当前位置:文档之家› PSCAD建模与仿真

PSCAD建模与仿真

PSCAD建模与仿真
PSCAD建模与仿真

PSCAD模型与仿真指南

(1)设置仿真时间和步长

新建的仿真工程,先应对“工程”的仿真时间、步长进行设置(也可在建好模型仿真开始前完成)。在“工程”模型窗口空白处鼠标右击,选择Project Setting,出现设置窗口,如图3-1所示,在这里可对本“工程”的仿真时间、计算步长、PSCAD绘图步长等进行设定。一般仿真时间“Duration of run ”设为0.3~ 0.5s,计算步长“EMTDC time step ( us ) ”设为0.1, 绘图步长“PSCAD plot step ( us ) ”设为10。如果计算步长大,则仿真进展快,但是,过电压变小(可能会漏掉峰值)!

图3-1 设置仿真时间、步长

(2)建立仿真模型

以交流电源串联R-L-C电路为例,先建立新工程,命名为:test1,从主界面右侧或库中选择需要的元件,放在工程上。点击该元件使其变为闪烁,按L或R 键,向左或右转90度,直到合适位置。再选择“导线”,点击导线,两端会出现小端点,用鼠标左压并拖动,可调节导线长度。调节方法:点击一段导线,它的两端就会出现两个绿色的方块,此时点住某个方块对导线进行拉长或者缩短,直到想要的长度。用适当长度的导线将各个元件按照原电路的拓扑结构连接起来。注意:导线与导线,或导线与元件的一端连接时,当两条导线或导线与元件接近时,会自动连接上;导线与导线交叉时,相互绝缘,如果要两导线在交叉点连接,需要从主界面右边常用元件中选择“Pin ”并放置在交叉点。

建立的仿真模型如下图3-2所示,其中E1为测对地电压的测量元件,E2为测“0.3电阻”的端电压,I1为测电流。

图3-2 工程中的元件、导线和电路模型

建立电路模型时应该注意:

(1)模型中的元件,特别是同类元件的名字绝对不得重复。

(2)模型图上若有任何无关的东西,例如:一条悬空线、点,或者参数设置不对,例如:负荷及其变压器的容量大于电源变压器的容量,则运行时

就会出错。

(3)电源回路必须有一点接地,否则,运行出错。如果要求不接地电源,可以增加一个MΩ级的大电阻。

(4)对大模型应采取“步步为营”的方法建立,即:先建电源与部分元件,试运行一下,通过了,再增加元件,否则,查找问题,直到试运行通过

了,才可以继续。

(3)设置元件参数

需要对所有元件的参数(包括元件名称-名称不可重复)进行设定,方法:双击元件符号,弹出对话窗口,修改其中参数,按“OK”退出。一些元件,例如:电源、变压器等,需要设置的参数较多,因此,对话窗口中含有多个副窗口,要一一进行设置。

下面以电源为例,进行参数设置。双击电源符号,出现下图3-3窗口式的设置菜单:

图3-3 电源参数设置对话窗口

电源菜单第1页“Configuration”-配置,这是最基本的设置:(1)电源名字,

(2)电源内部阻抗,可以选择电感、电容、串联的RLC,理想电源等,(3)电源是否接地,

(4)专门参数:

“Behindt the Source impendance”在电源阻抗之后, -当仅仅

知道电势E和相位角 ,才选择该项。

“At the Terminal”(在终端) -如果稳态潮流的最终数据(电

压或有功、无功)已知,则选择该项。

(5)电源的输入方式:

内部的-电源的大小、频率由填入表中数据确定,而且为常数;

外部的-由其它方式确定。

(6)电源类型:选择AC / DC。

第2页“Signal Parameters”-信号参数,如图3-4,可以设置:

图3-4

(1)电源:电压源默认单位kV,电流源默认单位kA。DC为幅值;AC为有效值,AC电源按照正弦规律变化。

(2)上升时间:电源从0升到稳态值时间,设为0。注意:实际总有延时,约0.02秒。

(3)t = 0的初始相位角:以度我单位。

(4)电源的频率。

第3页“Resistance”-非理想电源的电阻参数设置,

第4页“Impedance R//R-L”-非理想电源的并联阻抗参数设置,

第5页“Resistance”-非理想电源的R-L-C串联阻抗参数设置,

第6页“Inductance”-非理想电源的电感参数设置,

第7页“Capacitance”-非理想电源的电容参数设置,

第8页“Resistance”-非理想电源的阻抗参数设置,

第9页“Monitoring”-监控(跟踪)参数,设置电源名称。

(4)设置输出量的观测与调节

电路模型的仿真输出可以是单相或三相的电压、电流瞬时值或有效值、功率、频率、相位差,等等,输出结果采用示波器方式给出。注意:测量元件、“数据标签”、“输出通道”、示波器必须配套使用,缺一个运行就出错。

首先,要在电路模型需要输出的位置上设置测量元件(常见的电压、电流测量元件可直接从主界面右边取,其它的从库中meters单元中取),例如:在图3-5中设置输出电压E1、E2和电流I1三个测量元件。输出信号传递通过主界面

右边元件栏上的“数据标签”(从右边拦中选出Data Label )这个元件来实现,信号对应关系是通过信号名称来确定。选用三个“数据标签”元件并双击它,将其名称设定为与对应的电压、电流监测元件名称(E1、E2、I1)相同,然后,将“数据标签”用导线连接到“输出通道”( 从右边拦中选出Output Channel )上。使用示波器(从右边拦中选出Graph Frame )观察波形,还须使用输出通道,可以双击“输出通道”,对其进行设定,特别是Title选项,最好设定为信号的名字,因为这个是要在示波器上显示的。连接好以后如下图3-5所示:

图3-5 设置测量元件、“输出通道”

三个输出信号,可用三个示波器进行显示,也可用一个示波器显示。点击主窗口右边的快捷栏的示波器,可拉出一个示波器显示框,在示波器上右击,选择“Add Analog Graph”,如图3-6所示,这就将示波器设置为一个模拟量示波器。

图3-6

示波器设为模拟示波器后,将需要显示的数据传递到示波器上,具体方法是,右击“输出通道”,在“Input / Output Reference”选项中选择“Add as Curve”,如下图3-7所示。

图3-7

在示波器的模拟显示框上右击鼠标,选择“Paste Curve”,如下图3-8所示,这就将这一个信号粘贴输出到了示波器上。按照同样方法,可在一个示波器上粘贴几个信号,则一个示波器就同时显示几个波形。

图3-8

设置示波器显示坐标,使得波形能够恰当显示。双击示波器左或右边空白处,设置纵坐标显示的最大最小值、每个坐标格的大小;双击示波器下方空白处,设置横坐标,如图3-9.1, .2,.3。

图3-9

纵坐标菜单:在“Preferences”中设屏幕背景色、网格、曲线标号等;“Title”

中设Y的名称、最大最小值、纵坐标间隔(Grid)大小。

横坐标菜单:在“Title”中设X名称、显示的最大最小值、横坐标间隔(Grid)大小。“Markers”中标记最大最小值,而且在图右边显示数值。

示波器上具有自动缩放功能,当仿真完成后,如果波形超出了示波器的显示范围,可在示波器空白处右击,选择zoom ,Rest All Extents,如图3-10,就会自动按照X轴、Y轴进行缩放到合适的显示波形

图3-10

(5)进行仿真

建好模型、设完参数、示波器、仿真时间和步长,才能进行仿真。注意:如果模型中存在任何不需要的元件、导线等,仿真不能够执行。当仿真执行时发生错误,有关信息以“小红旗”形式显示在主界面下方出错信息拦中,双击“小红旗”以标签方式指示到模型中的出错处,根据该信息可对模型进行修改。

仿真开始:点击主界面上方“绿色三角”按钮;如图3-11所示,中断仿真,点击“红色园点”按钮。

图3-11

仿真结果如下图3-12所示,注意:纵坐标单位为kV或kA,横坐标单位为秒s 。

图3-12

如果想调整一个示波器的大小,可以有鼠标点击示波器上方的“Advance Graph Frame”,此时示波器四周出现绿色方块,如图3-13,用鼠标按住绿色方块拖动,即可对示波器的大小进行调节。

图3-13

如果想对显示的波形进行X方向缩放,可将鼠标放置在下面所示的位置,此时鼠标光标将会变为双向箭头,如图3-14,就可以通过左右拖动对波形进行X 方向的缩放了。

图3-14

如果想在一个示波器当中对两个波形进行比较,可以将信号输出贴到一个示波器中,同时进行显示。例如,下面将E1、E2共同输出到同一个示波器中显示。在E1对应的输出通道中右击,在“Input/Output Refrernce”选项中选择“Add as Curve”,然后使用上面介绍的方法将其粘贴到示波器上,然后再将E2对应的输出通道右击,同样在“Input/Output Refrernce”选项中选择“Add as Curve”,此时在已经粘贴了E1信号的示波器的显示框中右击鼠标,选择“Paste Curve”,这样E2信号也就粘贴到了同一个示波器上了,如下图所示,E1信号和E2信号将用两种不同的颜色显示,此时再运行仿真程序,在这个示波器中就可以看到E1和E2对比的波形了,如下图3-15所示:

图3-15

要想读取示波器中曲线在某点的数值,可以用鼠标移到这个点上,如图3-16,等待一会,就会显示这个点的X-Y坐标,从而实现对数值的读取。

图3-16

在示波器显示框中,还可以点住鼠标左键,选择感兴趣的区域松开鼠标后,如图3-17,该区域自动放大,以便观察,则在一些高频信号的显示中比较实用。

图3-17 放大前后的波形

4. 开关/ 断路器

开关(断路器)从master库到Breakers单元中选取,库中有:单相、三相开关,三相开关有单线和三线连接方式,如下图4-1。对于小方块表示的开关,运

行时红色(工程中称为高开关)实际为闭合,绿色(工程中称为低开关)为断开。开关必须与一个Logic 模块配合使用,即:需将 “BRK ”和“BRK -Time Breaker Logic ”都复制到工程中去。

图4-1 开关模型库

在工程中双击开关图形,可以看到如图4-2所示的菜单式对话窗口:

图4-2

在图4-2中可设置:

“Breker Name ”: 设置开关的名称。

“Open possible if current flowing ”项中选择yes ,表示在任何时间可断开

的理想开关;选择no ,开关在电流过零才是关断。

“Use Pre-insertion Resistance ”-应用开关合闸插入电阻,一般选择N0。

“Graphics Display ”-开关符号显示形式:“Low V oltage ”显示线条式开

关,“High V oltage ” 显示方块式开关,闭合时方块式为红色,打开

为绿色。

PSCAD 中开关不是真正的理想开关,打开时开关的电阻应设置810≥Ω以上,

闭合时开关的电阻应设置Ωm Ω以下,如图4-3所示:

图4-3

在同一个模型中,可以使用多个开关,这些开关由不同的开关控制逻辑单元进行控制,为了实现控制,需要将开关设置为不同的名字,同时,控制逻辑的名字也要与开关一一对应,如果对应不正确,则仿真就会出错,如下图4-4所示:

图4-4

Logic模块的作用是按照设定的时间控制开关动作。在模型中点击Logic模块,就能够对开关动作时间进行设置,如下图4-5所示:

图4-5 开关逻辑控制单元设置

开关可以设置动作一次或两次,上图表示:BRK动作次数2次,t = 0时初始状态为close,t = 0.1s时刻,执行打开动作,t = 0.15s 时刻,再次执行闭合动作。一般情况,开关动作时间最好不要设置到大于整个模型仿真的时间以外。

在图4-6所示仿真结果中,波形显示了二阶电路突然断开和接入正弦交流电源时观测的电压电流振荡波形。

图4-6 仿真结果

注意:如果要开断电流源,必须要保持电流源自己的回路,因为电流源永远有电流流出,图4-7就断不开;给电流源并联一个数十k的大电阻(电阻

值应不影响开关闭合后的电流大小),如图4-7才能够断开。

图4-7 图4-8

5.架空线路/ 分布参数线路

(1)架空线(分布参数线路)模型

从master库到More on Transmission Lines单元中选取Tline模型,注意:一条线必须同时选用三个元件:2个外部连接的端口、1个线路内部连接件,如下图5-1所示:

(a) PSCAD 4.02 版(b) PCSAD 4.2版

图5-1

在图5-1中,上图部分为架空线路(分布线路)与其它元件连接的外部连接端口,点击后出现下图5-2菜单,可设置:线路名称(每条线路的名称不得相同!),线路的导线数(可改成单相、多相线路,对单相选为1),模型图显示导线数(对单相选为single line )。

对单相线路可以不用这两个外部连接的端口元件。

图5-2

在图5-1中,下图部分为线路内部的连接件:T形(PSCAD 4.02 版)/ “双端箭头”形(PSCAD 4.2 版)或连线形,是设置线路参数的关键。点击后出现下图5-3菜单:

图5-3

设置内容:

线路名称,必须与线路外部连接端口的名称一一对应;

稳定状态频率:波在线路上多次折反射后趋于稳定的频率,这个频率f 越高,波经过线路的一次传输时间f

v l 1==τ就越小,波在线路上的折反射过渡过程(趋于稳定)的总时间也越少。因此,f 值

越大,计算时间越少,但波过程的计算效果越差。所有,应

尽可能取小值。当线路长度小于990km ,f 值可取为0;当线

路长度大于990 km ,f =0,则计算可能太大,出错,应0.5,

0.8, 1等,取得越大,衰减趋于稳定的时间越少。

线路长度: 线路的导线数,也需与线路外部连接端口的设置完全一致;

端头风格形式:直接连接(端头直线形式),“双端箭头”形式。

对单相线路,可不用线路模型的2个外部连接端口、用线路

内部连接件的直接连接形式与外部其它元件端子进行连接。

在图5-3中,点击“Edit “打开,才可以设置线路的结构参数。

先从master 库到More on Transmission Lines 单元中选取线路模型的“定义标

签”和线路导线几何模型,并复制、粘贴到打开的“Edit “界面,如图5-4所示( 图中选择的是单相导线 )。其中:“定义标签”有“ Bergeron -贝杰龙“ 模型(一般线路选用),另外2个为相频模型、频模模型;线路导线的几何模型有多种形式,要根据线路的导线数选取。

PSCAD 中有三种输电线路或电缆的等效模型:PI 型等值电路、Bergeron 模

型和依频特性模型。在线路处于基波频率下,PI 型等值电路和Bergeron 模型足够使用,不同之处是,Bergeron 模型用分布参数方式来代替PI 型等值线路中的LC 元件,电阻等都是集中参数。

依频特性线路模型考虑到所有频率相关的参数,用模分析技术(Modal

Techniques )和相域(Phase Domain )处理技术进行求解,可以在比较大的频率范围内相对准确地线路的特性。使用这种模型,只需要T-line/Cable 的导体属性和几何参数,便可以搭建线路模型,内置的输电线路和电缆常数例程(Transmission Line and Constants Routine )即可算法出数据,并且可以以文件或波形的形式输出。在PSCAD/EMTDC 中的依频特性模型有两种:Frequent Dependent(Mode) Model 和Frequent Dependent(Phase) Model ,前者简称为Mode 模型,后者简称为Phase 模型。对于理想换位线路,这两种模型都可以给出比较准确的结果。对非换位线路,Phase 模型要比其它任何模型更准确。

)(ωk i )

(ωm i

)(ωk V )

(ωm V

图 错误!文档中没有指定样式的文字。-1 频域线性模型

Figure 错误!文档中没有指定样式的文字。-1 Mode of the Linear Frequency Region

Phase 模型和Mode 模型计算原理基本相同。在频域下的特定频率的线路方程

的求解,可以方便地得到线路在时域下的方程。如图4-1所示为从两端看进去的线路模型在频域中的等值电路。特定频率下,线路其中一端的电压和电流可以用另一端的电压或电流来表达:

()cosh[()]()()sinh[()]()k m c m V L V Z L i ωγωωωγωω=??-?? (错

误!文档中没有指定样式的文字。-1)

)(])(cosh[)()

(])(sinh[)(ωωγωωωγωm m c k i L V Z L i ??-??= (错误!文档中没有指定样式的文字。-2) 在这里:)()()(ωωωγZ Y ?=为传播常数

)()()(ωωωY Z Z c =是波阻抗

C j G Y ωω+=)(是线路的并联导纳

L j R ωω+=)(Z 是线路的串联阻抗

在节点k 处提出前向和反向行波的函数k F 和k B :

)()()()(ωωωωk c k k i Z V F ?+= (错

误!文档中没有指定样式的文字。-3)

)()()()(ωωωωk c k k i Z V B ?-= (错

误!文档中没有指定样式的文字。-4)

同理在节点m 处:

)()()()(ωωωωm c m m i Z V F ?+= (错

误!文档中没有指定样式的文字。-5)

)()()()(ωωωωm c m m i Z V B ?-= (错

误!文档中没有指定样式的文字。-6)

把方程(4-4)代入方程(4-3)可得:

)()(2)(ωωωk k k B V F -= (错

误!文档中没有指定样式的文字。-7)

同理,由方程(4-5)和(4-6)可得:

)()(2)(ωωωm m m B V F -= (错

误!文档中没有指定样式的文字。-8)

方程(4-1)和(4-2)(k 点和m 点的方程)可以用前行和反行波的方式表示为:

)()()(ωωωm k F A B ?= (错

误!文档中没有指定样式的文字。-9)

)()()(ωωωk m F A B ?= (错

误!文档中没有指定样式的文字。-10)

在这里,

L e L L A )(]

)(sinh[])(cosh[1)(ωγωγωγω-=???= (错误!文档中没有指定样式的文字。-11)

)(ωA 是传播常数并且是一个复数,实部α是衰减常数,虚部β是相位常数。

方程(4-4)和(4-6)可以用4-2所示的等值电路来表示。

将(4-8)代入(4-9),得到:

)]()(2[)()(ωωωωm m k B V A B -?= (错

误!文档中没有指定样式的文字。-12)

同样地,由(2-7)和(2-10)可得到:

)]()(2[)()(ωωωωk k m B V A B -?= (错

误!文档中没有指定样式的文字。-13)

为了在时域下表达图4-2和式(4-11)及(4-13),要先求解式(4-9)的方

程。在时域的相乘变成频域的卷积:

??-???t

m m du u t B u A B A τωω)()()()( (错误!文档中没有指定样式的文字。-14)

只有经过最短时间τ,线路一端的脉冲才能到达另一端,方程(4-14)的卷

积的积分下限是传播时间τ,传播时间τ可以用传播常数的虚部β来计算。

V )(ωm B )(ωk )(ω(c Z 图 错误!文档中没有指定样式的文字。-2 频域线性电路

Figure 错误!文档中没有指定样式的文

字。-2 Linear Circuit in the Frequency Region

R

图 错误!文档中没有指定样式的文

字。-3 故障等值电路图

Figure 错误!文档中没有指定样式的文

字。-3 Equivalent Circuit of the Fault

故障发生模块

PSCAD/EMTDC提供了专门的针对输电线路的故障模块,由选择不同的故障类型,而使内置开关分别实现,单相接地短路、两相相间短路等等不同的故障类型。还可以设置故障电阻的大小等。

PSCAD/EMTDC还专门提供时控故障逻辑,通过设置时控故障逻辑内部参数,可以控制故障的出现时间和故障持续时间,对仿真实现行波波速度的测定提供了可能。

图5-4

在图5-4中,点击上部的导线“定义标签”,出现如下菜单图5-5:

图5-5

在图5-5中设置导线模型:

选择:是否使用近似的阻尼(Damping)衰减,NO ;

Yes,则填近似频率损失、0次常数时间、所有金属模型的常数时间,

这一选项针对用于特殊的无线电高频。

选择:是否使用“interpolation Travel Time”-插入传输时间;

这一选项针对短线路时采用,PSCAD中计算最小长度小于15 km,相当

μ,如果线路小于15 km,计算误差可能较大,线路最好用于传输50 S

库中的“∏”型线。

选择:是否将这条线路作为无反射线(无限长线),应选NO,否则无折反射。在图5-4中,点击中部的导线布置图,出现如下菜单图5-7,设置导线的几何参数:

PSCAD在电力系统电磁暂态仿真的应用

引言 电力工业是国民经济发展的基础工业。随着经济建设的发展,发电设备的容量也在相应增大。为了更好的保证安全运行,经济运行,并保证电能质量,我们应该考虑任何电力系统故障的情况,并加以研究。 电力系统正常运行的破坏多半是由短路故障引起的。在供电系统中,短路冲击电流会使两相邻导体间产生巨大的电动力,使元件损坏;大的短路电流将使导体温度急剧上升,会使元件烧毁;阻抗电压大幅下降,影响系统稳定性。发生短路时,系统从一种状态变到另一种状态,并伴随产生复杂的电磁暂态现象。所以有必要对电力系统电磁暂态进行研究。 目前,电力系统暂态分析的研究理论已越来越完善,但基本上是通过建立数学模型,并解数学方程来分析的。这让我们很难理解其推导过程,所以很有必要利用直观的方法来分析并得出相同的结论。 本设计利用PSCAD软件建立了简单电力系统和复杂电力系统两个仿真模型。简单电力系统模型包括:同步发电机模型、负荷模型等;复杂电力系统模型包括:同步发电机模型、变压器模型、输电线模型、负荷模型等。 本设计通过运用EMTDC模块对电力系统仿真进行计算,并分析其电磁暂态稳定性,其中计算了发生四类短路故障时的暂态参数,并对其分析比较,来研究电力系统的这四类短路之间的异同和暂态对电力系统的影响。 通过此次设计进一步巩固和加强了四年来所学的知识,并得到了实际工作经验。设计中查阅了大量的相关资料,努力做到有据可循。在设计中逐步掌握了查阅,运用资料的能力,总结了四年来所学的电力工业的相关知识,为日后的工作打下了坚实的基础。 由于我在知识条件等方面的局限,仍存在许多不足,但在指导老师和学院大力支持和帮助下,已有相当大的改进,在此表示衷心的感谢。

基于PSCAD4.2电力系统距离保护的仿真分析

基于PSCAD4.2电力系统距离保护的仿真分析 摘要:简要地介绍了PSCAD4.2软件及其工具箱,分析了输电线路距离保护的基本原理,并利用软件提供的工具箱搭建了距离保护仿真模型,设置了输电线路可能发生的接 地故障和相间故障,最终得出了不同故障类型下输电线路的电压、电流以及其他量 的变化规律的波形,从而实现了三段式距离保护的作用。仿真波形结果表明:利用 该软件建立的模型是能够准确反应距离保护的作用机理,即距离保护装置能够快速 响应故障信号并动作于断路器,实现输电线路的保护。 关键词: PSCAD4.2;距离保护;接地故障;仿真 Analysis of power system distance protection simulation based on PSCAD4.2 Abstract: Briefly introducing PSCAD4.2 software and its toolbox ,then analyzing the basic principle of the transmission line distance protection , and use the toolbox that the software provides to build a protection simulation model and set a ground fault and phase transmission line failures the system may occur, at last obtain the voltage, current and waveform variation of other different types of transmission line failures , enabling three- distances protection. Simulation waveform results showed that: using the model of the software is accurately able to establish the reaction mechanism of the distance protection , distance protection device can quickly respond to the circuit breaker failure signal and act on it to achieve protection of transmission lines . Key words: PSCAD4.2;Distance Protection;Ground Fault;Simulation 0 引言 电力系统保护中,输电线路的保护主要是距离保护,其不受运行方式的影响,继电保护性能得到提高,因而获得广泛的应用[1]。文献[2]过对继电器模块的搭建来得到对电力系统的继电保护,但如果保护原理发生变化则相应的继电器模块也会发生变化,保护模块的移植性不强。目前,虽然电力系统的保护已经进入微机自动化时[3],但距离保护体系并不十分完善, 其中接地电阻对距离保护的影响表现突出,文献[4-6] 详述了采用自适应的方法来消除接地电阻对距离保护的影响。 PSCAD4.2是一种电力系统电磁暂态仿真软件,尤其在控制系统、无功补偿系统、高压直流输电以及继电保护系统等领域较为活跃,该软件主要对电力系统时域和频率等变量进行 仿真分析,其结果一般以简单易懂的图形界面输出,使得仿真过程清晰、准确而灵活[7-8]。 1 电力系统距离保护的原理 在电力系统继电保护中,距离保护扮演着重要的角色。它满足电力系统的选择性、灵敏性、可靠性以及能够快速切除故障,从而快速恢复电网的正常稳定运行。距离保护是反应于保护安装地点到故障发生处之间的距离(阻抗),以此来根据阻抗的大小而整定动作时间的一 种保护装置[9]。为了满足选择性、速动性和灵敏性的要求,现在广泛采用的是三段式距离保护,其网络接线如图1。

武汉大学电气工程学院丁涛老师综合自动化PSCAD仿真实验

武汉大学 电气工程学院 综合自动化PSCAD仿真实验 姓名:*** 学号:20**302540*** 班级:电气**级*班

一、同步发电机的准同期并列操作 发电机的准同期并列操作,是在同步发电机已经投入调速器和励磁装置,当发电机电压的幅值,频率和相位接近相等时,通过并列点断路器合闸将发电机并入电网运行的一系列动作。 具体参见教材《电力系统自动化》或《自动装置原理》。 1.实验预习 清楚同步发电机准同期并列的概念和原理。 2.实验目的 了解数字仿真软件中发电机组的构成,仿真同步发电机准同期并列操作。 3.实验步骤 (1)将仿真示例copy到电脑。进入PSCAD,打开sync_in_paralell; (2 ) 三个时间的设置 点右键,再点Project setting, 再点Runtime,注意Time setting 三个参数的设置。 Duration of run (sec): 程序计算时间,以秒为单位; Solution time step (sμ): 计算步长,以微秒为单位,两个相邻计算点之间是一个 计算步长; μ,用计算输出的数据来说明,第一个数据的时间坐标是0s, 如上图的200s, 50s μ。 最后一个数据的时间是200s,每两个数据的时间坐标相差50s Channel plot step (sμ): 作图步长,以微秒为单位,图上相邻两个点之间的时间 是一个画图步长。 请将模型计算时间和运行时间区分开,同学们可以看看要得到200s的计算数 据,运行时间是多少。记下点击菜单开始运行和结束运行的实际时间,两者之 差就是运行时间,该时间与电脑性能密切相关。 (3)学习各个元件的使用。 a. 在帮助中没有介绍的元件 例如,双击后有, 表明:点击菜单运行图标,程序计算时间从0开始计时,当计算时间是时,

PSCAD的电力系统仿真大作业3

仿真计算 1、在PSCAD中建立典型的同步发电机模型,对同步发电机出口三相短路进行仿真研究。要求: (1)运行“同步发电机短路”模型,截取定子三相短路电流波形,并对波形进行分析,验证与理论分析中包含的各种分量是否一致; 图一同步发电机短路模型

图二、定子三相短路电流 定子三相短路电流中含有直流分量和交流分量,其中周期分量会衰减。三相短路电流直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路电阻和等值电感决定,大约在0.2s。交流分量也按指数规律衰减,它包括两个衰减时间常数,分为次暂态过程、暂态过程和稳态过程。 (2)修改电抗参数Xd(Xd’,X’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析; 图一是Xd`=0.314 p.u,Xd``=0.280 p.u情况下的定子电流波形;图二是Xd`=0.514 p.u, Xd``=0.280 p.u情况下的定子电流波形。显然,随着Xd`的增大定子的电流在减少。

图三、定子三相短路电流 (3)修改时间常数Td(Td’,T’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析。 参数Td’=6.55s ,Td”=0.039s时定子电流如图一所示;当参数变为Td’=3.55s ,Td”=0.039s是定子电流如图三所示,显然

图四、定子三相短路电流 2、利用暂态仿真软件对下面的简单电网进行建模,对模型中各元件参数进行详细说明,并进行短路计算。将故障点的电流电压波形及线路M端的电流电压波形、相量图粘贴到课程报告上。 要求:

(1)短路类型为①三相故障;②A相接地;③BC两相故障。 (2)两端系统电势夹角取15o δ=。 (3)故障点设置为线路MN中点(25km处)。 (4)仿真结果包括M、N两侧和短路点处的三相电压、电流的瞬时值波形和短路发生后时刻的三相电压、电流相量图。 三、课程学习心得 通过本课程的学习,你有哪些体会和心得,请写出来。可以从以下几个方面考虑,但不局限于这些方面:通过课程你学到了哪些知识;学会了哪些方法;对电力系统的认识;对课程的建议等。 课程的开始复习了一下简单的电力系统稳态分析部分,然后就进行了课程的重点就是电力系统的暂态分析,其中包括PARK变换、标么值下的磁链方程和电压方程、同步发电机各种电势的表达式、发电机阻抗的概述、(次)暂态电抗和(次)暂态电势、发电机三相短路电流、对称分量法、叠加定理、电力系统简单故障分析。学习了几种电力系统分析中的方法,例如分析同步发电机短路时PARK变换将静止三相坐标系的量转化为旋转坐标系dq0的量,还有分析不对称故障时对称分量法转化到相对简单的对称故障分析中。

PSCAD的电力系统仿真大作业

电力系统分析课程报告姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef 与Tm均为定常值,且发电机空载。当运行至时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约)。pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=)。 图3 同步发电机模型参数Ta对应位置

1)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=发生短路If波形 2)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=发生短路If波形 短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=时发生三相短路,三相短路电流波形如图7所示。 图7 t=时三相短路电流波形 2)当在t=时发生三相短路,三相短路电流波形如图8所示。 图8 t=6时三相短路电流波形 Xd、Xd`、Xd``对短路电流的影响 1) Xd的影响 Pscad中对于Xd的设置如图9所示: 图9 Pscad对于D轴同步电抗Xd的设置 下面验证不同Xd时A相短路电流的稳定值。 i.Xd=(标幺制,下同)时,仿真波形如图10所示 图10 Xd=时A相短路电流波形 ii.Xd=10时,仿真波形如图11所示 图11 Xd=时A相短路电流波形 2)Xd`的影响 在Pscad中暂态电抗Xd`的设置如图13所示: 图13 Pscad对于暂态电抗Xd的设置 下面验证不同Xd`时A相短路电流的暂态过程。 i.Xd`=时A相短路电流的波形如图14所示: 图14 Xd`=时A相短路电流波形 ii.Xd`=1时A相短路电流的波形如图15所示: 图15 Xd``=1时A相短路电流波形 3)Xd``的影响 这里次暂态电抗Xd``与暂态电抗Xd`相似,Xd``影响的是短路后的次暂态过程。

电力系统仿真软件介绍

电力系统仿真软件 电力系统仿真软件简介 一、PSAPAC 简介: 由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 功能:DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。 LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。 TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi 方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 二、EMTP/ATP 简介: EMTP是加拿大H.W.Dommel教授首创的电磁暂态分析软件,它具有分析功能多、元件模型全和运算结果精确等优点,对于电网的稳态和暂态都可做仿真分析,它的典型应用是预测电力系统在某个扰动(如开关投切或故障)之后感兴趣的变量随时间变化的规律,将EMTP 的稳态分析和暂态分析相结合,可以作为电力系统谐波分析的有力工具。 ATP(The alternative Transients Program)是EMTP的免费独立版本,是目前世界上电磁暂态分析程序最广泛使用的一个版本, 它可以模拟复杂网络和任意结构的控制系统,数学模型广泛,除用于暂态计算,还有许多其它重要的特性。ATP程序正式诞生于1984年,由Drs.

几种常用电力系统仿真软件的比较分析

几种常用电力系统仿真软件的比较分析 电力系统仿真软件的分类较为复杂,按照不同标准可分为:实时与非实时,短时与长时间等不同种类,而各个仿真软件在功能上都具有综合性,只是侧重点有所不同,在报告的最后有各类仿真软件功能的比较,以下为较著名的仿真软件的介绍。 1 RTDS RTDS由加拿大RTDS公司出品,一个CPU模拟一个电力系统元器件,CPU间的通讯,采用并行-串行-并行的方式。RTDS具有仿真的实时性,主要用于电磁暂态仿真。目前RTDS应用规模最大的是韩国电力公司(KEPCO)的装置, 有26个RACK,可以模拟400多个三相结点。RTDS仿真的规模受到用户所购买设备(RACK)数的限制。这种开发模式不利于硬件的升级换代,与其它全数字实时仿真装置相比可扩展性较差。由于每个RACK的造价很高, 超过30万美元, 因此仿真规模一般不大。基于上述原因,RTDS目前主要用于继电保护试验和小系统实时仿真。 2 EMTDC/PSCAD EMTDC是一种世界各国广泛使用的电力系统仿真软件, PSCAD是其用户界面,一般直接将其称为PSCAD。使得用户能更方便地使用EMTDC进行电力系统分析,使电力系统复杂部分可视化成为可能。PSCAD/EMTDC基于dommel电磁暂态计算理论,适用于电力系统电磁暂态仿真。EMTDC(Electro Magnetic Transient in DC System)即

可以研究交直流电力系统问题,又能完成电力电子仿真及其非线性控制的多功能工具。

PSCAD由Manitoba HVDC research center开发。 3 PSASP PSASP由中国电力科学研究院开发。PSASP的功能主要有稳态分析、故障分析和机电暂态分析。稳态分析包括潮流分析、网损分析、最优潮流和无功优化、静态安全分析、谐波分析和静态等值等。 故障分析包括短路计算、复杂故障计算及继电保护整定计算。机电暂态分析包括暂态稳定计算、电压稳定计算、控制参数优化等。 4 ARENE 法国电力公司(EDF)开发的全数字仿真系统ARENE, 有实时仿真和非实时仿真版本。实时版本有: (1)RTP版本,硬件为HP公司基于HP-CONVE工作站的多CPU 并行处理计算机,该并行处理计算机的最大CPU数量已达32个,可以用于较大规模系统电磁暂态实时仿真; (2)URT版本,HP-Unix工作站,用于中小规模系统电磁暂态实时仿真; (3)PCRT版本,PC-Linux工作站,用于中小规模系统电磁暂态实时仿真。 ARENE实时仿真器可以进行如下物理装置测试:继电保护,自动装置,HVDC和FACTS控制器,可以用50微秒步长进行闭环电磁暂态实时仿真。ARENE不作机电暂态仿真。采用基于HP工作站的并行处理计算机,其软硬件扩展也受到计算机型号的制约。

PSCAD电力系统仿真软件介绍

PSCAD电力系统仿真软件介绍 只要您能想得到,就能模拟得出 随着电力系统的发展,对精确的、直观的仿真工具的需求变得越发重要了。用PSCAD,您能够 创建、仿真、并能轻易地模拟您的系统,给电力系统仿真提供了无限可能。PSCAD包括一个完 整的系统模型库,系统模型从简单的无源元件和控制功能,到电机和其他复杂的设备。 PSCAD得益于30多年的不断研究和开发。我们从全球用户群的想法和反馈中得到启发。这个哲理使得PSCAD成为当今最受欢迎的电力系统暂态仿真软件。 提供知识、专业技术和解决方案 我们的专家在电力系统行业为我们的客户提供一系列全面的技术服务。我们为全球的电力行业提 供专业的知识、技术和解决方案,包括电力系统研究和项目管理服务。作为加拿大最大公共事业 公司之一的子公司Manitoba HVDC Research Centre ,将多年的经验和独特的视角跟技术研究结合到一起,是公认的应用电力系统分析和建模的世界领导者。 Man itoba HVDC Research Centre 所能提供的项目研究以及给世界各地的公司提供过的服务。 电力系统研究 作为世界知名的PSCAD仿真软件的开发者,我们有独特的优势和对仿真研究的深刻理解,这是很多其他技术服务提供商所不具备的。在电力系统规划和业务研究方面,我们对使用各种软件工 具有着丰富的经验,比如PSCAD, PSS/E, DSA Power Tools, ETAP , CYME, Risk_A 等等。我们 给公用事业,顾问公司,工业客户,设备制造商和行业领导者等提供过服务,并与研究学术机构, 运营商以及监管机构有着密切的合作。

PSCAD的电力系统仿真大作业1

电力系统分析课程报告 姓名****** 学院自动化与电气工程学院 专业控制科学与工程 班级***************** 指导老师****** .

二〇一六年六月十六.

1同步发电机三相短路仿真计算 1.1仿真模型的建立 根据老师给的三相同步发电机模型做了修改(空载)。同步发电机三相短路实验仿真研究的模型如下图所示: 图1.1 同步发电机三相短路仿真研究的模型 1.2 PSCAD中的仿真结果 1.2.1发电机出口电压Ea。 发电机出口电压Ea,如下图所示:

图1.2发电机出口电压Ea 1.2.1衰减时间常数Ta对于直流分量的影响 励磁电压和原动机输入转矩Ef与Tm均为定常值1.0,且发电机空载。当运行至0.5056s时,发电机发生三相短路故障。 定子三相短路电流中含有直流分量和交流分量,三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定,大约0.2s。PSCAD同步发电机模型衰减时间常数Ta (Ta=0.235s)对应位置下图所示。 图1.3同步发电机参数Ta设置图 (1)当衰减时间常数Ta=0.235s时,直流分量(If)的衰减过程如下图所示。

图1.4直流分量的衰减波形 (2)当衰减时间常数Ta=0.125s的参数设置、直流分量(If)的衰减过程如下图所示。 图1.3同步发电机参数Ta设置图

图1.4直流分量的衰减波形 1.2.2短路时间不同的影响 同步发电机出口三相短路的时间不同对三相短路电流的影响:短路电流的直流分量起始值越大,短路电流瞬时值就越大;直流分量的起始值与短路时间的电流相位直接关系。短路时间参数设置如下图所示:

PSCAD的电力系统仿真大作业

电力系统分析课程报告 姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef 与Tm均为定常值1.0,且发电机空载。当运行至0.5056s时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 2.1 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约0.2s)。pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=0.278s)。 图3 同步发电机模型参数Ta对应位置

1)Ta=0.278s时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=0.278s发生短路If波形 2)Ta=0.0278s时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=0.278s发生短路If波形 2.2 短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=0.5056时发生三相短路,三相短路电流波形如图7所示。 图7 t=0.5056时三相短路电流波形 2)当在t=0.6时发生三相短路,三相短路电流波形如图8所示。 图8 t=6时三相短路电流波形 2.3 Xd、Xd`、Xd``对短路电流的影响 1) Xd的影响 Pscad中对于Xd的设置如图9所示: 图9 Pscad对于D轴同步电抗Xd的设置 下面验证不同Xd时A相短路电流的稳定值。 i.Xd=1.014(标幺制,下同)时,仿真波形如图10所示 图10 Xd=1.014时A相短路电流波形 ii.Xd=10时,仿真波形如图11所示 图11 Xd=1.014时A相短路电流波形 2)Xd`的影响 在Pscad中暂态电抗Xd`的设置如图13所示: 图13 Pscad对于暂态电抗Xd的设置 下面验证不同Xd`时A相短路电流的暂态过程。

电力仿真软件pscad需注意的问题

简单例子,设模块两输入一输出,输入的名称定义为in1和in2,输出为out !一行的开始的感叹号表示本行为注释 !输入输出端口的变量前面需要加一个$符号 if($in1>$in2) then $out=$in1 elseif($in1<$in2) then $out=$in2 else $out=0 Endif Pscad有2种方法可以保存采样数据。 一是recorder,另外一种是channel save。第一种方法最为常用,也最方便,平时应用已足够了。第二种方法则在特定的情况下能发挥奇效。 先说recorder。重点讲一下其中的几个设置。 1. Recording Time Step:必须是整数,小数位一律没用。比如说60Hz,64采样点/周波,输入260就行了,输入260.42和输入260是一个效果的。最大采样时间精度是1微妙,如果需要更小的采样周期,可以使用第二种方法。 2. Output file format:一般选RTP,或COMTRADE99。其中RTP格式简单,但是一些情况下,某些采样点会以xxxxxx保存,如果发生这种情况,把对应采样channel中的pt or ct ratio 改成一个很大的值,例如10000,重新运行就可以了。COMTRADE99的格式复杂一些,但是不会出上面的错误。 3. Analog Output Maximum:现在采样要16位吧,2的16次方-1=65535。缺省的4096是12位采样精度,我感觉4095更对,设计人员少硬件知识:-(。 4. 如果某个channel之前有ct或pt模块,别忘了给相应的channel选择二次测,并填写正确的pt or ct ratio。 5. System Frequency:具体没有什么用处,50,60对数据没影响,只是会在数据文件中保留这个频率。 6. 其他的缺省值就可以了。 需要注意几点: 1. 模块外部有采样起始和终止时间的控制。仿真如果在采样终止时间之前人为终止,则数据文件是.nam的临时文件,不能解读。如果仿真在采样终止时间之前自行终止,则依然会生成正常的数据文件。 2. 如果添加recorder模块后,程序反而编译不通过,出现Runtime error的对话框,有abnormal program termination的出错信息。如果检查其他都正常,可以尝试修改Output file name,因为你的输入文件名不合适。如果添加多个recorder模块后,在仿真中间出现错误,是因为多个recorder的输出文件名相同了。你也许会说文件名是不同的,但你可以检查一下每个文件名的前8位是否相同?recorder只认前8位,后面的一律省略。

基于PSCADEMTDC软件的过电压保护教学仿真

第30卷第2期2008年4月 电气电子教学学报 JOURNALOFEEE VoL30No.2 Apr.2008 基于PSCAD/EMTDC软件的过电压保护教学仿真 张小青,杨大晟 (北京交通大学电气工程学院,北京100044) 摘要:由加拿大马里托巴高压直流研究中心推出的PSCAD/EMTDC软件包以其强大的功能在电力系统及相关领域里已获得了广泛的应用,同时它也为高等学校电气工程专业教学仿真提供了一种有效的工具。本文介绍PSCAD/EMTDC教育版软件包在电力系统过电压仿真教学中的应用,对该软件包的过电压模拟基本功能、系统网络元件及算法和计算流程进行了较为详细的讨论,并给出了操作和雷电过电压仿真的具体算例。 关键词:教学仿真;PSCAD/EMTDC;过电压;暂态模拟 中图分类号:TP319文献标识码:A文章编号:1008-0686(2008)02—0084-04SimulationTrainingofOvervoltageProtectionBasedonPSCAD/EMTDC ZHANGXiao-qing,YANGDa-sheng (SchoolofElectricalEngineering,BeOingJiaotongUniversity,BeOing100044?China) Abstract:PSCAD/EMTDCdevelopedbyManitobaHVDCResearchCenterofCanadahaswideapplicationsinthepowersystemsandtherelevantareasandprovidesanefficientmeansforthesimulationtrainingof‘electricalengineeringmajorsofcollegesanduniversities.TheapplicationofPSCAD/EMTDCofeducationversionisintroducedinthispapertonumericalanalysisofovervohageprotectioninpowersystems.Thefunctionofovervoltagesimulation,systemnetworkelements,algorithmandsimulativeprocedureofthesoftwarepackagearediscussedindetail.Also,thenumericalexamplesaregivenforsimulatingswitchingandlightningovervohages. Keywords:simulationtraining;PSCAD/EMTDC;overvohage;transientsimulation PSCAD/EMTDC是当前国际上普遍流行的一种电磁暂态分析软件包,它主要用来研究电力系统的暂态过程。该软件包也能适用于一般电气电子线路以及可等价地用电路来描述系统的仿真分析。该软件包是由加拿大马里托巴高压直流研究中心(ManitobaHVDCResearcherCentre)开发出来的。该软件由PSCAD(PowerSystemComputerAddedDesign)和EMTDC(ElectromagneticTran—sientsIncludingDC)两部分软件组成。两者的关系是:前者负责界面图形,后者负责模拟计算。从国内外对PSCAD/EMTDC软件包的使用情况来看,该软件包不仅能用于电力系统及相关领域的工程设计与科研,还可用于高等学校电气工程及相关专业的仿真教学。在一些发达国家和国内一些高等学校的电气工程类专业教学中,PSCAD/EMTDC已成为一种行之有效的仿真教学工具。为了适应高电压工程系列课程研究型教学的新需求,我们于2005年引进了教育版PSCAD/EMTDC.(4.1),共计装设 收稿日期:2008-01-05;修回日期:2008—03—06北京市高等教育“十--/[”专项规划重点项目和北京交通大学重点教改项目(230一II,44077)作者简介:张小青(1957一),男,博士,研究员,主要研究方向为电力系统电磁暂态,E-mail:zxqiong@hotmail.oom 杨大晟(1980-),男,博士研究生,主要研究方向为雷电防护。 万方数据

基于PSCAD的电力系统暂态分析课程设计

基于PSCAD的电力系统暂态分析课程设计 1 绪论 1.1意义及背景 暂态是电力系统运行状态之一,由于受到扰动系统运行参量将发生很大的变化,处于暂态过程;暂态过程有两种,一种是电力系统中的转动元件,如发电机和电动机,其暂态过程主要是由于机械转矩和电磁转矩(或功率)之间的不平衡而引起的,通常称为机电过程,即机电暂态,另一种是变压器、输电线等元件中,由于并不牵涉角位移、角速度等机械量,故其暂态过程称为电磁过程,即电磁暂态。同时它又是研究电力系统的一项重要分析功能,是进行故障计算,继电保护鉴定,安全分析的工具。在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统短路计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。在三相系统中,短路故障又可分成三相短路、两相短路、单相短路、单相接地短路、两相接地短路等多种。当电路发生短路时,能使导体温度迅速升高,绝缘破坏,甚至使导体发红,熔化,导致设备损坏。高压电网的短路故障可引起电网瓦解。短路产生的电弧、火花可引发火灾、爆炸、电伤等恶性事故。 最初,电力系统短路计算是通过人工手算的。后来为了适应电力系统日益发展的需要,采用了交流计算台。随着电子数字计算机的出现,1956 年 Ward 等人编制了实际可行的计算机短路计算仿真软件。这样,就为日趋复杂的大规模电力系统提供了极其有力的计算手段。经过几十年的时间,电力系统短路计算已经发展得十分成熟。 1.2 国内外电力系统发展现状 1995年全世界的发电装机总容量为30.0亿kW,1998年为32.5kW。全世界人均用电量为2400kW?h。预计在1995,2020年的25年中,世界能源消耗将增加

基于PSCAD仿真的配电网小电流接地系统建模

基于PSCAD仿真的配电网小电流接地系统建模 摘要:本文主要介绍了利用PSCAD/EMTDC仿真软件提供的电力仿真模块构建 10kV馈线及负荷系统,对系统进行仿真试验,得到发生单相接地时线路的电流波形,并给出零序电压、电流、功率的仿真测量方法,为故障选线的研究作铺垫。 关键词:小电流接地系统;单相接地;建模;仿真 0 引言 在我国10kV配电网中,广泛采用的是非有效接地系统,当发生单相接地故障时由于不能构成低阻抗的短路回路,接地短路电流很小,故此种系统也称为小电流 接地系统[1]。由于其稳态故障电流幅值较小,因此故障无法轻易的检测与判定, 所以给故障选线增加了不少难度[2]。伴随国家经济的迅速增长以及电网规模不断 扩大,用户对供电可靠性的需求也越来越高,因此,对非有效接地系统接地故障 的研究显得尤为重要。本文利用PSCAD构建10kV馈线及负荷系统,建立单相接 地故障的仿真模型。 1 配电网小电流接地系统的建立 配电网仿真系统模型原理图如图1(a),一条110kV母线经一个110kV/10kV 的变电站到10kV母线,变电站低压侧有六条馈线,这些馈线当中两条是架空线,一条是电缆,另外三条是混连线路,Z型变压器中性点经彼得逊线圈串上一个等 效电阻再接地。图1(b)为利用PSCAD软件所建立10kV配电网模型。 (a)实际模型 (b)PSCAD仿真模型 图1 10kV配电网模型 2 系统参数介绍 2.1 线路参数 通过计算架空线路与电缆线路参数,可以获得系统零序电容总。 2.2 彼得逊线圈参数 通过系统零序等值电路可知,中性点经彼得逊线圈接地时,有三种补偿方式,实际工作中,通常为过补偿,补偿系数一般取到1.05。要精确地取到1.05,先 要计算出全补偿时彼得逊线圈的值。当处在全补偿状态,流经短路点的容性电流 与感性电流相等,即,从中可以得出式中:为电网工频50Hz,为彼得逊线圈零 序电感。 系统中性点的彼得逊线圈通过零序电流时,设彼得逊线圈的阻抗为上将通过 三倍的零序电流,并产生相应的电势差,由于实际线路和等效电路的中性点对地 的电势差相同,所以在等效电路中,彼得逊线圈阻抗取为,即实际的电感L应该 为零序等值电路中电感的,代入数据计算得到。过补偿度取1.05,算得彼得逊 线圈。在实际工作中的彼得逊线圈并不是一个纯电感,其还带有有功损耗,有功 损耗通常为感性无功损耗的2.5%-5%,因此在仿真图中我们可以用一个等效电阻 来替代彼得逊线圈的有功损耗,将其取为感性无功损耗的3%,通过计算得到彼 得逊线圈有功损耗等效电阻。 2.3 负荷、变压器等其他参数 每条馈线负荷为500-1000KVA不等,馈线的负荷侧变压器为三角形/星型接法,变压器变比为10kV/380V,母线侧变电站变压器变比为110kV/10kV。发电机出口

PSCAD的电力系统仿真大作业

P S C A D的电力系统仿 真大作业 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

电力系统分析课程报告 姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef与Tm均为定常值,且发电机空载。当运行至时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约)。pscad 同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=)。

图3 同步发电机模型参数Ta对应位置 1)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=发生短路If波形 2)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=发生短路If波形

短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=时发生三相短路,三相短路电流波形如图7所示。 图7 t=时三相短路电流波形 2)当在t=时发生三相短路,三相短路电流波形如图8所示。

相关主题
文本预览
相关文档 最新文档