中在日本、中国和韩国,随着中国、韩国锂电池制造技术的开发和提升,日本锂电池出货量的比例在逐渐降低。中国锂电池材料企业发展迅速,但从综合技术实力来看,日、韩企业仍处于领先地位,中国落后日本大约2-3年时间,处于大而不强的阶段,具有较大提升空间。 目前整个市场对锂电在新能源汽车领域的应用前景已经有了很多论述。但是对锂电池在传统领域的应用前景的关心却很少。现在我们关心的是如果新能源汽车的发展进程低于预期,锂电产品在非汽车领域的需求是否能够支撑行业继续向前发展!带着这一问题,我们细致地研究了锂二次电池在目前的主要应用领域内的应用前景,结果让我们对锂电行业未来的发展充满信心。 本报告首先介绍了锂电池行业相关概述、中国锂电池产业运行环境等,接着分析了中国锂电池行业的现状,然后介绍了中国锂电池行业竞争格局。随后,报告对中国锂电池行业做了重点企业经营状况分析,最后分析了中国锂电池产业发展前景与投资预测。您若想对锂电池产业有个系统的了解或者想投资锂电池行

动力电池用正极材料磷酸铁锂的研究进展

2010年第7期广东化工 第37卷总第207期https://www.doczj.com/doc/f47751670.html, · 59 · 动力电池用正极材料磷酸铁锂的研究进展 侯贤华,胡社军,彭薇 (华南师范大学物理与电信工程学院,广东广州 510006) [摘要]文章综述了锂离子动力电池关键正极材料磷酸铁锂的产业化制备方法,市场状况分析和近年来国内外对该正极材料的研究进展情况。结果表明:产业化制备方法目前主要是固相反应法和水热合成,市场需求大于市场供给,具有很好的市场前景,高倍率磷酸铁锂将成为未来的一个重要研究方向。 [关键词]磷酸铁锂;正极材料;倍率性能 [中图分类号]TM912 [文献标识码]A [文章编号]1007-1865(2010)07-0059-02 Research Progress of LiFePO4 Cathode Materials for Power Lithium-ion Battery Hou Xianhua, Hu Shejun, Peng Wei (School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China) Abstract: The research progress in LiFePO4 Cathode materials for lithium ion battery was reviewed. The emphasis was expressed preparation method of industrialization, market analysis and cathode materials progress for the past few years. The result suggested that the industrialized method have solid state reaction and hydrothermal synthesis, market requirement is more than supply, this product has excellent market prospects, high rate property will become one of the research fields in the future. Keywords: LiFePO4;cathode material;rate property 锂离子电池因具有电压高、比能量高、工作温度范围广、 环境友好等优点,而被广泛应用于各种便携式电子产品[1-2], 如手机、数码相机、笔记本电脑和电动工具等,并有望成为未 来混合动力汽车和纯动力汽车的能源供给之一[3]。正极材料是 决定锂离子电池综合性能优劣的关键因素之一,目前商业化正 极材料主要是LiCoO2,因钴为战略资源,由此导致电池的成 本较高(目前在整个电池成本中,正极材料成本占35 %),且 LiCoO2安全性较差,因而限制了其使用范围。LiFePO4具有稳 定的橄榄石结构,理论容量约为170 mAh/g,原材料价格低廉 丰富,工作电压适中、电容量大、高放电功率、可快速充电且 循环寿命长、稳定性高,是一种理想的动力电池用正极材料。 1 磷铁铁锂晶体结构 LiFePO4晶体是有序的橄榄石型结构,属于正交晶系,空间群为Pnma,晶胞参数a = 1.0329 nm,b = 0.60072 nm,c= 0. 46905 nm。在LiFePO4晶体中氧原子呈微变形的六方密堆积,磷原子占据四面体空隙,锂原子和铁原子占据八面体空隙。八面体结构的FeO6在晶体的bc面上相互连接,在b轴方向上八面体结构的LiO6相互连接成链状结构。1个FeO6与2个LiO6共边,1个PO4和FeO6共用一条边,与LiO6共用两条边。 充放电反应是在LiFePO4和FePO4两相之间进行,如图1所示。在充电过程中,LiFePO4逐渐脱出锂离子形成FePO4,在放电过程中锂离子插入FePO4形成LiFePO4。在锂离子反复嵌入与脱出的过程中,当晶格结构由LiFePO4转变为Li1-x FePO4时,磷酸根离子(FePO4-)可稳定整个材料的晶格结构。由于在这2种物相互变过程中铁氧配位关系变化很小,故此电极材料虽然存在物相的变化,但是没有影响电化学效应的体积效应产生。当磷酸铁锂进行充电时,材料本身的体积约减少6.5 %,这也是材料具有良好循环性能的主要原因。LiFePO4的电化学曲线非常平坦,具有较高的理论容量,约为170 mAh/g。 2 磷酸铁锂产业化制备方法 目前产业化制备LiFePO4材料最常用的方法是固相法,此法工艺简单,制备条件容易控制和规模化,缺点是球磨的均匀程度以及强度同样制约了产物的性能,产物颗粒不均匀,晶形无规则,粒径分布范围广,实验周期长。S.A.Anna等测试了LiFePO4在不同温度下的充放电性能,发现即使在85 ℃下,它仍然能稳定工作,而且经过20次循环以后,60 ℃下测试的样品比23 ℃下测试的样品中的Fe3+含量低了14 % ,说明在较低温度下,锂离子的嵌入比较困难。 图1 充放电前后LiFePO4和FePO4两相图 Fig.1 The structural modes of LiFePO4 and FePO4 before and after charge/discharge 水热法也是制备磷酸铁锂的另一种常见方法,具有操作简单、物相均匀、粒径小的优点。在密闭体系中,以水为溶剂,在一定温度下,在水的自生压强下,溶液内部的金属盐具有较高的活性,在溶液中进行结晶反应。S.Yang等对水热法合成LiFePO4晶体进行了大量研究。他们发现pH值对实验结果的影响不大,而且水热法比高温固相法合成的晶体颗粒要小,Fe2+含量高。A.K.Padhi等发现用水热法在还原性条件下可得LiFePO4晶体,在氧化性条件下则得LiFePO4(OH) 晶体。当锂盐的量很少时,则会有多孔的FePO4·2H2O生成,它在高温时失水生成电化学非活性的FePO4。在用水热法合成LiFePO4晶体时要保证锂盐的量,以防止电化学非活性的FePO4晶体的生成。 除了固相法和水热法两种产业化方法外,在研究过程中还有各种各样的合成方法涌现出来,包括共沉淀法,乳化干燥法,机械化学激活法,微波炉加热法等。 3 磷酸铁锂的市场状况 采用磷酸铁锂作为锂离子电池正极材料的电池被称为磷酸铁锂电池(简称铁电池),由于铁电池的众多优点被广泛使用于各个领域。其中主要应用领域有: (1)储能设备:风力发电系统的储能设备,太阳能电池的储能设备,如太阳能LED路灯(比亚迪已经生产出该类电池); (2)电动工具:高功率电动工具、电钻、除草机等;(3)电动车辆:电动摩托车、电动自行车、电动婴儿车、电动轮椅和电动 [收稿日期] 2010-4-19 [基金项目] 国家自然科学基金资助项目(50771046) [作者简介] 侯贤华(1977-),男,湖北恩施人,博士后,主要研究方向为清洁能源材料。LiFePO4 FePO4 充电 放电

锂电池生产工艺分析

璽电池生产工艺分析 关于循环不合格的分析 一、正负极活性材料的物化结构性质的影响 正负极活性材料的物化结构性质对锂离子的嵌入和脱嵌有决定性的影响,因而影响电池的循环寿命。正负极活性材料的结构是主要的影响因素,使用容易脱嵌的活性材料充放电循环时,活性材料的结构变化较小,而且这种微小变化是可逆的,因而有利于延长充放电循环寿命。 1、材料在充放电过程中的结构稳定性 材料在充放电过程中的结构稳定性有利于提高其充放循环性能。如尖晶石材料LiXMn204,具有优越的循环性能,其主要原因之一便是在锂离子的嵌入和胶出过程中,单元晶胞膨胀、收缩率小于1%,即体积变化小;LiXMn204(X大于等于1)电极在充放过程中容量损失严重,主要是因为在充放电过程中,其颗粒表面发生John- Teller畸变效应,单元晶胞膨胀严重,使结构完整性破坏。对材料进行适当的离子掺杂可有效提高材料的结构稳定性。如对尖晶石结构LiXMn2O4进行适量的钻(Co) 掺杂,因钻使该材料的晶格参数变小,在循规蹈矩环过程中晶体结构趋于稳定,从而有效改善了其循环稳定性。 2、活性材料的料度分布及大小影响 活性材料的粒度对其循环性能影响很大。研究表明:活性材料的粒度在一定范围与材料的循环性能正相关;活性材料的粒度分布越宽,其循环性能就越差,因为当粒度分布较宽时,其孔隙度差,从而影响其对电解液的毛细管作用而使阻抗表现较大,当充电到极限电位时,大颗粒表面的锂离子会过度脱嵌而破坏其层状结构,而不利于循环性能。 3、层状结构的取向性及片度的影响

具有高度取向性和高度层状有序结构且层状结构较厚的材料,因锂离子插入的方向性强,使用其大电流充电放循环时性能不佳,而对于一些具有无序性层状结构 (混层结构)或层结构较薄的材料,山于其锂离子脱嵌速率快,且锂脱嵌引起的体积变化较小,因而其充放循环过程中容降率较小,且耐老化。 4、电极材料的表面结构和性质的影响 改善电极材料的表面结构和性质可有效抑制有机溶剂的共插入及其与电解液间的不良反应,如在石黑表面包覆一层有机聚合物热解碳,在一些正极活性材料如LiC002, LiC0XNil-X02等表层涂覆一层玻璃态复合氧化物如 LiO-A12O3-SiO2, Li20-2B203等可显著改善材料的充放电循环性能及电池的安全性。 二、电极涂层粘结强度的影响 正负极涂层的粘结强度足够高时,可防止充放循环过程中正负极优其是负极的粉化脱落或涂层因过度膨胀收缩而剥离基片,降低循环容降率;反之,如果粘结强度达不到要求,则随循环次数的增加,因涂层剥离程度加重而使电池内阻抗不断增大,循环容量下降加剧。具体说来,包括以下儿方面的因素。 1、胶粘剂的材料选择 LI前常用的粘合剂为水溶性有机氟粘合剂(PVDF, PTFE等),其粘结强度受物理化学性能参数如分子量、热稳定性、热收缩率、电阻率、熔融及软化温度以及在溶剂中的溶胀饱合度、化学稳定性等的影响;此外,正极和负极所用的粘结剂及溶剂均要非常纯,以免因杂质存在而使电极中的粘结剂氧化和老化,从而降 低电池的循环性能。 2、胶粘剂的配制

(完整版)锂电池英文生产流程

Mixing(配料) Mix solvent and bound separately with positive and negative active materials. Make into positive and negative pasty materials after stirring at high speed till uniformity. Coating(涂布) Now, we are in coating line. We use back reverse coating. This is the slurry-mixing tank. The anode(Cathode)slurry is introduced to the coating header by pneumaticity from the mixing tank. The slurry is coated uniformly on the copper foil, then the solvent is evaporated in this oven. (下面的依据情况而定)There are four temperature zones, they are independently controlled. Zone one sets at 55 degree C, zone two sets at 65 degree C, zone three sets at 80 degree C, zone four sets at 60 degree C. The speed of coating is 4 meters per minute. You see the slurry is dried. The electrode is wound to be a big roll and put into the oven. The time is more than 2 hours and temperature is set at 60 degree C. Throughout the coating, we use micrometer to measure the electrode thickness per about 15 minutes. We do this in order to keep the best consistency of the electrode. Vocabulary: coating line 涂布车间back reverse coating 辊涂coating header 涂布机头 Al/copper foil 铝/铜箔degree C 摄氏度temperature zones 温区 wind to be a(big)roll 收卷evenly/uniformly 均匀oven 烘箱 evaporate 蒸发electrode 极片 Cutting Cut a roll of positive and negative sheet into smaller sheets according to battery specification and punching request. Pressing Press the above positive and negative sheets till they become flat. Punching Punching sheets into electrodes according to battery specification, Electrode After coating we compress the electrode with this cylindering machine at about 7meters per minute. Before compress we clean the electrode with vacuum and brush to eliminate any particles. Then the compressed electrode is wound to a big roll. We use micrometer to measure the compressed electrode thickness every 10 minutes. After compressing we cut the web into large pieces. We tape the cathode edge to prevent any possible internal short. The large electrode with edge taped is slit into smaller pieces. This is ultrasonic process that aluminum tabs are welded onto cathodes using ultrasonic weld machine. We tape the weld section to prevent any possible internal short. And finally, we clean the finished electrodes with vacuum and brush. Vocabulary: cylindering 柱形辊压vacuum 真空particle 颗粒 wound 旋紧卷绕micrometer 千分尺internal short 内部短路 slit 分切ultrasonic 超声波weld 焊接

动力电池的研究进展

动力电池的研究进展 作者:胡信国来源:《化学与物理电源系统》编辑:樊晓琳 摘要:本文综述了动力电池的研发历程,对各类车载电池的性能、价格等进行了比较,介绍了动力电池在EV、HEV和EB的应用市场。着重讨论了VRLA电池作为HEV和电动自行车(EB)的车载动力存在的问题和解决方案,以及Li-ion动力电池的安全问题和新型安全正极活性材料。 关键词:动力电池,VRLA,Li-ion,Ni-MH,DMFC,PEMFC Abstract:The research history of motive power batteries was reviewed. The properties and price of various batteries for vehicle were compared. The applications of motive power batteries in EV, HEV and EB were introduced. The emphasis lies in the problems and solutions of VRLA batteries for HEV and EB, the safety and advanced positive active material of lithium-ion power battery. Key words: Motive battery; VRLA; Ni-MH; Li-ion; DMFC; PEMFC 1、前言 图1 世界石油消耗趋势 全球石油危机日益严重,石油储量仅剩人类使用约40年。但是石油消耗量的快速增长趋势仍没有得到缓解,世界石油消耗量统计与预测如图1所示。从美国石油消耗的结构(图2)来看,美国汽车消耗的石油占总消耗的60%,2004年全球汽车消耗8亿多吨汽油,占石油总消耗的50%。汽车燃油排放大量的CO、NOx等有害气体,严重地污染了人类的生活环境,目前全球汽车饱有量约8亿辆,2005年中国汽车产量600万辆,到2010年汽车饱有量也将达到7000万辆,高速发展的中国汽车业对世界环境和能源的影响越来越大。据统计,全球大气污染42%来源于交通车辆的污染,大城市的交通车辆更使大气污染的比例高达60%。为此,世界各国对发展电动车和混合电动车高度重视,2002年美国推出“Freedom car &Technologies”计划;2000年以来,中国政府实施“清洁汽车行动”,电动自行车业有了巨大发展,电动车列入了863计划,加快了EV和HEV的研发进程,作为车载动力的动力电池的研发,成为EV和HEV发展的主要瓶颈。

锂电池生产工艺修订稿

锂电池生产工艺 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

锂离子电池工艺流程 正极混料 原料的掺和: (1)粘合剂的溶解(按标准浓度)及热处理。 (2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。 干粉的分散、浸湿: (1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面; 如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。 当润湿角≤90度,固体浸湿。 当润湿角>90度,固体不浸湿。 正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。 (2)分散方法对分散的影响: A、静置法(时间长,效果差,但不损伤材料的原有结构); B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别 材料的自身结构)。 1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、 齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。 2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快, 但对材料自身结构和对设备的损伤就越大。 3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但 太稀将导致材料的浪费和浆料沉淀的加重。 4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度 越大;浓度越低,粘接强度越小。 5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排 出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。 6、温度对分散速度的影响。适宜的温度下,浆料流动性好、易分散。太热 浆料容易结皮,太冷浆料的流动性将大打折扣。 稀释。将浆料调整为合适的浓度,便于涂布。 原料的预处理 (1)钴酸锂:脱水。一般用120 oC常压烘烤2小时左右。 (2)导电剂:脱水。一般用200 oC常压烘烤2小时左右。 (3)粘合剂:脱水。一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。 (4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。 2.1.2物料球磨

相关主题
文本预览
相关文档 最新文档