当前位置:文档之家› 高中数学选修2-1第三章空间向量检测题(一)

高中数学选修2-1第三章空间向量检测题(一)

高中数学选修2-1第三章空间向量检测题(一)
高中数学选修2-1第三章空间向量检测题(一)

选修2-1第三章空间向量检测题(一)

时间:120分钟 总分:150分 第Ⅰ卷(选择题,共60分)

1.已知向量a =(2,-3,5)与向量b =(3,λ,15

2)平行,则λ=( )

A.23

B.92 C .-92 D .-23 2.在长方体ABCD -A 1B 1C 1D 1中,AB →+BC →+CC 1→-D 1C 1→等于( )

A.AD 1→

B.AC 1

→ C.AD → D.AB → 3.若向量a =(1,m,2),b =(2,-1,2),若cos 〈a ,b 〉=8

9,则m 的值为( )

A .2

B .-2

C .-2或2

55

D .2或-2

55

4.已知空间向量a =(1,1,0),b =(-1,0,2),则与向量a +b 方向相反的单位向量的坐标是( )

A .(0,1,2)

B .(0,-1,-2)

C .(0,15,2

5

)

D .(0,-15,-2

5

)

5.已知A ,B ,C 三点不共线,对平面ABC 内任一点O ,下列条件中能确定M 与点A ,B ,C 一定共面的是( )

A.OM

→=OA →+OB →+OC → B.OM →=2OA →-OB →-OC → C.OM →=OA →+12OB →+13OC → D.OM →=13OA →+13OB →+13OC →

6.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且MG

→=2GN →,现用基向量OA

→,OB →,OC →表示向量,设OG →=xOA →+yOB →+zOC

→,则x ,y ,z 的值分别是( ) A .x =13,y =13,z =13 B .x =13,y =13,z =16 C .x =13,y =16,z =13 D .x =16,y =13,z =1

3

7.如图所示,已知三棱锥A -BCD ,O 为△BCD 内一点,则AO →=13(AB →+AC →+AD →)是O 为△BCD 的重心的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

8.已知平行六面体ABCD -A 1B 1C 1D 1中,若ABCD 是边长为2的正方形,AA 1=1,∠A 1AD =∠A 1AB =60°,则BD 1的长为( )

A .3 B.7 C.13 D .9 9.如图所示,在直三棱柱ABC -A

1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 与BC 1所成的角是( )

A .45°

B .60°

C .90°

D .120°

10.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥的体积最大时,直线BD 与平面ABC 所成的角的大小为( )

A .90°

B .60°

C .45°

D .30° 11.如图所示,在三棱锥P -ABC 中,∠APB =∠BPC

=∠APC =90°,M 在△ABC 内,∠MP A =60°,∠MPB =45°,则∠MPC 的度数为( )

A .150°

B .45°

C .60°

D .120° 12.已知直二面角α-PQ -β,A ∈PQ ,B ∈α,C

∈β,CA =CB ,∠BAP =45°,直线CA 和平面α所成的角为30°,那么二面角B -AC -P 的正切值为( )

A .2

B .3 C.12 D.1

3

第Ⅱ卷(非选择题,共90分)

二、填空题(每小题5分,共20分)

13.已知四面体ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,AC ,BD 的中点分别为E ,F ,则EF

→=________. 14.在直三棱柱ABC —A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,M 是CC 1的中点,则异面直线AB 1与A 1M 所成角的大小为________.

15.已知平行六面体ABCD -A 1B 1C 1D 1中,ABCD 是边长为a 的正方形,AA 1=b ,∠A 1AB =∠A 1AD =120°,则AC 1的长为________.

16.

如图,平面ABCD ⊥平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =1

2AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为________.

三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)

17.(10分)已知A (1,-2,11),B (6,-1,4),C (4,2,3),D (12,7,-12),证明:A ,B ,C ,D 四点共面.

18.(12分)如图,已知点P 在正方体ABCD -A 1B 1C 1D 1的体对角线BD 1上,∠PDA =60°.

(1)求DP 与CC 1所成角的大小; (2)求DP 与平面AA 1D 1D 所成角的大小.

19.(12分)如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1

上的动点.

(1)求证A 1E ⊥BD ;

(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.

20.(12分)如图,四边形PDCE 为矩形,四边形ABCD 为梯形,平面PDCE ⊥平面ABCD ,∠BAD =∠ADC =90°,AB =AD =1

2CD =a ,PD =2a .

(1)若M 为P A 的中点,求证:AC ∥平面MDE ; (2)求平面P AD 与平面PBC 所成锐二面角的大小.

21.(12分)如图所示,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =2,AB =1,BM ⊥PD 于点M .

(1)求证AM ⊥PD ;

(2)求直线CD 与平面ACM 所成的角的余弦值.

22.(12分)如图所示,在四棱锥P-ABCD中,底面是边长为23的菱形,且∠BAD=120°,P A⊥平面ABCD,P A=26,M,N分别为PB,PD的中点.

(1)证明MN∥平面ABCD;

(2)过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.

第三章单元质量评估(一)

1.C ∵a ∥b ,∴b =m a (m ∈R ), ∴23=-3λ=5152

,得λ=-92.

2.A AB →+BC →+CC 1→-D 1C 1→=AC 1→-D 1C 1→=AC 1→+C 1D 1→=AD 1→. 3.C a ·b =6-m ,|a |=m 2

+5,|b |=3,cos 〈a ,b 〉=a ·b

|a ||b |=

6-m 3m 2+5

=89,解得m =-2或m =255.

4.D 由已知得a +b =(0,1,2)且|a +b |=5,则与向量a +b 方向相反的单位向量为-15(0,1,2)=(0,-15,-2

5

).故选D.

5.D

6.D 连接ON ,∵M ,N 分别是对边OA ,BC 的中点,∴OM →=12OA →,ON →=12(OB →+OC →

),

∴OG →=OM →+MG →=OM →+23MN →=OM →+23(ON →-OM →)=13OM →+23ON →=13×12OA →+23×12(OB →+OC →)=16OA →+13OB →+13OC →,∴x =16,y =z =1

3.故选D.

7.C

8.A BD 1→=BA →+AD →+DD 1→=BA →+BC →+BB 1→,|BD 1→|2=BD 1

→2=(BA →+BC →+BB 1→)2=|BA →|2+|BC →|2+|BB 1→|2+2BA →·BC →+2BA →·BB 1→+2BC →·BB 1→=4+4+1+0+2×2×1×(-12)+2×2×1×12=9,|BD 1→|=3,即BD 1

的长

为3.

9.B

以点B 为坐标原点,建立如图所示的空间直角坐标系,设各棱长为2,则E (0,1,0),F (0,0,1),C 1(2,0,2),B (0,0,0),则EF →=(0,-1,1),BC 1→=(2,0,2),∴cos 〈EF →,BC 1→〉=22·22

=12,∴〈EF →,BC 1

→〉=60°,∴直线EF 与BC 1所成的角为60°.

10.C 翻折后A ,B ,C ,D 四点构成三棱锥的体积最大时,平面ADC ⊥平面BAC ,设未折前正方形对角线的交点为O ,则∠DBO 即为BD 与平面ABC 所成的角,大小为45°.

11.C

如右图所示,过M 作MH ⊥面PBC 于H ,则MH ∥AP ,∴∠MPH =30°,∴cos45°=cos ∠HPB ·cos30°,∴cos ∠HPB =6

3,∴cos ∠HPC

=33.又cos ∠HPC ·cos30°=cos ∠MPC ,∴33×32=cos ∠MPC ,∴∠MPC =60°.

12.A 在平面β内过点C 作CO ⊥PQ 于O ,连接OB .又α⊥β,则OC ⊥OB ,OC ⊥OA ,又CA =CB ,所以△AOC ≌△BOC ,故OA =OB .又∠BAP =45°,所以OA ⊥OB .以O 为原点,分别以OB ,OA ,OC 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系(如图).

不妨设AC =2,由∠CAO =30°,知OA =3,OC =1.在等腰直角三角形OAB 中,∠ABO =∠BAO =45°,则OB =OA =3,所以B (3,0,0),A (0,3,0),C (0,0,1),AB

→=(3,-3,0),AC →=(0,-3,1),设平面ABC 的法向量为n 1=(x ,y ,z ),由??

?

n 1·AC →=-3y +z =0n 1·AB

→=3x -3y =0,

取x =1,则y =1,z =3,所以n 1=(1,1,3),易知平面β的一个法向量为n 2=(1,0,0),则cos 〈n 1,n 2〉=

n 1·n 2|n 1||n 2|=15×1

=55,又二面角B -AC -P 为锐角,由此可得二面角B -AC -P 的正切值为2.

13.3a +3b -5c 解析:

如图所示,取BC 的中点M ,连接EM ,MF ,则EF →=EM →+MF →=12AB →+12CD →=12(a -2c )+1

2(5a +6b -8c )=3a +3b -5c . 14.π2

解析:由条件知AC ,BC ,CC 1两两垂直,如图,以C 为原点,CB ,CA ,CC 1分别为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),

A (0,3,0),

B 1(1,0,6),M ?

????0,0,62,A 1(0,

3,6),

∴AB 1

→=(1,-3,6), A 1M →=?

????0,-3,-62,

cos 〈AB 1→,A 1M →〉=0,∴〈AB 1→,A 1M →〉=π2, 即直线AB 1与A 1M 所成角为π

2. 15.2a 2+b 2-2ab

解析:设AB →=a ,AD →=b ,AA 1

→=c ,则|a |=|b |=a ,|c | =b ,∴AC 1→=AB →+BC →+CC 1→=a +b +c ,∴|AC 1

→|2=(a +b +c )2=2a 2

+b 2-2ab ,∴|AC 1

→|=2a 2+b 2-2ab . 16.6

3

解析:如图,以A 为原点建立空间直角坐标系,则A (0,0,0),B (0,2a,0),C (0,2a,2a ),G (a ,a,0),F (a,0,0),AG →=(a ,a,0),AC →=(0,2a,2a ),BG

→=(a ,-a,0), 设平面AGC 的一个法向量为n 1=(x 1,y 1,1),由??

?

AG →·n 1=0AC →·n 1=0

得????? ax 1+ay 1=02ay 1

+2a =0,则?????

x 1=1y 1=-1,故n 1=(1,-1,1).设GB 与平面AGC 所成的角为θ,则

sin θ=|BG →·n 1||BG

→||n 1

|=2a 2a ×3=63.

17.证明:AB →=(5,1,-7),AC →=(3,4,-8),AD →=(11,9,-23),设AD

→=xAB →+yAC →, 得????

?

5x +3y =11x +4y =9-7x -8y =-23,

解得x =1,y =2.

所以AD

→=AB →+2AC →,则AD →,AB →,AC →为共面向量,又AB →,AD →,AC →有公共点A ,因此A

,B ,C ,D 四点共面.

18.解:

如图,以D 为坐标原点建立空间直角坐标系,设正方体的棱长为1,则DA →=(1,0,0),CC 1→=(0,0,1),连接BD ,B 1D 1,在矩形BB 1D 1D 中,延长DP 交B 1D 1于H 点.

设DH →=(m ,m,1)(m >0),〈DH →,DA →〉=60°,则DA →·DH →=|DA →||DH →|cos 〈DH →,DA →〉,

可得2m =2m 2

+1,得m =22,

所以DH →=(22,22

,1). (1)cos 〈DH →,CC 1→〉=DH →·CC 1→|DH →||CC 1→|=12,所以〈DH →,CC 1

→〉=45°,即DP 与CC 1所成的角为45°.

(2)平面AA 1D 1D 的一个法向量为DC

→=(0,1,0),cos 〈DH →,DC →〉=DH →·DC →|DH →|·|DC →|=12,所以〈DH →,DC →〉=60°,故DP 与平面AA 1D 1D 所成的

角为30°.

19.(1)证明:如图所示,以D 为原点,DA →,DC →,DD 1→

所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系.设正方体的棱长为a ,则A (a,0,0),B (a ,a,0),C (0,

a,0),A 1(a,0,a ),C 1(0,a ,a ),设E (0,a ,e ),则A 1E →=(-a ,a ,e -a ),BD →=(-a ,-a,0),A 1E →·BD →=-a ·(-a )+a ·(-a )+(e -a )·0=0,∴A 1E →⊥BD →,则A 1E ⊥BD .

(2)解:当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .由题意可得DE =BE ,

∴EO ⊥BD .

同理A 1O ⊥BD ,∠A 1OE 为二面角A 1-BD -E 的平面角,EO =

? ????12a 2+? ??

??22a 2=3

2a ,A 1O =

a 2

+? ??

??22a 2=6

2a ,A 1E 2=(2a )2+

? ??

??12a 2=94a 2,∴EO 2+A 1O 2=9

4a 2=A 1E 2,∴∠A 1OE =90°,∴平面A 1BD ⊥平面EBD .

20.解:

∵四边形PDCE 是矩形,且平面PDCE ⊥平面ABCD ,平面PDCE ∩平面ABCD =CD ,∴PD ⊥平面ABCD ,则PD ⊥AD ,PD ⊥DC ,又∠ADC =90°,∴PD ,AD ,DC 两两垂直.以D 为原点,分别以DA ,DC ,DP 所在

直线为x ,y ,z 轴建立如图所示的空间直角坐标系.由已知,得D (0,0,0),A (a,0,0),P (0,0,2a ),E (0,2a ,2a ),C (0,2a,0),B (a ,a,0).

(1)∵M 为P A 的中点,∴M (a 2,0,2a

2),

则AC →=(-a,2a,0),DM →=(a 2,0,2a 2),DE →=(0,2a ,2a ). 设平面MDE 的法向量为m =(x ,y ,z ), 由题意得??

?

m ·DM →=0m ·DE

→=0,则?????

x +2z =0

2y +2z =0

取m =(2,1,-2).

而AC →·m =(-a )·2+2a +0=0,且AC ?平面MDE , ∴AC ∥平面MDE .

(2)平面P AD 的一个法向量n 1=(0,1,0),PC →=(0,2a ,-2a ),PB →=(a ,a ,-2a ).设平面PBC 的法向量为n 2=(x 0,y 0,z 0),则有??

?

n 2·PC

→=0n 2·PB

→=0,即?

????

2y -2z =0

x +y -2z =0,

取n 2=(1,1,2).

设平面P AD 与PBC 所成锐二面角的大小为θ,则有 cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2|n 1|·|n 2||=1

2,

则θ=60°,

∴平面P AD 与平面PBC 所成锐二面角的大小为60°. 21.(1)证明:∵P A ⊥平面ABCD ,AB ?平面ABCD , ∴P A ⊥AB .

∵AB ⊥AD ,AD ∩P A =A ,∴AB ⊥平面P AD . ∵PD ?平面P AD ,∴AB ⊥PD .

∵BM ⊥PD ,AB ∩BM =B ,∴PD ⊥平面ABM . ∵AM ?平面ABM ,∴AM ⊥PD .

(2)解:如右图所示,以点A 为坐标原点,AB

→,AD →,AP →所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),B (1,0,0),C (1,2,0),D (0,2,0),M (0,1,1),则AC →=(1,2,0),AM →=(0,1,1),CD

→=(-1,0,0). 设平面ACM 的一个法向量为n =(x ,y ,z ),由n ⊥AC

→,n ⊥AM →可得?????

x +2y =0,y +z =0,

令z =1,得x =2,y =-1,∴n =(2,-1,1).设直线CD 与平面ACM 所成的角为α,则sin α=?????

??

?

CD →·n |CD →||n |=63,∴cos α=33

,∴直线CD 与平面ACM 所成的角的余弦值为3

3.

22.(1)证明:连接BD ,因为M ,N 分别为PB ,PD 的中点,所以MN 是△PBD 的中位线,所以MN ∥BD .又因为MN ?平面ABCD ,所以MN ∥平面ABCD .

(2)解法1:连接AC 交BD 于O ,以O 为原点,OC

→,OD →所在直

线为x 轴、y 轴,建立空间直角坐标系Oxyz ,如图所示.在菱形ABCD 中,∠BAD =120°,得AC =AB =23,BD =3AB =6,又因为P A ⊥平面ABCD ,所以P A ⊥AC ,在直角三角形P AC 中,AC =23,P A =26,AQ ⊥PC ,得QC =2,PQ =4.由此知各点坐标如下:A (-3,0,0),B (0,-3,0),C (3,0,0),D (0,3,0),P (-3,0,26),

M ? ????-32,-32,6,N ? ????-32,32,6,Q ? ????33,0,263.设m =(x 1,y 1,z 1)为平面AMN 的一个法向量,AM →=? ??

??32,-32,6,AN

→=? ??

??32,32,6,由m ⊥AM

→,m ⊥AN →知???

32x 1-32y 1+6z 1=0,

32x 1

+32y 1

6z 1=0.

取z 1

=-1,得m =(22,0,-1).设n =(x 2,y 2,z 2)为平面QMN 的一个

法向量,QM →=? ????-536,-32,63,QN →=?

????-536,32,63.由n ⊥QM →,n ⊥QN →知???

-536x 2-32y 2+6

3z 2=0,

-536x 2

+32y 2

+6

3z 2

=0.

取z 2=5,得n =(22,0,5).故

cos 〈m ,n 〉=m ·n |m ||n |=33

33,所以二面角A -MN -Q 的平面角的余弦

值为3333.

解法2:如图所示,在菱形ABCD 中,∠

BAD =120°,得AC =AB =BC =CD =DA ,BD =3AB .又因为P A ⊥平面ABCD ,所以P A ⊥

AB ,P A ⊥AC ,P A ⊥AD ,所以PB =PC =PD ,所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点,所以MQ =NQ ,且AM =12PB =1

2PD =AN .取线段MN 的中点E ,连接AE ,EQ ,则AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角,由AB =23,P A =26,故在△AMN 中,AM =AN =3,MN =12BD =3,得AE =33

2.在直角三角形P AC 中,AQ ⊥PC ,得AQ =22,QC =2,PQ =4,在△PBC 中,cos

BPC

PB 2+PC 2-BC 2

2PB ·PC

5

6

MQ

PM 2+PQ 2-2PM ·PQ cos ∠BPC = 5.在等腰三角形MQN 中,MQ =NQ =5,MN =3,得QE =MQ 2

-ME 2

=112.在△AEQ 中,AE =332,

QE =112,AQ =22,得cos ∠AEQ =AE 2+QE 2-AQ 22AE ·QE =3333,所以二面角A -MN -Q 的平面角的余弦值为3333 .

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

高中数学选修2-1《空间向量与立体几何》知识点讲义

第三章 空间向量与立体几何 一、坐标运算 ()()111222,,,,,a x y z b x y z == ()()()()121212121212 11112121 2,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=?=???则 二、共线向量定理 (),0,=.a b b a b a b λλ≠←??→?充要对于使 三、共面向量定理 ,,.a b p a b x y p x a y b ←??→?=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←???→+=充要条件四、对空间任意一点,若则三点共线 ,1.P A B C O OP xOA yOB zOC P A B C x y z =++←??→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点 ()()()11, 1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性 、、、四点共面, ,,, 令()()() 1, 1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理 {} ,,a b c p x y z p xa yb zc a b c a b c ?若,,不共面,对于任意,使=++,称,,做空间的一个基底,, ,都叫做基向量.

(完整版)选修21空间向量知识点归纳总结

第三章空间向量与立体几何 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示.同向等长的有向线段表示同一或相等的 向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 空间向量的运算。 定义:与平面向量运算一 样,空间向量的加法、减法与数乘运算如下(如图)。 ⑵加法结合律:(a b ) c ⑶数乘分配律:(a b ) 3. 共线向量。 (1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a 平行于b ,记作a 〃b 。 当我们说向量a 、b 共线(或a// b )时,表示a 、b 的有向线段所在的直线 可能是同一直线,也可能是平行直线。 (2) 共线向量定理:空间任意两个向量a 、b ( b 工0 ),a// b 存在实数入, 使a =入b 。 4. 共面向量 (1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。r r (2) 共面向量定理:如果两个向量a,b 不共线,P 与向量a,b 共面的条件是 存在实数x, y 使p xa yb 。 5. 空间向量基本定理:如果三个向量a,b,c 不共面,那么对空间任一向量P , 存在一个唯一的有序实数组x, y,z ,使p xa yb zc 。 若三向量ab,c 不共面,我们把{a,b,c }叫做空间的一个基底,a,b,c 叫做基向 2. uuu r OB a b a (b c) b a

量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设O,代B,C是不共面的四点,则对空间任一点P,都存在唯一的三个 uuu uuu uuu uuur 有序实数x, y,z,使OP xOA yOB zOC。

高中数学-空间向量的基本定理练习

高中数学-空间向量的基本定理练习 课后导练 基础达标 1.若对任意一点O ,且OP =y x +,则x+y=1是P 、A 、B 三点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:C 2.已知点M 在平面ABC 内,并且对空间任一点O ,OM OM=x + 31+31,则x 的值为…( ) A.1 B.0 C.3 D. 3 1 答案:D 3.在以下命题中,不正确的个数是( ) ①已知A,B,C,D 是空间任意四点,则DA CD BC AB +++=0 ②|a |+|b |=|a +b |是a ,b 共线的充要条件 ③若a 与b 共线,则a 与b 所在的直线的平行 ④对空间任意一点O 和不共线的三点A,B,C,若z y x ++=,(其中x,y,z∈R ),则P,A,B,C 四点共面 A.1 B.2 C.3 D.4 答案:C 4.设命题p:a ,b ,c 是三个非零向量;命题q:{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B 5.下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM --= B.MC MB MA ++=0 C.3 13131++++ D.OC OB OA OM +-=2 答案:B 6.在长方体ABCD —A 1B 1C 1D 1中,E 为矩形ABC D的对角线的交点,设A 1=a,11B A =b,11D A =c,则E A 1=____________.

答案:a +21b +21c 7.设O 为空间任意一点,a,b 为不共线向量,OA =a,OB =b,OC =ma+nb,(m,n∈k)若A,B,C 三点共线,则m,n 满足____________. 答案:m+n=1. 8.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,在下列各条件下,点P 是否与A 、B 、C 一定共面? (1)OP =52OA +51OB +5 2OC ; (2)OP=2OA-2OB-OC. 解:(1)OP = 52OA +51OB +52OC . ∵1525152=++,∴P 与A 、B 、C 共面. (2)OP =OC OB OA --22. ∵2-2-1=-1,∴P 与A 、B 、C 不共面. 9.如右图,已知四边形ABCD 是空间四边形,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF =32CB ,CG =3 2CD . 求证:四边形EFGH 是梯形. 证明:∵E、H 分别是AB 、AD 的中点, ∴= 21,=2 1, EH =-=21AD -21AB =21(AD -AB )=21BD =2 1(CB CD -) =21(23CG -23CF )=43(-)=4 3. ∴EH ∥FG 且|EH |=43|FG |≠|FG |. ∴四边形EFGH 是梯形. 综合运用 10.如右图,平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,11A A =c ,则下列向量中与B 1M 相等的向量是( )

选修2-1第三章空间向量与立体几何教案

第三章空间向量与立体几何 空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量向量是怎样表示的呢 [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向

量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢 [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P26~P27. Ⅱ.新课讲授 [师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢相等的向量又是怎样表示的呢[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量. [师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

创新设计高中数学苏教选修21习题:第3章 空间向量与立体几何

3.1.5 空间向量的数量积 课时目标 1.掌握空间向量的夹角及空间向量数量积的概念.2.掌握空间向量的运算律及其坐标运算.3.掌握空间向量数量积的应用. 1.两向量的夹角 如图所示,a,b 是空间两个非零向量,过空间任意一点O ,作OA →=a ,OB →=b ,则__________ 叫做向量a 与向量b 的夹角,记作__________. 如果〈a ,b 〉=π2 ,那么向量a ,b ______________,记作__________. 2.数量积的定义 已知两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作a·b . 即a·b =__________. 零向量与任一向量的数量积为0. 特别地,a·a =|a|·|a|cos 〈a ,a 〉=________. 3.数量积的运算律 空间向量的数量积满足如下的运算律: (λa )·b =λ(a·b ) (λ∈R ); a·b =b·a ; a·(b +c )=a·b +a·c . 4.数量积的坐标运算 若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则 (1)a·b =________________; (2)a ⊥b ?__________?____________________________; (3)|a |=a·a =______________; (4)cos 〈a ,b 〉=____________=_________________________________________. 一、填空题 1.若a ,b 均为非零向量,则a·b =|a||b |是a 与b 共线的____________条件. 2.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=________. 3.已知向量a =(0,-1,1),b =(4,1,0),|λa +b |=29且λ>0,则λ=________. 4.若a 、b 、c 为任意向量,下列命题是真命题的是____.(写出所有符合要求的序号) ①若|a |=|b |,则a =b ; ②若a·b =a·c ,则b =c ; ③(a·b )·c =(b·c )·a =(c·a )·b ; ④若|a |=2|b |,且a 与b 夹角为45°,则(a -b )⊥b . 5.已知向量a =(2,-3,0),b =(k,0,3),若a 与b 成120°角,则k =________. 6.设O 为坐标原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运 动,则当QA →·QB →取得最小值时,点Q 的坐标为________. 7.向量(a +3b )⊥(7a -5b ),(a -4b )⊥(7a -2b ),则a 和b 的夹角为____________. 8.若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为π3 ,则|a +b |=________. 二、解答题

空间向量高中数学教案课程

空间向量 考纲导读 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 掌 握 空 间 两 点 间 的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是:

1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量. (2) 向量相等:方向 且长度 . (3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 .(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. 2.线性运算律 (1) 加法交换律:a +b = .

苏教版数学选修2-1:3.1 空间向量及其运算3.1.5

1.若a ,b 均为非零向量,则a ·b =|a ||b |是a 与b 共线的____________条件. 解析:a ·b =|a ||b |cos 〈a ,b 〉=|a ||b |?cos 〈a ,b 〉=1?〈a ,b 〉=0,当a 与b 反向时,不成立. 答案:充分不必要 2.对于向量a ,b ,c 和实数λ,下列命题中真命题是________(填序号). ①若a ·b =0,则a =0或b =0; ②若λa =0,则λ=0或a =0; ③若a 2=b 2,则a =b 或a =-b ; ④若a ·b =a ·c ,则b =c . 解析:①中若a ⊥b ,则有a ·b =0,不一定有a =0或b =0. ③中当|a |=|b |时,a 2=b 2,此时不一定有a =b 或a =-b . ④中当a =0时,a ·b =a ·c ,不一定有b =c . 答案:② 3.已知向量a ,b 满足条件:|a |=2,|b |=2,且a 与2b -a 互相垂直,则a 与b 的夹角为________. 解析:因为a 与2b -a 互相垂直,所以a ·(2b -a )=0. 即2a ·b -a 2=0.所以2|a ||b |cos 〈a ,b 〉-|a |2=0, 所以cos 〈a ,b 〉=22 ,所以a 与b 的夹角为45°. 答案:45° 4.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=________. 解析:|a +3b |2=(a +3b )2=a 2+6a ·b +9b 2=13. 答案:13 [A 级 基础达标] 1.(2011·高考重庆卷)已知单位向量e 1,e 2的夹角为60°,则|2e 1-e 2|=__________. 解析:|2e 1-e 2|2=4e 21-4e 1·e 2+e 22=4-4×1×1×cos60°+1=3,∴|2e 1-e 2|= 3. 答案: 3 2.若向量a 与b 不共线,a ·b ≠0,且c =a -(a ·a a ·b )b ,则向量a 与c 的夹角为__________. 解析:a ·c =a ·[a -(a ·a a ·b )b ]=a ·a -(a ·a a ·b )b ·a =a ·a -a ·a =0,∴a ⊥c . 答案:90° 3.已知三点A (1,-2,11),B (4,2,3),C (6,-1,4),则三角形ABC 的形状是__________. 解析:AB →=(3,4,-8),BC →=(2,-3,1),AC →=(5,1,-7). ∴|AB →|=89,|BC →|=14,|AC →|=75, ∴|AB →|2=|BC →|2+|AC →|2,

高二数学选修2-1空间向量试卷与答案

高二数学(选修2-1 )空间向量试题 宝鸡铁一中司婷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的 代号填在题后的括号内(每小题 5 分,共 60 分). 1.在正三棱柱ABC—A1B1C1中,若AB=2BB1,则 AB1与 C1B 所成的角的大小为()A. 60°B. 90°C. 105°D.75° 2.如图,ABCD—A1B1C1D1是正方体,B1E1=D1F1=A 1 B 1 ,则 BE1 4 与 DF1所成角的余弦值是() A.15 B. 1 172 图 8 D.3 C. 2 17 3.如图, 1 1 1—是直三棱柱,∠=90°,点1、 1 分别是 1 1、 A B C ABC BCA D F A B A1C1的中点,若 BC=CA=CC1,则 BD1与 AF1所成角的余弦值是() A.C. 301 10 B. 2 30图 15 15 D. 10 4.正四棱锥S ABCD 的高 SO 2 ,底边长AB 2 ,则异面直线BD 和 SC 之间的距离() .15.5C. 2 5 A5B55 5.已知ABC A1 B1 C1是各条棱长均等于 a 的正三棱柱, D 是侧棱 CC1的中点.点 C1到平面 AB1 D 的距离() A. 2 a B. 2 a 48A 1D. 5 C1 10B1 D A C B图

C.3 2 a D. 2 a 42 6.在棱长为 1 的正方体ABCD A1 B1C1D1中,则平面 AB1C 与平面 A1 C1 D 间的距离() A.3B.3C.2 3 D.3 6332 7.在三棱锥-中,⊥,==1,点、 D 分别是、的中点,⊥底 P ABC AB BC AB BC2PA O AC PC OP 面 ABC,则直线 OD与平面 PBC所成角的正弦值() A.21B.8 3 C210 D .210 636030 8.在直三棱柱ABC A1B1C1中,底面是等腰直角三角形,ACB 90,侧棱 AA1 2 ,D,E 分别是CC1与A1B的中点,点 E 在平面AB D 上的射影是ABD 的重心G.则A1B 与平面 AB D所成角的余弦值() A. 2 B. 7 C. 3 D. 3 3327 9.正三棱柱ABC A1 B1C1的底面边长为3,侧棱AA13 3 ,D是C B延长线上一点,2 且 BD BC ,则二面角B1AD B 的大小() A. 3B. 6 C. 5 D. 2 63 10.正四棱柱ABCD A1B1C1D1中,底面边长为 2 2 ,侧棱长为4, E,F 分别为棱AB,CD的中点,EF BD G .则三棱锥B1EFD1的体积V() A.6B.16 3C.16 D.16 633 11.有以下命题: ①如果向量 a, b 与任何向量不能构成空间向量的一组基底,那么a, b 的关系是不共线; ② O , A, B,C 为空间四点,且向量OA, OB, OC不构成空间的一个基底,则点 O, A, B,C 一定共面; ③已知向量 a, b, c 是空间的一个基底,则向量 a b, a b, c 也是空间的一个基底。其中

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

选修21空间向量单元测试

空间向量单元测试(一) 本试卷分第Ⅰ卷和第II 卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是 符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则、一定不共面;③若、、三向量两两共面,则、、三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 z y x ++=.其中正确命题的个数为 ( ) A .0 B .1 C .2 D .3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 5.直三棱柱ABC —A 1B 1C 1中,若CC ===1,,, 则1A B = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 6.已知++=,||=2,||=3,||=19,则向量与之间的夹角>

高中数学空间向量与立体几何单元练习题

《空间向量与立体几何》习题 一、选择题(每小题5分,共50分) 1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a , 11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是 A .- 21a +21b +c B .21a +21b +c C .2 1a - 21b +c D .-21a -2 1 b + c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OC OB OA OM --=23 B.OC OB OA OM 51 3121++= C.0=+++OC OB OA OM D.0=++MC MB MA 3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ?等于 A.41 B.4 1 - C.43 D.43- 4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.1 5.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A. 213 B.253 C.453 D.4 53 6.下列几何体各自的三视图中,有且仅有两个视图相同的是 A .①② B .①③ C .①④ D .②④ 7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ①正方体 ②圆锥 ③三棱台 ④正四棱锥

A .9π B .10π C .11π D .12π 8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1 D 1 D .异面直线AD 与CB 1所成的角为60° 9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A . 6 B .552 C .15 D .10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为 A.5 B.41 C.4 D.52 二、填空题(每小题5分,共20分) 11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy . 12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥, 1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面P AD 的距离为 . 三、解答题(共80分) 俯视图 正(主)视图 侧(左)视图 2 3 2 2

数学选修2-1 3.1空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

① 几何表示法:_________________________ ② 字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ① 零向量:__________________________,记作___(零向量的方向具有任意性) ② 单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③ 相等向量:____________________________ ④ 相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下: (1)|λa |=|λ||a | (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa =0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a +b =b +a 加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb 数乘结合律:λ(a μ)=a )(λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

2018届高中数学专题09解密空间向量的运算技巧特色训练新人教A版选修2_1

专题09 解密空间向量的运算技巧 一、选择题 1.【吉林省吉化一中、前郭五中等2017-2018学年高二上学期期中】已知,,,若 且,则点的坐标为() A. B. 或C. D. 或 【答案】B 2.【吉林省吉化一中、前郭五中等2017-2018学年高二上学期期中】已知空间上的两点,, 以为体对角线构造一个正方体,则该正方体的体积为() A. B. C. D. 【答案】D 【解析】∵, ∴ 设正方体的棱长为,由题意可得,解得 ∴正方体的体积为,故选D 3.【重庆市第一中学2018届高三上学期期中】已知直角坐标系中点,向量,,则点的坐标为()

A . B . C . D . 【答案】C 【解析】∵向量,, ∴,又 ∴ ∴点的坐标为 故选:C 4.【贵州省兴义市第八中学2017-2018学年高二上学期期中】已知四棱锥P ABCD -中, ()4,2,3AB =-, ()4,1,0AD =-, ()6,2,8AP =--,则点P 到底面ABCD 的距离为( ) A . 26 B 26 C . 1 D . 2 【答案】D 5.【北京市第四中学(房山分校)2016-2017学年高二上学期期中】若(),1,3a x =-, ()2,,6b y =,且a b ,则( ). A . 1x =, 2y =- B . 1x =, 2y = C . 1 2 x = , 2y =- D . 1x =-, 2y =- 【答案】A 【解析】∵(),1,3a x =-, ()2,,6b y =, a b , ∴存在实数λ,使得a b λ=, 可得2{1 36x y λ λλ =-==,

人教课标版高中数学选修空间向量与立体几何教材分析-新版

空间向量与立体几何教材分析 在必修2中,我们已经学习了空间中线面、面面平行与垂直的判定定理和性质定理,但必修2中没有证明空间中的距离,点点距、点线距、点面距等、空间中的角,包括异面直线所称的角、线面教、二面角,在必修2中也都只介绍了有关概念,以及很简单的求解题.为了能更好的解决空间中的几何元素的位置、距离、角度问题,教材在这里引入了空间向量. 用空间向量处理某些几何问题,为我们提供新的视角,在空间特别是空间直角坐标系中引入空间向量,可以为解决三维图形的形状、大小及位置关系的几何问题增加一种理想的代数工具,从而提高学生的空间想象能力和学习效率. 向量知识的引进,使我们能用代数的观点和方法解决立体几何问题,用计算代替逻辑推理和空间想象,用数的规范性代替形的直观性,具体、可操作性强,从而大大降低了立体几何的求解难度. 本章是选修2-1的第3章,包括空间向量的基本概念和运算,以及用空间向量解决直线、平面的位置关系的问题等内容.通过本章的学习,我们要体会向量方法在研究几何图形中的作用,进一步培养我们的空间想象能力.在空间向量的学习中,我们要注意类比、推广、特殊化、化归等思想方法的应用,充分利用空间向量与平面向量之间的内在联系,通过类比,将平面向量中的概念、运算以及处理问题的方法推广到空间,既使相关的内容相互沟通,又学习了类比、推广、特殊化、化归等思想方法,体会数学探索活动的基本规律,提高对向量的整体认识水平.空间向量的引进、运算、正交分解、坐标表示、用空间向量表示空间中的几何元素等,都是通过与平面向量的类比完成的.在空间向量运算中,还要注意与数的运算的对比.另外,通过适当的例子,对解决空间几何问题的三种方法,即向量方法、解析法、综合法进行比较,对各自的优势以及面临问题时应当如何做出选择进行正确的分析.本章突出了用空间向量解决立体几何问题的基本思想.根据问题的特点,以适当的方式(例如构造基向量、建立空间直角坐标系)用空间向量表示空间图形中的点、线、面等元素,建立空间图形与空间向量的联系,然后通过空间向量的运算,研究相应元素之间的关系(平行、垂直、角和距离等),最后对

(完整版)选修21空间向量知识点归纳总结

第三章 空间向量与立体几何 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ, 使a ρ =λb ρ。 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是 存在实数,x y 使p xa yb =+r r r 。 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r , 存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个 有序实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。

(完整)空间向量__新高中数学教学教学教案

欢迎阅读 空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距 离公式. 理解空 间向量的夹角的概念;掌握空间向量的数量积的概念、 性质和运算律;了解空间 向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广.本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量.(2) 向量相等:方向 且长度 .(3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 . (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. 基础过关 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直 2.线性运算律 (1) 加法交换律:a +b = . (2) 加法结合律:(a +b )+c = .(3) 数乘分配律:λ(a +b )= .

相关主题
文本预览
相关文档 最新文档