当前位置:文档之家› MDEA法脱除烟道气中二氧化碳的工艺设计文献综述【文献综述】

MDEA法脱除烟道气中二氧化碳的工艺设计文献综述【文献综述】

MDEA法脱除烟道气中二氧化碳的工艺设计文献综述【文献综述】
MDEA法脱除烟道气中二氧化碳的工艺设计文献综述【文献综述】

毕业论文文献综述

化学工程与工艺

MDEA法脱除烟道气中二氧化碳的工艺设计

一、前言

温室气体CO2减排是目前大气污染治理的一大难题,引起了国际社会的极大关注。吸附法、膜分离法、液膜法、有机胺吸收法、离子液循环吸收法等是CO2气体回收常用的方法。通过对各种方法的原理及研究现状介绍,深入分析了各种方法的优缺点及存在的问题,选择出合适的二氧化碳捕集工艺并用化工模拟软件ASPEN进行模拟。

ASPEN由美国ASPEN TECH公司于上世纪80年代推向市场的大型通用流程模拟系统——Aspen Plus。该软件具有完备的物性数据库,备有全面、广泛的化工单元操作模型,能方便地构成各种化工生产流程,提供一套功能强大的模型分析工具,它用严格和最新的计算方法,进行化工单元和全流程的模拟运算。

二、主体部分

2.1二氧化碳的来源与危害

大气中的二氧化碳主要来源于发电、运输、工业、建筑业、动植物呼吸作用这六个方面。其中人为二氧化碳排放的主要来源是能源生产和交通运输中的化石燃料燃烧,全世界以矿物燃料为动力的工厂和发电站以及机动车辆数不胜数,它们排放的废气是大气中二氧化碳的主要来源。

二氧化碳为人类带来的危害主要表现在其后方面。最典型的就是温室效应,它致使冰川融化使得海平面上升。温室效应还会影响大气环流,使球的水循环发生变化继而改变全球的降水量分布。温室效应使得人民群众的生产、生活、社会经济发展受到严重影响,造成了巨大的经济损失。

2.2二氧化碳的捕集工艺

2.2.1 有机胺溶剂吸收法

胺化合物吸收法主要有热钾碱法(苯菲尔法、砷碱法及空间位阻法等)和烷基醇胺法(MEA法、DEA法、MDEA法等),是国内应用最广的工艺之一,占70%。其优点是:吸收效率高,工艺较简单;缺点为:再生能耗大;传质面积较小;会产生液泛、雾沫夹带、鼓泡

现象发生,气液直接接触,对设备腐蚀性大;会产生环境污染物。由于单一的胺吸收剂不能同时满足高吸收率和低再生能耗,故现在对有机胺进行了一系列的改良:①使用复合胺:如在MDEA 中加入一些伯胺,能提高MDEA 的二氧化碳吸收速率,活化MDEA 法脱碳具有能耗低、气体净化度高、溶液稳定、挥发性低、对碳钢设备基本无腐蚀等优点,被众多的合成氨厂和甲醇厂所采用。②使用活化剂:目前进行研究的活化剂哌嗪PZ 、DEA 、MEA 、烯胺、2,3-丁二酮等来活化叔醇胺,加入活性剂后,胺溶剂的二氧化碳吸收能力将得到提升。道公司开发的专利产品AP-814 吸收剂,该吸收剂是特制的MDEA 溶液,据称其具有更高的CO 2 吸收能力,可减少胺处理装置的再生负荷。③空间位阻胺:在胺分子中引入某些具有空间位阻效应的基团,可明显改善吸收剂的脱碳脱硫效果.目前最常用也是最常见诸于文献的空间位阻胺为AMP(2-氨基-2-甲基-1-丙醇),该方法吸收速率高,解吸容易,但其蒸汽压高,价格较贵。

1)MEA 法:

MEA 与CO 2反应:

+-+→+3222222222NH CH HOCH HNCOO CH HOCH NH CH HOCH CO (1) MEA 法已经过了广泛的研究 ,并成功地应用于化工厂的 CO 2 回收。但是 , MEA 技术具有成本较高、 吸收慢、 吸收容量小、 吸收剂用量大、 设备腐蚀率高、 胺类会被其他烟气成分降解、 吸收剂再生时能耗高等不足。

2)活化MDEA 法:

+

++??→?+322HCO H O H CO KOH (2)

++→+NH CH R N CH R H 3232 (3) (2)式+(3)式得:

-

+?→++3322232HCO N CH R O H CO N CH R (4)

德国BASF 公司通过在MDEA 水溶液中加入一定的活化剂,开发出了活化MDEA 脱碳

工艺(aMDEA 法)。于上世纪70年代初,在美国和德国实现工业化,广泛应用于合成氨厂的脱碳装置。20世纪90年代,法国Elf 集团对该工艺进行改进后,也开始应用于天然气净化,主要用于处理H 2S 含量甚微而CO 2含量很高的天然气。活化MDEA 法脱碳具有能耗低、气

体净化度高、溶液稳定、挥发性低、对碳钢设备基本无腐蚀等优点,被众多的合成氨厂和甲醇厂所采用。

2.2.2 吸附法

吸附法又分为变温吸附法(TSA)和变压吸附法(PSA),是利用固态吸附剂对原料混合气中的CO2的选择性可逆吸附作用来分离回收CO2。吸附剂在高温(或高压)时吸附CO2,降温(或降压)后解析CO2。常用的吸附剂有天然沸石、分子筛、活性氧化铝、硅胶和活性炭等。目前工业上应用较多的是变压吸附工艺。其方法的优点是:工艺过程简单、能耗低、适应能力强。其缺点是:吸附容量有限、需要大量的吸附剂、吸附解吸频繁、自动化程度要求较高。吸附剂自身的缺点是其在工业化应用上受到了极大的限制,故其应用不广。

2.2.3 离子溶液吸收法

离子液体是由一种含氮杂环的有机阳离子和一种无机阴离子组成的盐,它是一种新型

的溶剂,以其对环境的友好性成为化学界的新宠。普通的离子液对二氧化碳只能单纯的物理溶解,故其溶解度并不是很高,后来科学家在离子溶液中引入—NH2,发明了功能型离子溶液,此类离子液体的阳离子含有—NH2官能团,常温常压下, CO2在该离子液体中的饱和浓度高达7. 4% (质量分数),接近理论摩尔分数0.5 mol CO2/mol·L-1。此方法的优点是:再生能耗低,良好的热稳定性,以及阴阳离子可设计性;对CO2具有更好的选择性,吸收负荷高,效率好,绿色,清洁。缺点是:高成本(离子液价格昂贵)、高粘度(导致二氧化碳吸收率降低)。

2.2.4 膜分离法

膜分离法是利用某些聚合材料制成的薄膜对不同气体的渗透率的不同来分离气体的。用于CO2气体分离的膜大多为乙酸纤维、聚砜、聚酰胺等,近年来一些性能优异的新型膜材质正不断涌现, 如聚酰亚胺膜、聚苯氧改性膜、二胺基聚砜复合膜、含二胺的聚碳酸酯复合膜、丙烯酸酯的低分子含浸膜等均表现出优异的CO2渗透性。最近也有一些硅石、沸石和碳素无机膜的研制。是当今世界上发展较迅速的一项二氧化碳捕集技术。其方法的优点是:投资少、能耗低、设备紧凑、维修方便。缺点是:很难得到高纯度的二氧化碳。我国在膜分离法捕集二氧化碳技术上已经取得了一定进展。大连化学物理研究所研制的二氧化碳膜分离装置,已经能够实现低品位天然气中的二氧化碳捕集。日前,这套装置在中石油海南福山油田使用成功,并通过验收产,成为国内第一套膜分离法捕集二氧化碳装置。

2.2.5 膜吸收法

膜吸收法是膜分离法和化学吸收法的结合。常见的有中空纤维微孔膜接触器,膜接触器的结构与管壳式热交换器相似, 混合气从膜外侧流过,吸收液在膜内侧流过,气体与吸收液

在中空纤维微孔膜元件间逆向流动以实现吸收,膜的高透过率和吸收液的高吸收率是其具有独特的优势。这种方法的优点是:传质界面稳定、比表面积大、传质效率高、能耗低、装置体积小和操作弹性大、与传统的塔式吸收器相比,装填密度高、气液接触界面稳定、无泡沫、无液泛等优势。缺点为:工艺较复杂,成本较高,膜的浸润性问题,吸收液与膜的匹配问题。对于处理量小、浓度低的情况,膜分离-溶剂吸收藕合技术具有优势。但是膜吸收法还只是停留于实验室阶段,对于实际烟气中含有NO x 、SO 2、粉尘也可能对二氧化碳的吸收过程带来负面影响,另外吸收液与膜材料的结合特性还有待于进一步的研究,尤其是系统运行中吸收液在吸收CO 2 前后对膜特性的影响问题等。

2.2.6 ECO2技术

最近几年,用氨水洗涤烟道气脱除CO 2的技术得到了世界范围的关注。美国 Powerspan 公司开发了 ECO 2 捕集工艺,可用氨水捕集电厂烟气中的CO 2。BP 替代能源公司Powerspan 公司正在开发和验证 Powerspan 公司基于氨水的CO 2 捕集技术。下一步将把该技术商业化应用于燃煤电厂。该技术用氨水洗涤烟道气脱除CO 2的技术,其反应与工艺流程图如下:

4232COONH NH NH CO ?+

334242NH HCO NH O H COONH NH +?+

OH NH O H NH 423?+

()O H CO NH OH NH HCO NH 2324434+?+

()34223242HCO NH O H CO CO NH ?++

氨水溶液吸收

CO2的过程,是一个伴有化学反应的气一液吸收过程,在合成氨原料气净化、碳酸氢铵生产以及制碱过程中,占有重要地位。其优点是:负荷能力高,无腐蚀问题,再生能耗低,在烟气环境下不会降解,运行成本低,副产品具有一定的经济价值。缺点为:氨水浓度不能太高,易爆炸,会产生环境污染物。

2.2.7 低温蒸馏法

低温蒸馏法是利用CO2与其他气体组分沸点的差异,通过低温液化,然后蒸馏来实现CO2与其他气体的分离。由于该方法设备投资庞大,能耗较高,分离效果较差,因而成本较高。蒸馏工艺主要用于提高原油回收率。在石油开采过程中,向油层注入CO2可提高采油率。但随着采油率的提高,同时也产生伴生气。低温蒸馏法主要用于分离提纯油田伴生气中的CO2,将其再重新注入油井循环使用。据荷兰研究机构计算,未采用脱碳技术的燃煤电厂效率为38%,CO2排放量为0.95kg/(kW·h);采用低温蒸馏法分离CO2后,电厂效率下降到26%,CO2排放量减至0.14kg/(kW.h)。目前,应用低温蒸馏法回收烟道气中的CO2尚处于理论研究阶段。该法主要用于回收油田伴生气中的CO2。较典型的工艺是美国Koch Process ( KPS)公司的RyanHol mes三塔和四塔工艺,整个流程包括乙烷回收、甲烷脱除、添加剂和CO2回收。此法可以产生用管道输送的液体CO但是能耗高,分离效果较差,成本高。该法适用于二氧化碳含量较高的情况,如油田伴生气中CO2的回收。在未来的IGCC设计或CO2再循环系统中,由于烟气中含有高浓度CO2,故低温蒸馏法值得考虑。

2.3 ASPEN软件的特点及应用

Aspen Plus模拟系统是麻省理工学院于70年代后期研制开发,由美国Aspen技术公司80年代初推向市场,它用严格和最新的计算方法,进行单元和全过程的计算,可以提供准确的单元操作模型,还可以评估已有装置的优化操作或新建,改建装置的优化设计。

2.3.1 Aspen主要产品和功能

(1)产品具有完备的物性数据库:ASPEN PLUS数据库包括将近6 000种纯组分的物性数据。该数据库收集了世界上最完备的气液平衡和液液平衡数据,共计25万多套数据。同时用户也可以把自己的物性数据与ASPEN PLUS系统连接。

(2)备有全面、广泛的化工单元操作模型,能方便地构成各种化工生产流程:能够进行近10种气/液平衡系统模拟计算,包含精馏模型、多塔模型等单元操作模块,可广泛模拟分析化工、石油化工、生物化工、合成燃料、冶金等工业过程。

(3)提供一套功能强大的模型分析工具,最大化工艺模型的效益:能够进行收敛分析、灵敏度分析,将工艺模型与真实的装置数据进行拟合,确保精确、有效的真实装置模型。

甲醇制汽油

甲醇制汽油 1976年Mobil公司开发成功的ZSM—5型合成沸石自甲醇制汽油(MTG)的方法。费托合成工艺(FT)、托普索一体化汽油合成技术工艺(TIGAS)、一步法甲醇转化制汽油技术工艺。 MTG工艺是指以甲醇作原料,在一定温度、压力和空速下,通过特定的催化剂的脱水、低聚、异构等作用转化为C11以下的烃类油。以煤或天然气作原料生产合成气,再以合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。该工艺有固定床、流化床和多管式反应器法三种工艺。 在1MPa——MPa,350℃——400℃条件下,甲醇的转化率为100%,且催化剂活性不易衰减。此方法产生的烯烃特点: 基本不产生碳素高于11的烃类,对原料的纯度要求不高,副产物价值高,产物性能优良。 (1)固定床法-工艺流程 原料甲醇经预热器、蒸发器及过热器后,进入脱水反应器,在Cu/Al203,催化剂上甲醇脱水生成二甲醚。从脱水反应器出来的未反应的甲醇、二甲醚、水与来自汽油分离塔的压缩循环气混合后,进入转化反应器,通过ZSM—5催化剂转化为烃。出转化反应器的气体,一部分预热原料甲醇,一部分与循环气换热,然后去汽油分离塔,分离出液态烃、气态烃和水。循环气与出脱水反应器的气体之比是9,控制温度可以增加汽油的收率。当反应产物中测定出未反应的甲醇时,表明催化剂已经结碳,活性达不到要求。这时,反应器内的催化剂需要再生,采取的办法是用空气与氮的混合气燃烧除去催化剂表面的焦炭。工业化的流程中并联设置4台转化反应器,3台运转,l台再生催化剂。 (2)流化床法-工艺流程 主要装置有流化床反应器、再生塔和外冷却器。流化床反应器包括一个浓相段,其下部为稀相提升管。原料甲醇和水按一定比例配料并进行汽化,过热到177℃后进入流化床反应器。流化床反应器顶部出来的反应产物经除去夹带的催化剂后进行冷却,分离为水、稳定的汽油和烃组分。流化床中的反应是急剧的放热反应,采用外部冷却器移走热量。为了控制催化剂表面积炭,将一部分催化剂循环至再生塔。l983年,该联合公司又改造了反应器,把原先在外部冷却催化剂的方法改为在反应器内部加一个冷却器。1千克汽油需要2.5千克甲醇。 特点:(1)汽油收率比固定床法略高; (2)操作中易于移去反应热,可将反应热用来生产高压蒸汽; (3)循环量比固定床大大降低。 (3)多管式反应器法(Lurqi—Mobil) Mobil工艺是在一个反应器内将甲醇部分转化为二甲基醚,在另一个反应器中再将甲醇和二甲基醚转化为烃类。而Lurqi—Mobil法则直接用一个多管式反应器将甲醇转换为烃类,也可以称为一步法。

城市燃气输配系统文献综述

毕业设计(论文)文献综述城市燃气输配系统一、概述城市燃气的输配系统一般是指从生产厂输出开始,一直到把燃气按用户需要的压力、数量输送给用户为止,其间所需的各种设施组成的整个系统。对天然气长距离输气系统,或采用管道输送液化石油气,则指燃气进入城市接收站或包括液化石油气储存站开始到用户的整个部分。1、城市燃气输配系统的压力级制城市燃气输配系统根据输气压力来分级,因为燃气管道的气密性与其他管道相比,有特别严格的要求,漏气可能导致火灾、爆炸、中毒或其他事故;同时管网采用不同的压力级制是比较经济的,而且各类用户所需要的燃气压力也不同。一般居民用户和小型公共建筑用户直接由低压管道供气。中压和高压管道输配系统必须通过区域调压器或用户专用调压器后由低压输配系统供气。城市燃气输配系统的压力级制,应根据城市大小、气源压力、燃气组分、灶具设计等因素决定。通常,城市越大,压力级制就越复杂。我国城市燃气压力级制划分标准:高压A 0.8<p≤1.6MPa 高压B 0.4<p≤0.8MPa 中压A 0.2<p≤0.4MPa 中压B 0.005<p≤0.2MPa 低压p≤0.005MPa2、城市燃气管网系统城市燃气管网由各种压力的燃气管道组成。按其组合形式的不同,一般可分单级系统、两级系统、三级系统和多级系统。单级系统只有一个压力等级,仅用于低压管网分配和供应的系统,其系统简单,维护方便,但供应能力较小。两级系统一般由低压和中压或次高压和低压两级管网组成,其在成本增加不大的情况下,供气能力和压力状况有较大改善,但运行费用较高,运行管理也较复杂。三级系统和多级系统通常是在燃气输送量很大、输送距离很远而中压管道又不能有效地保证长距离输送大量燃气,或难以敷设高压燃气管道而中压管道投资过大,或以天然气为气源时采用。 3、城市燃气输配系统的主要设备城市燃气输配系统主要设备包括:压送设备、储存设备、调压计量设备及输配管网。1 压送设备压送设备是用来提高燃气压力或输送煤气的机器。目前中、低压两级制城市燃气输配系统中使用的压送设备主要有:罗茨式鼓风机、往复式压缩机等。2 储存设备城市燃气用量是不断变化的,有月不均匀性、日不均匀性和时不均匀性,

环保专题 文献综述

第四单元环保专题文献综述 1、中国环境保护的历史、现状和未来 2、日本环保对中国的借鉴意义(机制、措施及其他成果) 3、近看美国的环境保护 4、浅谈我国城市大气污染 5、北京地区沙尘暴的成因、演变和治理 6、我国环境保护相关法律制度综述 7、关于环保宣传和教育的思考 8、关于生活垃圾处理的相关问题 9、关于室内环境污染问题的调研综述 10、城市化进程的环境污染及保护问题 11、北京市大学生宿舍环境的调查研究 12、关于我国淡水资源的调查研究 13、我国治理水土流失的系统思考 14、中国地震灾害与防震减灾 15、臭氧层的破坏及其影响 16、我国固体废物处理综述 17、气候变暖成因研究的历史、现状和不确定性 18、汽车尾气污染与控制对策 19、持久性有机物污染现状及对策研究 20、我国工业污染的状况综述(主要问题和对策) 21、我国土地荒漠化危害·成因及其防治对策

22、论中国能源的节约利用及新型能源的开发 23、关于加强大学生环境教育的思考 24、我国“癌症村”现象综述 要求: 1、班内分组,每8人左右一小组为宜 2、每个小组选一题完成,班内各小组选题最好不要相同。 3、此次活动为相关问题的文献调研与综述,要求每一题至少调研 5篇以上相关重要文章,并且在综述后一定要注释清楚参考资料来源,并且注明清楚每一位成员在此次文献调研中所承担的任务是什么。 4、每小组要选定一位代表参加交流学习会,将本小组的成果用简 洁的语言向大家进行介绍。 5、每个班有一个必选题,由某一个小组承担,其余为任选题。 6、以上所有选题均为大方向,各小组可以自己所查阅的资料调整 写作范围,但注意要写成文献综述,而不是论文。

用高压气源气举排水采气

用高压气源气举排水采气 摘要地层的压力不断下降,单井产能逐渐衰竭,各气井的携液能力都在逐渐下降。井筒内积液会不断增加,不断增高的液柱对产气层的回压也不断增加。如果我们不及时把井筒内的积液顺利排出去,静液柱将会把气层压死,造成气井停产。 关键词井筒;高压气源;气举 随着文23气田开发进入中后期,地层的压力不断下降,单井产能逐渐衰竭,各气井的携液能力都在逐渐下降。井筒内积液会不断增加,不断增高的液柱对产气层的回压也不断增加。如果我们不及时把井筒内的积液顺利排出去,静液柱将会把气层压死,造成气井停产。怎样才能及时把井筒液体排出去?这里介绍一种用高压气源气举排液的方法。文69-1-2-3井、东块文108井、文108-2井、文108-5井、文23-17井都用此办法让其停产后顺利复活。 气举排水采气——利用天然气的压能来排除井内的液体,从而把天然气采出地面的采气方法。 按排水装置原理不同分为: 气举阀排水 柱塞间歇排水 1 气举阀的气举排水 1.1 条件:1)高压气源;2)油管管柱上不安装气举阀;3)高压气的压力与液柱的高度相匹配。 1.2 原理:无气举阀的气举排水采气是利用高压气源从套管(油管)注入高压气,让井筒积液经过喇叭口,从油管(油套环空)排出,从而达到排液复产目的。 1.3 操作: (1)尽量选择压力高、产量高的井作为高压气源井给积液井注气。 (2)在井口设置放喷罐,连接好相应的放喷流程,可套注油放、油注套放,或二者均可(但井口三种流程互不相同)。 (3)开始注气时,可把注气压力调到最高值,注气约10-30分钟,井口出液。这种要把注气压力和注气量逐步调低,使注气压力和注气量与井口排液达到

甲醇制汽油文献综述

刘于英,原丰贞,赵霄鹏. 甲醇制汽油工艺概述[J].山西化工,2009,29(4):2-3 随着世界石油资源的日益匮乏和甲醇生产成本的降低,甲醇作为新的石化原料来源已经成为一种趋势,因此甲醇制汽油(MTG)项目备受关注。 与其他甲醇下游技术相比,甲醇制汽油技术相对简单,并在反应器技术、油品后处理技术及油品品质等方面都有一定优势。特别是甲醇转化生产的汽油经简单加工后既可以直接使用,也可以作为优质油组分进行高清洁汽油(国家Ⅲ类标准)的调和。甲醇制汽油(MTG)工艺是由Mobil公司开发的甲醇于ZSM 25 分子筛催化剂上转化成芳烃的基础上发展而来的。Mobil法甲醇制汽油技术首次发表于1976 年,它首先以煤或天然气作原料生产合成气,再以合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。 甲醇制汽油工艺在中国能否立足,取决于煤制甲醇是否过剩。一旦煤制甲醇过剩,MTG 就有可能成为甲醇的后继产业链。甲醇加入汽油不如甲醇制汽油,后者对环境、发动机都没有影响,因此此技术具有非常广阔的应用前景 埃克森美孚公司在1990年代所作的改进包括减少了投资和操作费用。采用MTG技术的第一套煤制汽油工艺设计和建设已在中国山西晋城无烟煤矿公司进行之中。该装置初期阶段设计能力为10万t/a,但预计该项目第二阶段将扩增至100万t/a。埃克森美孚公司于2008年12月也将采用MTG技术建设美国第一套MTG型CTL项目。DKRW先进燃料公司通过其旗下的Medicine Bow燃料和电力公司接受MTG技术转让,在怀俄明州Medicine Bow建设1.5万桶/d CTL装置。晋城无烟煤矿公司和DKRW先进燃料公司的装置都将比新西兰原有装置有很大改进,并积累了10a多来的操作经验。 从事气化技术的美国合成能源系统公司(SES)与埃克森美孚公司合作,加快推广通过甲醇途径的煤制汽油技术,截至2008年9月底,在全球推行其u·GAS煤炭气化装置,已转让甲醇制汽油(MTG)技术达15套。SES公司已计划利用MTG技术与美国西弗吉尼亚州、密西西比州和北达科塔州的合作伙伴在其煤气化项目中应用。如果这些项目建成,将可生产约1亿加仑/a汽油。将埃克森美孚公司的MTG技术与SES公司专有的U—GAS气化技术相结合,可利用低成本、丰富的煤炭,包括褐煤和废煤转化生产高价值的运输燃料。 据埃克森美孚公司计算,460万t煤炭进料可生产约140万t/a(约3.6万桶/d)汽油。产率和投资成本取决于煤质(灰分、湿度、硫含量和热值)。据UC Davis公司于2007年公布的加州低碳燃料标准所作技术分析,由MTG工艺生产的全部能源产品总的生命循环周期温室气体排放(无碳捕集和封存,CCS),最多可与平均的煤制油工艺的排放(48.7g/MJ炼制产品)相当。然而,每MJ汽油的排放较高(64.69 g/MJ汽油)。相对比较,从常规石油生产的汽油总的排放为25.7g/MJ,从焦油砂或超重质石油生产的燃料为29.4~35.9g/MJ。油砂燃料为33~70g/MJ。以Pittsburgh和Houston为基地从事合成能源系统开发、美国最的沥青煤生产商Consol能源公司与合成能源系统公司(SES)于2008年9月组建合资企业,推动通过甲醇使煤制汽油技术,合资企业在美国西弗吉尼亚州Benwood附近Marshall郡工业园区建设煤制汽油工厂,该工厂邻近Consol能源公司Shoemaker煤炭生产联合企业。计划于201 1年投产,这将是美国采用SES公司U—Gas气化技术的第一套装置。该公司从美国气体技术研究院取得该技术转让。Shoemaker煤炭生产联合企业将为转化生产合成气供应3 000 t/a煤炭。合成气将用于生产约72万t/a甲醇,甲醇再转化成l亿加仑/a辛烷值为87的汽油。该合资企业与埃克森美孚研究与工程公司签约以取得甲醇制汽油技术。在U—Gas气化过程中,粒状煤炭在单段、流化床气化器中于约1。8500F和200磅/平方英寸下被气化。U—Gas技术也包括以下过程,将使来自煤炭的二氧化碳副产品封存地下,以有助于减小对影响的影响。SES公司在中国的第一套商业化煤制甲醇装置于2008年1月投产,在中国的第二套煤制甲醇装置将于2010年投运。煤炭制取甲醇,由甲醇再制汽油(MTG)路线正在我国山西省跃跃欲试。山西晋城无烟煤矿公司与德国伍德公司于2006年12月签署了

气体传感器文献综述

` 气体传感器的发展概况 和发展方向 玛日耶姆·图尔贡 107551600545 Word文档

气体传感器的发展概况和发展方向 【摘要】本文对气体传感器进行分类,介绍了半导体型气体传感器、电阻型气体传感器、非电阻型气体传感器等几种常见气体传感器的特性、总结了这些气体传感器的工作原理,并阐述这几种气体传感器在日常生活及特殊场合中的应用及其选用时的原则。探讨了气体检测仪器在检测对象、检测围和检测方式上向小型化、智能化、多功能化和通用化等方面不断向前发展的方向。 【关键词】气体传感器;特性;应用;发展方向 一、前言 目前,随着人们环保意识的提高,环境问题日益受到政府和社会关注。环境问题变成了重要的民生问题,影响到人民生活幸福感,甚至环境问题严重威胁群众健康。 近年来生态环境污染状况日趋严重,各种工业废水,废气直接排入水体及空气,造成极为严重的环境污染。影响着人们的正常生活和生存发展,并导致环境污染的气体进行处理是十分急迫的问题。随着科学技术的发展,人们生活水平的提高,对气体传感器的需求已有所不同;同时,随着近年酸雨、温室效应、臭氧层破坏、环境污染等,严重影响了人类的健康和生存,这就给气体传感器提出了新的研究课题和增加了新的研究容和难度。检测气体的种类由原来的还原性气体(H2、 C4、 H10、 CH4等)扩展到毒性气体(CO、NO2、 H2S、NO、NH3、 PH3等)以及食品有关的气体(鱼、肉鲜度(CH3)3、醋酸乙脂等)[1]。气体传感器作为气体检测最基础的部分,为了满足这些需求,气体传感器必须具有较高的灵敏度和选择性,重复性和稳定性要好,而且能批量生产,性能价格要高等。 随着人们环保意识的增强以及各国对有毒气体排放和污染物排放方面的严格立法,各种气体传感器正在得到越来越广泛的应用。目前,随着生命科学、人工智能、材料科学等学科的发展,气体传感器的应用领域越来越广泛,在大气监测、食品工业、汽车尾气快速实时测定、有毒气体检测安全检查和航空航天等方面,越来越多地显示出气体传感器的重要作用[2]。 二、气体传感器的发展概况 2.1气体检测仪 气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类。气体检测的目的是分析各种气体混合物中各组分的含量或其中某一组分的含量。气体检测仪表一般由传感器、信号放大、处理单元、显示单元以及控制单元组成,其中传感器是最关键的部分。 2.2传感器 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器按其基本效应可分为:物理传感器,化学传感器,生物传感器。按检测对象,化学传感器分为气体传感器、湿度传感器、离子传感器。 物理传感器 传感器生物传感器气体传感器 化学传感器离子传感器 湿度传感器

中国生态文明建设文献综述资料

中国生态文明建设综述 摘要:本文旨在对中国生态文明建设的研究现状做出基本综述,为“五位一体”的建设提供支持。文章分为四个部分:一为生态文明建设的基本概况,二为生态文明建设的具体内容研究,三为我国区域生态文明建设,四为结语评价。总的来说,我国在生态文明建设中逐步形成以点带面、以局部促整体、各方面协调发展的立体的发展模式,但在实践上存在滞差,需要在实践执行方面进一步研究。关键词:中国生态文明综述 1 生态文明建设的基本概况 1.1生态文明的内涵和特征 生态文明是在工业文明产生的资源枯竭、环境破坏、生态失衡等问题已经严重阻滞了人类社会的发展,促动人们重新审视并从根本上改变人与自然的关系,以寻求人类的可持续发展的背景下提出的。 对于生态文明的内涵的界定还有以下几种:(1)生态文明有广义与狭义之分。有学者提出,狭义的生态文明,一般仅限于经济方面。广义的生态文明,则囊括整个社会的各个方面,不仅要求实现人类与自然的和谐,而且也要求实现人与人的和谐,是全方位的和谐”1。狭义上的生态文明是指文明的一个方面,即相对于物质文明、精神文明和制度文明而言,人类在处理同自然关系时所达到的文明程度”2。(2)从生态理念层面来阐释生态文明的内涵,主要由以下层面:经济生产层面、政治制度层面、文化层面、环境建设层面、社会层面和技术层面3。(3)把生态文明分为:浅绿色生态文明和深绿色生态文明4。 生态文明的特征也是多种多样的,有的认为,它有三个重要的特征:较高的环境保护意识、可持续的经济发展模式、更加公正合理的社会制度。有的认为生态文明具有,全面性、高效性、可持续性、和谐性、整体性、人本性和平等互利性。 1.2中国特色社会主义生态文明建设

苏里格气田数字化排水采气系统研究2013.5.9

苏里格气田数字化排水采气系统研究与应用 摘要:苏里格气田气井普遍具有低压、低产、小水量的特点,单井产量低,携液能力差,部分气井井筒存在积液甚至出现水淹停产。为了确保气田平稳生产,在低压低产气井实施了多项排水采气措施,取得相应效果。随着气田开发时间增长,积液井不断增多,排水采气方面的工作量不断增大,如沿用以前传统的人工对气井的积液判识和手工编制措施方案的做法难以满足气田发展需要。苏里格气田以数字化管理为目标,数字化气井、数字化集气站、数字化作业区、数字化采气厂的建立,开发数字化排水采气系统集成气田数字化技术和采气工艺技术,利用计算机对气井进行积液判识,自动生成制措施方案,创新排水采气工作模式,实现自动排查气田产水井、提示积液井、计算井筒积液量、优选气井排水采气措施、实时跟踪气井生产情况、分析总结排水采气措施效果等功能。通过该系统,量化排水采气措施关键参数,减轻技术人员工作量,提高技术人员工作效率,改善气田现场技术支撑环境。 关键词:数字化排水采气井筒积液措施跟踪分析 Research and application of a digitalized drainage gas recovery system in the Sulige Gas Field Abstract: Characteristics of the Surig gas field has generally low, low, small volume, low single well production, liquid carrying ability is poor, part of wellbore fluid and water flooded. In order to ensure smooth production in gas field, low pressure and low yield gas well implemented a number of drainage gas recovery steps, to obtain the corresponding effect. With the development of gas field development time growth, effusion wells increasing, the drainage gas recovery workload increases, such as to use the previous work is difficult to satisfy the gas field development. Digital drainage gas recovery system integration of digital gas field and gas recovery technology, optimization of the core technology, gas drainage pattern mining innovation, realize the automatic checking gas field wells, wells show effusion, calculation of wellbore fluid, preferably of drainage gas recovery measures, real-time tracking of gas well production, analysis and summary of drainage gas recovery measures etc.. Through this system, the key parameters of gas drainage measures to quantify, reduce technical staff workload, improve work efficiency and technical personnel, improve the supporting environment gas field. Key words:digitizing;drainage gas recovery;wellbore liquid;measures ;trace analysis 苏里格气田属致密岩性气藏,非均质性强,有效储层难以预测,具有“低压、低渗、低丰度”的三低特点[1]。苏里格气田各个区块均有产水区域,有些区块相对较严重。随着气井生产时间增加,气井生产中后期,因井底压力和产气量低,气井携液能力差,导致井筒积液不断增多,严重影响气井的正常生产,部分气井甚至出现水淹井停产的现象。

化工文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 毕业设计开题报告 学院:化工与材料工程学院 专业:化学工程与工艺 班级: 1203 学号: 120110093 姓名:邵静 指导教师:蔡靖

文献综述 前言 本人毕业设计的论题为《年产25万吨甲醇的合成工艺设计》。随着经济全球化进程的发展, 甲醇是一种有着广泛用途的重要的有机化工原料,甲醇工业生产对其他相关工业和国民经济的发展都有着重要意义。随着经济全球化进程的发展,21世纪的化学工业,其产业结构正在不断调整,日益突出了精细化工的主 体地位。近几十年来,特别是我国甲醇工业的发展,生产规模逐渐扩大,下游产品种类不断增加,社会需求越来越大,能源消费也不断增加,为了解决我国石油供应过分依赖进口的能源安全问题,解决机动车辆排放出的一氧化碳、碳氢、氮氧化物等严重污染,本文综述了国内外甲醇的研究现状,煤制甲醇催化剂的选择,甲醇的意义等。

甲醇在生活中越来越受到重视。甲醇是 C1 化学的基础物质和重要的有机化工原料,也是一种洁净高效的车用料和大功率燃料电池的原料,主要应用于精细化工、塑料等领域,可用来制造甲醛、醋酸、合成橡胶、甲胺、对苯二甲酸二甲酯[1]、甲基苯烯酸甲酯、氯甲烷、醋酸、甲基叔丁基醚、氯甲烷、甲氨、硫酸二甲酯等多种有机产品,也可用于有机合成、农药、医药、涂料、染料和国防工业等领域。随着社会经济的快速增长,能源、环境问题日益突出,甲醇作为燃料应用的比例越来越大。近20年来,甲醇生产发展很快,技术不断提高,生产规模逐年扩大,生产工艺逐步成熟,各项技术指标不断完善,特别是近年来甲醇汽、柴油的开发和应用,使其作为代用燃料,从技术性、经济性上具有了很强的竞争力。甲醇在国民经济中占有十分重要的地位。近年来,随着甲醇下属产品的开发,特别是甲醇燃料的推广应用,甲醇的需求大幅度上升。 一、国内研究综述 1、甲醇的生产现状 世界各国的甲醇生产主要以天然气为原料。2006年世界甲醇总产能为4695万吨/年。2007~2010年全球甲醇产能年增长率为4.5%~5.0%,到2010年产能将达到5800万~6000万吨/年。 进入本世纪以来,新建装置集中在中东、拉美和东亚等地天然气资源丰富的地区,谋求以成本优势占领市场。装置规模也呈现出大型化(5000~12000吨/天)的趋势。世界甲醇生产格局的变化导致消费格局发生重大变化。美国、欧洲、日本等发达国家和地区甲醇消费已由自给逐步转变为依靠进口。中国也成为世界甲醇生产商的目标市场。 我国甲醇工业的发展情况我国甲醇工业始于20世纪50年代,主要是由原苏联援建的以煤为原料采用高压法锌铬催化剂合成甲醇技术。1957年第一套锌铬催化剂高压法甲醇合成装置在吉林化学工业公司投产,设计能力为100t/d,然后在兰州、太原、西安等地陆续建厂投产。60年代上海吴泾化工厂先后自建了以焦炭和石脑油为原料的甲醇装置;同时南京化学工业公司研究院研制了联醇用中压铜基催化剂,推动了具有我国特色的合成氨联产甲醇工业的发展。自2002年年初以来,我国甲醇市场受下游需求强力拉动,以及生产成本的提高,甲醇价格一直呈现一种稳步上扬走势。甲醇市场价格最高涨幅超过100%,甲醇生产的利润相当丰厚,效益好的厂家每吨纯利超过了1000元,因而甲醇生产厂家纷纷扩产和新建,使得我国甲醇的产能急剧增加。随着甲醇生产技术的发展,我国甲醇生产技术越

雾霾时空分布特征及形成原因文献综述穆迪

1.雾霾污染的相关概念和理论 (1)雾霾的概念 雾霾中的雾是近地面的云,霾是漂浮在空气中的硫酸、灰尘等组成的气溶胶。在一定光照,温度,湿度和动力因素雾和霾相结合就形成了雾霾。雾霾的主要成分是直径不大于微米的可入肺颗粒物,称为。首先 PM 是“particulate matter”的英文缩写,是指可吸入颗粒物质,在环境领域被称为颗粒物,在大气科学领域被称为大气溶胶粒子。按气象学定义,雾是水汽凝结的产物,主要由水汽组成;按中华人民共和国气象行业标准《霾的观测和预报等级》的定义,霾则由包含 PM 在内的大量颗粒物飘浮在空气中形成。通常将相 对湿度大于 90%时的低能见度天气称之为雾,而湿度小于80%时称之为霾,相对湿度介于80%~90%之间时则是霾和雾的混合物共同形成的,称之为雾霾。 (2)雾霾污染的形成机制 雾霾污染的形成机制非常复杂,既有人为原因,也有大气原因。人类活动中工业生产和居民生活使得污染物大量排放,为雾霾形成提供了物质基础,所以说“污染是元凶”;大气运动包含水平运动和垂直运动两种,在雾霾污染形成过程,空气运动扮演“帮凶”的角色。根据中国科学院最新调查发现,中国大陆雾霾污染源主要是燃煤、工业生产、汽车尾气、生物质燃烧以及扬尘沙尘。其中是主要污染物,其污染源所占比重如图 1-1 所示。 由于人类生产生活产生的排放物形成的一次颗粒物通过地面的界面反应,形成二次无机颗粒;同时其他废气通过大气输送和化学反应,形成二次有机颗粒物,这样就形成雾霾的物质基础。气溶胶与湿润的空气在大气条件出现水平方向连续静风和垂直方向逆温时,就产生雾霾,而雾霾的水汽遇冷凝结成雾或轻雾。 图 1-1 主要来源占比图 (3)雾霾污染的危害 1-3-1雾霾的危害是多方面的,包括对国民经济运行、居民生产生活以及居民身心健康。雾霾天气发生时,空气湿度低于百分之六十,可吸入颗粒物质均匀浮游在于空中,颗粒物质对大气具有一定的散射和吸收作用,使得空气能见度降低,影响交通通讯,工业生产和农业生产。可吸入颗粒物,尤其是可入肺颗粒物通过进入人体循环系统,造成呼吸道炎症、肺炎等病症,加重了人们对于雾霾污染的恐惧感,严重影响人们的身心健康。 雾霾天气发生后,严重的视程障碍威胁着城市道路、高速公路、航空港、海港、航道的安全。2013年1月北京雾霾事件中,曾发生多起交通事故,1月31日雾霾天气加 冻雨双重影响,导致望京往太阳宫方向高架桥上发生100多辆车追尾事故。 (4)雾霾的分类及物理特征 根据能见度和含水量将雾霾过程划分为雾、轻雾、湿霾、霾 4 个不同阶段。雾、湿霾阶段的相对湿度平均为 95%、91%,轻雾和霾阶段平均相对湿度接近,均为 79%。4 个阶段的主要发生顺序为霾?轻雾→湿霾→雾→湿霾→轻雾?霾,雾前湿霾阶段持续时间长于雾后。尺度>2μm 以雾滴为主的粗粒子数浓度、表面积浓度和体积浓度在雾阶段均显著大于其他 3 个阶段,其中霾阶段浓度最低。雾滴表面积浓度和体积浓度谱在 5μm、13μm 及μm 处分别存在峰值,对雾水体积和液水含量的贡献最大的尺度范围为 10~30μm,而轻雾、湿霾和霾阶段粗粒子谱均为单峰型。尺度>μm 的细粒子表面积浓度谱形在雾和湿霾阶段、轻雾和霾阶段分别相似,雾和湿霾阶段数浓度占优势的尺度范围分别为 ~μm 和 ~μm,轻雾及霾阶段数浓度优势粒子尺度范围均为~μm。4 个阶段数浓度最大差异出现在 ~μm 范围,从高到低依次为轻雾、霾、湿霾、雾。<μm、~μm 和>μm 的气溶胶粒子最高数浓度分别出现在霾、轻雾和雾阶段。从霾、轻雾、湿霾到雾的转换过程中,以 ~μm 为界,小粒子减少,大

工业催化文献综述(精)

工业催化文献综述 固体酸催化剂的发展及应用 班级: 学生学号: 学生姓名: 完成时间: 1 一、引言 催化剂(catalyst :是一种能够改变化学反应速度,而它本身又不参与最终产物的物质。 :随着环境意识的加强以及环境保护要求的日益严格, ,液体催化剂已完全满足不了化工产品的发展要求,然而新型固体酸催化剂却弥补了当前的一些不足,固体酸催化剂已成为催化化学的一个研究热点。与液体酸催化剂相比,固体酸催化反应具有明显的优势,固体酸催化在工艺上容易实现连续生产,不存在产物与催化剂的分离及对设备的腐蚀等问题。并且固体酸催化剂的活性高,可在高温下反应,能大大提高生产效率。还可扩大酸催化剂的应用领域,易于与其他单元过程耦合形成集成过程,节约能源和资源。关键词:固体酸催化剂 摘要:通过固体孙催化剂在有机合成反应中的应用,说明固体酸催化剂的优越性,介绍了固体酸催化剂技术应用的进展,指出了固体酸催化剂应用存在的主要问题 1固体酸催化剂的定义及分类 1.1定义

一般而言,固体酸可理解为凡能碱性指示剂改变颜色的固体,或是凡能化学吸附碱性物质的固体。按照布朗斯泰德和路易斯的定义,则固体酸是具有给出质子或接受电子对能力的固体。 固体酸是催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 1.2固体酸的分类 (1固载化液体酸 HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土 (2氧化物简单 Al2O3,SiO2,B2O3,Nb2O5 复合 Al2O3-SiO2,Al2O3/B2O3 (3硫化物 CdS ZnS 2 (4金属磷酸盐 AlPO4,BPO 硫酸盐 Fe2(SO43,Al2(SO43,CuSO4 (5 沸石分子筛 ZSM-5沸石 ,X 沸石 ,Y 沸石 ,B 沸石丝光沸石 , 非沸石分子 筛 :AlPOSAPO系列 (6杂多酸 H3PW12O40,H4SiW12O40,H3PMo12O40 (7阳离子交换树脂苯乙烯 -二乙烯基苯共聚物 Nafion-H (8天然粘土矿高岭土 , 膨润土 , 蒙脱土 (9固体超强酸 SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3

气体检测技术文献综述

气体传感器-----文献综述 气体传感器文献综述 指导老师:胡赤鹰 ndang/'word文档 控制科学与工程学系自动化0701班林增辉 3061101271 一、背景介绍 目前,随着人们环保意识的提高,环境问题日益受到政府和社会的关注。环境问题已经成了重大的民生问题,成为影响人民生活幸福感的重要因素。在一些地方,环境问题已经严重威胁到群众健康。 环境监测是解决环境问题的基础性工作,其目的是准确、及时、全面地反映环境质量现状及发展趋势,为环境管理、污染源控制、环境规划等提供科学依据。 气体检测是环境检测的重要部分,国内各大城市都相继建立了空气质量检测机构,通过电视、互联网等媒体及时向社会发布当地空气质量状况。而一些特殊的工作场所,如化工厂、煤矿、垃圾处理场,对气体的检测有着更高的要求。由于气体的不可见性(大部分气体为无色)和扩散性,气体传感器是气体检测最基础的部分。气体传感器的研究成果,直接影响到气体检测技术的发展。 国内外研究现状 2.1 气体检测仪表气体检测的目的是分析各种气体混合物中各组分的含量或其中某一组分的含量。气体检测仪表一般由传感器、信号放大、处理单元、

显示单元以及控制单元组成,其中传感器是最关键最基础的部分。气体检测仪表的工作原理是根据混合气体中待测气体组分的某一化学或物理性质比其他组分的有较大差别;或待测组分在特定环境中表现出来的物理、化学性质的不同来检测待测组分的含量。因此,气体成分的分析方法基本上都是基于物理式、化学式和物理化学式等原理。 2.2 气体传感器气体传感器是传感技术中的重要组成部分,能将气体特定成分检测出来,并将其转成适当信号,若与微机结合进行在线监控,会大大提高分析速度和准确度。 自1962年日本研制出第一种可燃性气体传感器之后,气体传感器从理论到应用均得到迅速发展,已广泛应用在各个领域。历次国际性传感器会议中与气体有关的传感器均为重要内容之一。我国有关传感器技术方面的会议召开过多次气体传感器方面报告均占30%以上,多着达40%,气敏元件和气体传感器已成为传感技术中的独立分支。 2.3 气体传感器分类 目前常用的气体传感器可分为:半导体气体传感器、电化学气体传感器、催化燃烧式气体传感器、热导式气体传感器、光学气体传感器等。 2.3.1 半导体气体传感器 半导体气体传感器的检测原理是,当传感器的表面氧化物吸附某些气体时,电导率将发生改变,利用改变的电导率来检测气体及其浓度。 从材料的应用范围、普及程度以及实用性来看,半导体气体传感器应用最为广泛,成本低廉,在气体传感器中约占60%。它的缺点是稳定性较差,受环境影响较大;尤其,每一种传感器的选择性都不是唯一的,输出参数也不能确定。因此,

关于环境保护的文献综述

关于环境保护的文献综述 摘要:随着人口、工农业生产和科学技术的飞速发展 ,环境和环境问题已越来越引起人们的普遍关注和重视。面对世界范围内的环境危机的严峻挑战 ,开展并加强环境保护工作已迫在眉睫。本文主要介绍了以现代微生物选育及培养技术和新型高效生物反应器为基础的环境生物技术在水污染治理、城市垃圾填埋、工农业污染源等方面的应用,最后还讨论了环境生物技术的应用及发展前景。 关键词:环境生物技术;污染治理;城市垃圾填埋;废水;应用前景;MBR技术;环境保护 前言 环境生物技术(EnvironmentalBiotechnology) 是指直接或间接利用生物的生理活动 ,建立降低或消除污染物的生产工艺 ,或能够高效地净化被污染的环境以及将污染物转化为资源的人工技术,是现代生物技术与环境科学结合产生的一门新兴交叉学科, 是从传统的废水生物处理技术起始, 通过应用现代微生物选育和培养技术和新型高效生物反应器, 而逐步发展起来的一种经济效益和环境效益俱佳的、解决当前日益严重的包括水污染在内的“三废”问题的最有效手段之一。 通常,日常生活中较普遍的污染源就是“三废”。“三废”指的是废水、废气和固体废弃物,这三大污染源严重污染了人类的生存环境。将环境生物技术应用于“三废”问题的治理 ,主要是指利用微生物原理将污染物质进行生物降解和生物转化 ,从而提高环境质量 ,达到环境污染治理的目的。 环境生物技术的起源可以追溯到一百多年前的活性污泥工艺的发展 ,其理论和实用技术在此一百多年来不断发展和进步 ,并得到广泛应用 ,对控制环境污染和改善环境质量起到了重要作用。而从全世界范围来看,环境污染至今还没有得到有效控制,特别是对发展中国家而言。在我国,随着经济的迅猛发展 ,环境污染现状也依然严峻 ,并有加剧的趋势,近年来 ,我国的环境污染治理力度不断加大 ,进入了一个新的高速发展时期 ,对环境污染治理新技术的要求也日益迫切。随着现代生物技术的发展 ,尤其是现代分子生物学技术的出现 ,为环境科学的发展带来了新的机遇。现代环境生物技术就是在这一形势下形成的。它是现代生物技术在环境科学领域中的应用 ,是现代生物技术与环境科学紧密结合而形成的新兴交叉学科 ,是一种经济效益和环境效益俱佳的、解决复杂环境污染问题的有效手段 ,是当代环境科学研究发展的主导方向之一。 目前生物技术应用于环境保护中主要是利用微生物,少部分利用植物作为环境污染控制的生物。生物技术已是环境保护中应用最广的、最为重要的单项技术,其在水污染控制、大气污染治理、有毒有害物质的降解、清洁可再生能源的开发、废物资源化、环境监测、污染环境的修复和污染严重的工业企业的清洁生产等环境保护的各个方面,发挥着极为重要的作用。应用环境生物技术处理污染物时,最终产物大都是无毒无害的、稳定的物质,如二氧化碳、水和氮气。利用生物方法处理污染物通常能一步到位,避免了污染物的多次转移,因此它是一种消除污染安全而彻底的方法。特别是现代生物技术的发展,尤其是基因工程、

环境污染治理与规制博弈研究文献综述

环境污染治理与规制博弈研究文献综述 杨怡 【摘要】由于环境污染,多年来污染事件频发,土壤污染、空气污染、河水及海洋污染、土地荒漠化、水资源短缺、生物多样性锐减等环境问题日益严重。我国也开始越来越重视环境污染治理与规制博弈研究,研究角度和层面多种多样。本文从理论和实证研究两个角度出发,对今年来国内外学者关于环境污染治理与规制博弈研究的文章进行了归纳总结,从而为此类研究提供参考。 【关键词】环境污染治理博弈分析环境规制 改革开放以来,我国经济一直呈现高速增长的趋势,被誉为世界经济的“火车头”。然而在经济高速增长的同时,我国的环境资源也急剧恶化。多年来,我国环境保护部门做了大量的工作,但由于环境保护涉及到多方面的利益,存在着复杂的博弈关系,致使环境污染严重事件时常发生,不少地方环境污染在治理后不久即又反弹,环境保护陷入了“污染-治理-在污染-再治理”的困境。一下是我所总结的有关环境污染治理的研究成果,为此类研究提供参考。 一.环境污染与经济增长关系研究 环境问题一直为世人所关注,经济学一直有关于经济福利和自然资产储备之间的关系的探讨,有关环境经济方面的文献可以追溯到很多的历史文献。早在20世纪20年代,阿瑟·庇古就有把污染看做是外部性的思想。格雷和候特陵分别在1914年和1913年对可耗竭资源如镁金属矿藏的折耗程度做过分析。而关于增长的极限的分析则早在19世纪就由约翰·斯图拉特·穆勒做出了。但环境作为一种重要的公共资源在经济发展水平较低的情况下,其与经济增长之间的关系并没有很早引起人们的重视。有关环境与经济的综合理论体系的形成只是近30年才逐渐形成,并在80年代末当焦点转移到可持续发展这一主题时学者们对于环境与经济增长特别是环境污染与经济增长的关系问题才开始重视,中国学者对环境污染问题的关注相对更晚。文献表明中国学者对环境污染问题的研究更多的是90年代才开始,有关研究成果多是近几年才大量涌现。 关于环境污染与经济增长之间的关系研究最早始于1994年由Selden和

甲醇发展文献综述

1.1 甲醇的基本性质 甲醇 又称木精、木醇、木酒精 纯甲醇为无色透明略带乙醇气味的易挥发液体 沸点65℃ 熔点-97.8℃ 闪点16℃ 折射率1.3278 和水相对密度0.7915(20/4℃) 甲醇能和水以任意比相溶 但不形成共沸物 能和多数常用的有机溶剂(乙醇、乙醚、丙酮、苯等)混溶 并形成恒沸点混合物。甲醇能和一些盐如CaCl2、MgCl2等形成结晶化合物 称为结晶醇如CaCl2·CH3OH、MgCl2·6CH3OH 和盐的结晶水合物类似 甲醇蒸气能和空气形成爆炸性混合物 爆炸极限 6.0 36.5 体积 。甲醇燃烧时无烟 火焰呈蓝色[7]。甲醇具有脂肪族伯醇的一般性质,连有羟基的碳原子上的三个氢原子均可被一一氧化,或脱氢生成甲醛,再氧化成甲酸,甲酸氧化的最终产物是二氧化碳和水。试剂甲醇常密封保存在棕色瓶中置于较冷处。 1.2 甲醇工业发展状况 1.2.1甲醇生产工艺的发展 1923年德国BASF公司首先用合成气在高压下实现了甲醇的工业化生产 直到1965年 这种高压法工艺是合成甲醇的唯一方法。1966年英国ICI公司开发了低压法工艺 接着又开发了中压法工艺。1971年德国的Lurgi公司相继开发了适用于天然气 渣油为原料的低压法工艺。由于低压法比高压法在能耗、装置建设和单系列反应器生产能力方面具有明显的优越性 所以从70年代中期起 国外新建装置大多采用低压法工艺。世界上典型的甲醇合成工艺主要有ICI工艺、Lurgi工艺和三菱瓦斯化学公司(MCC)工艺。目前 国外的液相甲醇合成新工艺具有投资省、热效率高、生产成本低的显著优点 尤其是LPMEOHTM工艺 采用浆态反应器 特别适用于用现代气流床煤气化炉生产的低H2 (CO CO2)比的原料气 在价格上能够与天然气原料竞争。我国的甲醇生产始于1957年 50年代在吉林、兰州和太原等地建成了以煤或焦炭为原料来生产甲醇的装置。60年代建成了一批中小型装置 并在合成氨工业的基础上开发了联产法生产甲醇的工艺。70年代四川维尼纶厂引进了一套以乙炔尾气为原料的95 kt/a低压法装置 采用英国ICI技术。1995年12月 由化工部第八设计院和上海化工设计院联合设计的200 kt/a甲醇生产装置在上海太平洋化工公司顺利投产 标志着我国甲醇生产技术向大型化和国产化迈出了新的一步。2000年 杭州林达公司开发了拥有完全自主知识产权的JW低压均温甲醇合成塔技术 打破长期来被ICI、Lurgi等国外少数公司所垄断拥的局面 并在2004年获得国家技术发明二等奖。2005年 该技术成功应用于国内首家焦炉气制甲醇装置上。 1.2.2 甲醇原料的发展 自1923年开始工业化生产以来 甲醇合成的原料路线经历了很大变化。20世纪50年代以前多以煤和焦碳为原料 50年代以后 以天然气为原料的甲醇生产流程被广泛应用 进入60 年代以来 以重油为原料的甲醇装置有所发展。对于我国 从资源背景看 煤炭储量远大于石油、天然气储量 随着石油资源紧缺、油价上涨 因此在大力发展煤炭洁净利用技术的背景下 在很长一段时间内煤是我国甲醇生产最重要的原料。 1.3 甲醇应用状况 近年来 我国甲醇需求增长平稳 一部分来自于传统应用领域 如甲醛生产等 而新应用领域如醋酸及MTBE等则支撑着甲醇需求的增长。广义地说 甲醇应用可分为两大应用领域 即MTBE和化工应用 MTBE曾经是甲醇需求快速增长的主要带动者 但现在也有逐年减弱的趋势。甲醇的主要应用领域是生产甲醛 甲醛可用来生产胶粘剂 主要用于木材加工业 其次是用作模塑料、涂料、纺织物及纸张等的处理剂 其中用作木材加工的胶粘剂约占其消费总量的80 。甲醛需求的增长速度和国民生产总值的增长速度密切相关。甲醛还用来生产缩醛树脂和特种化学品的1,4-丁二醇 其增长速度很快 但不会显著改变甲醛的总体需求状况。醋酸消费约占全球甲醇需求的7 可生产醋酸乙烯、醋酸纤维和醋酸酯等 其需求与涂料、粘合剂和纺织等方面的需求密切相关。甲基丙烯酸甲酯约占全球甲醇需求的

相关主题
文本预览
相关文档 最新文档