当前位置:文档之家› 变频恒压供水控制系统毕业设计

变频恒压供水控制系统毕业设计

变频恒压供水控制系统毕业设计
变频恒压供水控制系统毕业设计

变频恒压供水控制系统毕业设计

1 前言

1.1背景

随着社会的飞速发展和城市建设规模的扩大,人口的增多以及人们生活水平的提高,对城市供水的质量、数量、稳定性等问题提出了越来越高的要求,我国中小城市供水的自动化配置相对落后,机组的控制主要依靠值班人员的手动操作,控制过程烦琐,而且手动控制无法对供水管网的压力和水位变化及时做出恰当的反应。为了保证供水,机组常保持在超压的状态下运行,爆损现象也挺严重。在农村中,传统的水塔供水方式存在许多实际问题,如顶层水箱结构和建筑设计、水箱易对水源造成二次污染、水塔供水无法维持供水压力的恒定等问题。近年来,随着异步电动机变频调速技术的迅速发展,居民区供水系统正逐步采用无塔变频供水,利用变频调速技术,不仅可使水泵供水系统取得显著的节能效果,还可以极改善系统的工作性能,并能延长系统的使用寿命,克服传统供水方式的种种缺点。

随着工业企业和人们生活用水量的增大以及对供水要求不断的提高,恒压供水变得也来越重要。目前国多数企业仍使用传统的恒速泵组切换加压供水方式,其水压不稳而且浪费电能。我国每年水泵消耗电能约占电能总消耗量20%以上,而电能消耗又占水费成本60%以上,故优化对水泵的控制,具有重要意义。

在生活用水过程中存在不同时间段用水量不均现象。如果不对供水量进行调节,管网压力的波动也会很大,容易出现管网失压或爆管事故,同时也浪费了大量能源。为了节约电能,又能保证正常用水,供水部门也采取了不少措施。近几年最为常用的变频恒压供水系统能根据压力变化情况及时调整电机转速,将供水压力控制在一定围之,既满足了变化的用水需求,也起到了节能降耗的目的[1]。

1.2 变频调速恒压供水的基本原理[2]

变频恒压供水, 一般由压力变送器采样水压信号与系统设定压力值比较后产生输出信号, 再经变频器控制水泵电机转速, 实现恒压供水。水泵转动的越快,产生的水压越高, 才能将水输送到远处或较高的楼层。恒压供水泵站中变频器常常采用模拟量控制方式, 这需采用PLC 的模拟量控制模块, 该模块的模拟量输入端接受传感器送来的模拟信号, 输出端送出经给定值

与反馈值比较并经PID 处理后得出的模拟量控制信号, 并依此信号的变化改变变频器的输出

频率。采用PLC 控制, 不仅可减少系统控制接线, 提高可靠性, 用软件实现上述硬件, 维修简易,充分发挥了可编程控制器配置灵活、控制可靠、编程方便和可现场调试的优点, 使整个系统的稳定性有了可靠的保障。

1.3 变频调速使水泵电机节能的原理[3]

水泵额定运行状态下的输出功率:

N = rHQ = pQ

m/s; p 为泵的水压, 单位为MPa ; H 为泵的扬程, 单式中: Q 为输出流量,单位为3

N/m。

位为m ;r 为重要系数, 单位为3

根据泵的相似律,当驱动转速改变时,输出流量Q 、泵的水压p 、扬程H 分别与驱动转速的一次方、二次方和三次方成正比例。

图1 示出水泵Q - p 运行特性,其中曲线①、②分别是转速为n1 、n2 时的特性曲线,曲线③、④是转速为n2 时的等效管阻特性, 曲线⑤是转速为n1 时的等效管阻特性。设水泵电机由电网直接供电驱动,水泵运行于A 点,此时泵功率为: N1 =Q1 p1 ,对应于图中的矩型面积A p1 OQ1 , 若将水量减为Q2 , 工作点将由A 滑向B ,水压增为p2 ,功率N2 则由面积B p2 OQ2 描述。若水泵改为变频调速驱动,在小水量时降为低速n2 , 水泵可运行于C 点稳定,功率N3 由面积Cp1 OQ2 描述,而水压则维持为p1 ,节约的能耗对应阴影面积B p2 p1 C。

图1 Q - p运行特性及管阻特性

以下以数值定性说明节能效果。

因流量与转速成正比,功率与转速立方成正比,总需求为Q , 在某一工作点时, Q 是一定值。

当变频器运行在45 Hz 时, Q ∝ f = 45 Hz ,节

电率

3

E=1-(0.9)=27.1%;

当变频器运行在40 Hz 时, f = 40 Hz ,节电率

3

E=1-(0.8)=48.8%;

当变频器运行在35 Hz 时, f = 35 Hz ,节电率

3

E=1-(0.7)=65.7%;

以75 kW为例,平均运行在45 Hz ,1 年可节约

电能75 ×24 ×365 ×27. 1 % = 178 047 kWh。

若电价为0 . 8 5 元/ kWh , 则1 年可节约电

费0. 85 ×178 047 = 151 339. 95 元。

1.4 国外的研究现状及分析

针对目前国民用建筑行业的发展,特别是卫星城和小区建设的发展,给各个技术行业带来的许许多多的研究课题。小区供水系统的设计与研究,从工程而言是成熟的,己有规的设计和施工标准,但从多方面的综合技术指标来说,还远远没能达到用户的要求。从目前的供水行业调查结果表明,变频调速是一项有效的节能降耗技术,其节电率很高,几年能将因设计冗余和用量变化而浪费的电能全部节省下来,又由于其具有调速精度高,功率因数高等特点,使用它可以提高出水质量,并降低物料和设备的损耗,同时也能减少机械磨损和噪声,改善车间劳动条件,满足生产工艺要求。因此利用微电脑与交流电机变频调速技术对管网供水进行自动控制,近几年在国得到了极大发展,从目前情况看,微机控制变频调速自动供水技术可分为恒水压控制与恒水流控制两种主流。前者强调对水泵出口压力进行给定跟踪控制,使出口水压基本保持

恒定,而出口流量则依用户需求随时可变。这种控制方法的优点是供水品质优良,可在任何情况下同时满足全网各用户对供水流量与扬程的不同要求。不足之处是过于强调恒压指标,对低区用户扬程指标订得太高,水压过高,用户不得不用阀门限流,造成能源浪费,且由于水压过高,管网耐压水平必须提高,造成材料浪费。恒水流控制则强调对出口流量进行宏观总量控制,对水压与扬程指标则放松,其优点是在满足用户对用水量的基本要求前提下,可最大限度节能。但缺点也是显然的,其一是仅控制用水总量,而无法分配水流去向,势必造成分配不均,特别在低层用水量大时,造成高层断流。而在高层用水量大时又造成低层水压过高。其二是水的流量检测难度较大,闭环控制困难。国的许多专家,学者从 70 年代起,开始尝试将计算机技术应用于供水系统的模拟,优化设计及供水系统控制等方面[4]。目前国供水系统采用的自动控制技术不少,其特点是变频技术与其它其术的结合。如最初的恒压供水系统采用继电接触器控制电路,是与开关技术结合,通过人工起动或停止水泵和调节泵出口阀开度来实现恒压供水。该系统线路复杂,操作麻烦,劳动强度大,维护困难,自动化程度低,应用前景不大。后来增加了微机加 PLC 监控系统, 提高了自动化程度。但由于驱动电机是恒速运转,水流量靠调节泵出口阀开度来实现,浪费大量能源,也没有很好的发展。

2 系统总体设计方案

系统总体方案原理如图2所示

图2 控制系统原理示意图

本系统是一个以变频调速为主要控制目的的控制系统。工作时可以通过触摸屏设定PID调节参数,由系统根据部时钟的判断自动调整目标值,然后通过A/D转换模块从外部压力变送器输入外部压力信号,与目标值比较后进行PID调节并输出控制量,通过D/A转换模块输出模拟量控制变频器的输出频率以达到调节水泵电机速度的最终目的。

系统拟采用两台水泵及电机,这比设单台水泵及电机节能又可靠。配单台电机及水泵时, 其功率必须足够大, 在用水量少时开一台大电机肯定是浪费的, 电机选小了用水量大时供水会不足。而且水泵与电机都有维修的时候, 备用泵是必要的。该系统在单台水泵电机长时间运行时能定时自动切换水泵电机的运行,达到系统设备的平均利用,防止系统设备因长时间无运作而生锈损坏等。

3 系统硬件设计

3.1系统总电路

系统原理图见附图,说明如下:

电源进线控制:此部分主要是为方便对系统电源的操作而设计的,使得不必打开控制柜就可以对系统的总电源进行控制,既安全又方便。此部分中的交流接触器要求有常开和常闭的辅助触点,而且考虑到两个水泵电机同时工作时功率很大,故选此交流接触器型号为正泰CJX1F 系列(具体选择视水泵电机现场实际所需功率而定,下同)。按钮SB1和SB2选用带灯显示类型,且SB1选择为绿色(作为电源启动按钮),SB2选择为红色(作为电源停止按钮)。急停开关作为紧急情况时的电源切断开关,此为设计时的常规考虑。

水泵电机切换:此部分为整个控制系统的主要控制对象部分(两个水泵电机),包括有4个同型号的交流接触器、一个变频器(FVR-E11S)和一个热继电器,其中的两个小型断路器的设置主要是作为下面元器件更换时的电路可靠切断用的(下同)。4个同型号的交流接触器用来实现两个水泵电机的定时切换和水压压力在单个电机运行而不足时投入工频电机运行设置的,对此4个交流接触器的控制由PLC控制实现。热继电器的设置则是对水泵电机在工频运行状态下起过载保护的作用。

强弱电隔离:此部分是为保护PLC输出点而设置的。由中间继电器的触点实现对4个交流接触器线圈的控制,而中间继电器的触点的控制则由PLC控制继电器的线圈实现,这样就在实际上实现了PLC对4个交流接触器的控制,也实现了对PLC输出点的保护。热继电器的常闭辅助触点串联在中间继电器中,使得在出现电机过载情况下热继电器主触点动作断开时能同时使交流接触器线圈断电而动作切断电路连接,起到双重保护作用。

控制系统供电:此部分的作用是为PLC、模拟量输入/输出模块和人机界面等提供正常工作电源。

在器件的选型中,由于交流接触器使用类别为AC-3(即频繁控制异步电动机的启动和分断),故接触器分断电流为电动机额定电流Ie。选用的方法有查表法和查选用曲线法,在产品样本中直接列出在不同额定工作电压下的额定工作电流和可控制电动机的功率,按电动机功率或额定工作电流,用查表法选用接触器,也要通过计算来得到电动机额定电流Ie,再选取相应的交流接触器,计算公式如下所示:

电动机的额定输出功率=3UeIeCOSΦη

其中:Ue-电动机的额定电压;

Ie-电动机的额定电流;

COSΦ-电动机的功率因数;

η-电动机的效率。

热继电器的额定电流应略大于水泵电机额定电流,本系统中其整定电流选为水泵电机额定电流的1.1~1.15倍。

3.2系统硬件构成

3.2.1 PLC控制器[5][6][7][8][9]

PLC即可编程控制器,(Programmable logic Controller),是指以计算机技术为基础的新型工业控制装置。在1987年国际电工委员会(International Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义:PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

以后国际电工委员会(IEC)又先后颁布了PLC 标准的草案第一稿,第二稿,并在1987年2月通过了对它的定义:可编程控制器是一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产

城市小区恒压供水系统毕业设计(论文)

毕业设计题目城市小区恒压供水系统

摘要 我国人口众多,每年所消耗的能量巨大。近年来,能源紧张影响到工业生产及人民生活。因此,节能降耗是保证工业和生活稳定发展的一项关键措施。然而,长期以来,由于我国自动化程度低,用水行业的技术水平相对比较落后,经常导致用水高峰期用户用水的不稳定,例如水压较低,供水量低于需求量。因此针对小区居民的日常用水问题,设计了一套基于PLC控制的变频调速恒压供水系统。 此变频调速恒压供水系统由PLC、变频器、压力变送器等组成,由一台变频器实现对三台水泵电机的软启动和变频调速,三台泵电机采用变频和工频循环运行方式,运行切换采用“先启先停”的原则。使用STEP7 Micro/WIN编程软件,设计了一个用于供水系统压力控制的控制器内置在PLC中,对压力给定值与测量值的偏差进行处理,从而控制变频器的输出电压和频率,进而改变水泵电动机的转速和水泵出水口流量,实现管网压力的自动调节,使管网压力稳定在设定值附近,并且利用组态软件设计了系统的用户管理和监控界面。 关键词:变频调速;恒压供水;可编程控制器

Abstract For the numerous population, much energy is consumed every year in our country.In recent years, shortage of source have affected the industrial production and people's life.Therefore, energy saving and reduce the consumption is a crucial measure to guarantee industry and life's stable development.However,since automation level is low ,for a long time,our country falls behind with the technical horizon comparison with water profession, users often appears with the instability of water in using water peak-hour,such as hydraulic pressure is low and the supply of water is measured below demand. According to the problem in using water designed a variable frequency speed-regulating constant pressure water-supply system with PLC . The water supply system consists of PLC,frequency converter and pressure transmitter etc.A frequency converter to realize three phase pump generator's soft start and frequency control, three pump generators to comprise the circulating run mode of frequency conversion, operation switch adopts to the principle of"start first stop first".using STEP7 Micro/WIN program software designed a control system with PLC .The control system can compare the measured pressure with the advanced pressure , to control the real-time output Voltage and frequency.the output quality of pump is changed along with the changing of pump's speed.It makes the pressure of pipe self-regulating and steady in the scheduled value,and have designed a operation management interface using Supervision Control and Data Acquisition. Key Words:variable frequency speed-regulating;constant pressure water-supply;programmable logical controller

变频恒压供水控制系统

变频恒压供水控制系统 发表时间:2019-01-08T16:21:17.107Z 来源:《电力设备》2018年第24期作者:蒋正锋[导读] (四川理工技师学院四川成都 611130) 1、系统构成 整个系统由一台PLC,一台变频器,水泵机组(3台),一个压力传感器,低压电器及一些辅助部件构成。 2、系统硬件设计 2.1.1 PLC选型 本系统选用FX2N-32MR型PLC。 2.1.2 接线及I/O分配 2.3 变频器选型及接线 2.3.1 变频器选型 根据设计的要求,本系统选用FR-A740系列变频器。 2.3.2变频器的接线 变频器端子 PLC端子功能 STF Y7 电机正转 FU X2 增泵、减泵 OL X3 增泵、减泵 2.6系统主电路设计 系统主电路接线 3 系统的软件设计 (1)自动运行部分 LD M8002 SET M0 LD X015 CJ P0 LD M0 AND X000 RST M0 SET M2 SET M7 SET M8 1)启动1#泵 按下启动按钮,系统检测采用那种运行模式。如果按钮SB7没按,则使用自动运行模式。变频启动1#水泵。 LD M2 AND X002 RST M2 SET M1 SET M4 2)启动1#,2#泵: 接收到变频器上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频启动第2#水泵。 LD M1 AND M4 AND X003 RST M1 RST M4 SET M2 3)启动1#泵: 接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。 LD M1 AND M3 AND M6 AND X003 RST M6 RST M3 SET M4 4)启动1#,2#泵: 输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频启动。 LD M1 AND M4 AND X003 RST M4 RST M1 SET M2 5)启动1#泵: 接到下限信号关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。

变频恒压供水系统协议

技术协议 一、总则 1.1本协议书适用于山西柳林王家沟煤业有限公司变频恒压供水系统。它包括了设备的功能设计、结构、性能、供货等方面的技术要求。 1.2如卖方没有以书面形式对技术规范书明确提出异议,那么卖方提供的产品应完全满足技术协议书的要求。若供方所提供的协议书前后有不一致的地方,应以更有利于设备安装运行、工程质量为原则,由买方确定。设备采用的专利涉及到的全部费用均被认为已包含在设备报价中,卖方应保证买方不承担有关设备专利的一切责任。 1.3本技术协议书所使用的标准如与卖方所执行的标准发生矛盾时,按较高标准执行。 二、设备概述 2.1变频恒压供水是指在供水管网中用水量发生变化时,出口压力保持不变的供水方式。供水管网的出口压力值是根据用户需求确定的。 2.2变频恒压供水系统以管网水压 (或用户用水流量)为设定参数,通过微机控制变频器的输出频率从而自动调节水泵电机的转速,实现管网水压的闭环调节 (PID),使供水系统自动恒稳于设定的压力值:即用水量增加时,频率升高,水泵转速加快,供水量相应增大;用水量减少时,频率降低,水泵转速减慢,供水量亦相应减小,这样就保证了供水效率用户对水压和水量的要求。 2.3变频恒压供水系统是一项成熟的技术,我公司已为多家水处理厂进行设计和改造,并取得可观的经济和社会效益。

三、设备规范 3.1设备名称:变频恒压供水系统 3.2型号:HHY-50/72-Q3 3.3设备组成:主泵、副泵、稳压罐、系统机组、智能变频控制柜 3.4主要参数: 3.5位置:室内安装

3.6变频恒压供水系统型号说明 3.7该系统设备主泵有二台,全部可软启动,均可变频调速,若按正顺序启动则按逆顺序停止。在三台水泵并联供水时,只有一台泵是变频调速泵,其余为恒速泵。在水泵出水管附近安装压力传感器,并将出水口压力信号反馈给变频恒压控制柜,控制水泵按设计给定的压力自动选择水泵的开停及台数,由用户需水量决定水泵供水量。 四、变频调速水泵恒压供水的特点: 我公司的变频调速水泵恒压供水有如下特点: 4.1供水压力稳定: 系统实现闭环控制,传感器返回系统压力,通过与设定值的比较,输出相应频率,拖动水泵运行在相应的转速,使系统压力保持恒定。 4.2高效节能: 系统能按需设定压力,根据设定的压力自动调节水泵转速和水泵运行台数,使设备运行在高效节能的最佳工作状态。 4.3操作方便简单,稳定可靠: 系统由变频器和PLC自动控制,可实行无人操作,操作简单。配有自动/手动开关控制,保证设备的安全连续运行。

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

变频恒压供水控制系统设计

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

14 / - 1 - 一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节

变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示: 14 / - 2 - PLC 变频PIT 恒压供水变频控制系统原理图图1 系统设备选型三、 主要电气元件参数指标1,三相异步电动机水泵:35KW1.0Mpa 恒压设定点:,两线制,4-20mA电流输出压力变送器:0-1.6Mpa VVVF变频器变频器: 1)水泵(小时,35m3/根据设计要求水泵正常供水20m3/小时,最大供水量50 ,流量扬程45m扬程。参考相关资料选择型号为IS50-32-125(50m 的水泵即可满足要求。m3/小时) (2)远传压力表结合具体有数据读取表盘等优点,由于远传压力表具有价格低、14 / - 3 - 实际设计,故在此处选择其作为反馈信号。 四、系统控制要求 1、设两台水泵。一台工作,一台备用。正常工作时,始终有 一台水泵供水。当工作泵出现故障时,备用泵自投。 2、两台泵可以互换。 3、给定压力可调,压力控制点设在水泵处。 4、具有自动,手动工作方式,各种保护、报警装置。 5、用PLC为主要器件完成控制系统的设计。

变频恒压供水设备常见故障排除方法

变频恒压供水设备常见故障排除方法(一) ■ ■I i■ ■aaa^-n i]?■ m ——“i?—《■“」■?■ i■ ” —i“ ■―■■■ ■■ LA^aaia■ UHB ■as -JI 问:为什么变频恒压供水设备系统压力不稳容易振荡答:系统压力不稳,可能有以下几种原因:

问:控制电机的接触器无动作,电机不启动,为什么? 答:首先查看控制器操作面板上反应水泵的输出状态,可对照控制器说明书上所描述的 泵的设定及运行指示状态。假如无动作,但水泵对应的操作面板上查询状态有输出,则先查看一下外部的接触器接线及接触器的继电逻辑是否正确。如果没有问题,再用万用表测量控 制器相应的继电器输出,如果继电器没有输出相应的开关信号,说明控制器的继电器输出有 问题。如果操作面板上查询状态也无输出指示,请查看相对应的水泵是否设定为开启状态 (变量泵”或定量泵”状态)。] 问:为什么变频恒压供水设备压力传感器显示压力变化,而面板显示压力却不变? 答:首先应检查压力传感器和控制器的接线是否有松动或接触不良的现象存在。如果上述现象不存在,用万用表测量控制器模拟输入口的电压值。先测量SVCC端及GND端之间, 如果是4.9V~5.1V之间的电压值,说明提供模拟量输入口的电源正常,则进行下一步。可将一1K欧姆滑动电阻接在控制器的输入口的三个端子,动端接P1,再测量控制器的P1端 和GND端的电压是否随电阻器的阻值变化而变化。如果P1端对GND端的电压不变化,则 说明控制器的模拟输出口有故障或已损坏。如果正常,则说明是远传压力表的故障,更换压力表即可。] 问:为什么在工作时系统压力高于设定值主机不停? 答:主要原因可能是以下几项之一:1、如果压力传感器反应的压力和面板的压力不相 符,只是压力传感器的压力高于设定值,而面板反映的压力并未超出,则应查看压力传感器 是否损坏,接线是否有问题。此时控制器主机不停是正常的。2、如果上述情况不存在,控 制器和传感器的压力相符,均高于设定压力,则应检查附属小泵的设定状态,看小泵是否为 开启状态。如果小泵是关闭的,并且主机设定为到达下限频率不停机,主机不停也是正常的。 如果小泵是开启的,请查看主泵的运行频率,如果运行频率并非设定的下限频率,此时说明系统正处于正常的供水过程之中,等系统将频率调低,系统的压力自然会下降。 问:为什么控制器不起泵,而变频恒压供水设备RUN灯闪烁? 答:因为此时控制器处于定时休眠状态。用户将控制器的第37项功能代码设定为ON 并规定了控制器休眠的时间,此时控制器时钟正处于这一时间段。将控制器第37项的相关参数项更改即可。 问:变频恒压供水设备面板始终显示P000,这是为什么? 答:首先,检查控制器的参数设定是否正确,检查第4项参数(控制器的压力量程)是否被设定为零。如果是非零,则将控制器上压力传感器的几个端子的控制线拆下,用万用表测 量SVCC端与GND端之间是否为4.9V~5.1V之间的直流电压。如果正常,此时面板应显示正常的压力范围。否则控制器已损坏。如果测量所得结果低于 4.9V,说明输出模拟量的供] 给电源有故障。 问:变频恒压供水设备在02报警,应如何处理?

变频器恒压供水系统(多泵) (2).

目录 1 变频器恒压供水系统简介 (1) 1.1变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (3) 2 变频恒压供水系统设计 (5) 2.1 设计任务及要求 (5) 2.2 系统主电路设计 (6) 2.3 系统工作过程 (6) 3 器件的选型及介绍 (8) 3.1 变频器简介 (8) 3.1.1 变频器的基本结构与分类 (8) 3.1.2 变频器的控制方式 (8) 3.2 变频器选型 (9) 3.2.1 变频器的控制方式 (9) 3.2.2 变频器容量的选择 (10) 3.2.3 变频器主电路外围设备选择 (12) 3.3 可编程控制器(PLC) (14) 3.3.1 PLC的定义及特点 (14) 3.3.2 PLC的工作原理 (15) 3.3.3 PLC及压力传感器的选择 (16) 4 PLC编程及变频器参数设置 (17) 4.1 PLC的I/O接线图 (17) 4.2 PLC程序 (17) 4.3 变频器参数的设置 (21) 4.3.1 参数复位 (21)

4.3.2 电机参数设置 (21) 总结 (22) 参考文献 (23)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通

基于S7-200PLC控制的变频恒压供水控制系统设计毕业设计(论文)

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期: 基于S7-200PLC控制的变频恒压供水控制系统设计 摘要 近年来,随着我国国民经济的迅速发展,能源紧缺问题日益明显,因此应用变频调速技术来提高供水质量,降低能耗,在供水领域已得到越来越广泛的重视。变频恒压供水控制系统采用先进的变频调速、PLC等技术组成一闭环控制系统,用于民用建筑、生产用水,可使水泵出口压力保持恒定。恒压供水的基本控制策略是:采用可编程控制器(PLC)与变频调速装置构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,即根据实际设定水压自动调节水泵电机的转速和水泵的数量,自动补偿用水量的变化,以保证供水管网的压力保持在设定值,既可以满足生产供水要求,还可节约电能,使系统处于可靠工作状态,实现恒压供水。 关键字:水泵、变频器、恒压控制、PLC

变频恒压供水控制系统设计

课题名称变频恒压供水控制系统设计 学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级 2011320401 学生阿不都热扎克·阿不都拉 _ 学号 06 月 23 日至 06 月 27 日共 1 周 指导教师(签字) 2011年 06 月 7 日

目录 摘要 (3) 一、设计容 (4) 二、设计要求 (4) 三、设计容 1、方案的确定 (5) 2、变频调速恒压供水系统简介及工作原理 (6) 3、水泵的容量计算 (8) 4、水泵/变频器/PLC的选择 (9) 5、变频器参数设定 (10) 6、PID控制器参数选择 (10) 7、PLC外部接线图的设计 (11) 8、主电路的设计 (12) 9、系统的工作原理 (12) 四、设计图纸 (13) 五、操作使用说明书 (14) 六、设计体会 (15) 七、主要参考资料 (16) 附录一/附录二 (17) 附录三 (18) 附录四 (19)

摘要 随着我国社会经济的不断发展,住房制度改革的不断深入,人民生活水平的不断提高,城区中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活与工作,也直接体现了小区物业水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水灯供水方式普遍不通话程度的存在效率低、可靠性差、自动化不高等缺点,难以满足当前经济生活的需要。 论文分析了采用变频调速方式实现恒压供水的工作机理,通过对PID模块的参数预置,利用远传压力表的水压反馈量,构成闭环调节系统,利用变频器与水泵的配合作用实现恒压供水且有效节能。 论文论述了多种供水方案的合理性,同时也指出各种方案存在的问题,通过对比比较给出了比较适合该系统的方案——PLC控制变频恒压供水。 关键字:恒压供水变频调速 PLC

变频恒压供水设备常见故障排除方法

问:为什么变频恒压供水设备系统压力不稳容易振荡 答:系统压力不稳,可能有以下几种原因: 1、压力传感器采集系统压力的位置不合理,压力采集点选取的离水泵出水口太近,管路压力受出水的流速影响太大。从而反馈给控制器的压力值忽高忽低,造成系统的振荡。 2、如果系统采用了气压罐的方式,而压力采集点选取在气压罐上,也可能造成系统的振荡。空气本身有一定的伸缩性,而且气体在水中的溶解度随压力的变化而变化,水泵直接出水的反馈压力和通过气体的反馈压力之间有一定的时间差,从而造成系统振荡。 3、控制器的加减速时间与水泵电机功率不相符。一般情况下,功率越大,其加减速时间也就越长。此项参数用户可多选几个数据进行调试。比如,15KW一般为10至20秒之间。 4、控制器和变频器的加减速时间不一致,控制器的加减速时间设定应大于或等于变频器加减速时间。 问:为什么变频恒压供水设备小泵频繁起停 答:此种情况是针对工频工作的小泵而言的。在系统之中,控制器的参数中第23、24项参数“小泵压力正、负误差”设定过小。在所有主泵都关闭以后,当系统的实际压力低于设定压力与小泵压力负误差之和时,小泵则起动。随着系统压力的上升,使得系统的实际压力高于设定压力与小泵压力正误差这两者之和时,小泵则被系统关闭。所以,解决问题的方法是将此项参数调高一定值即可。 问:为什么变频恒压供水设备在水泵切换时,变频器输出不为零 答:用户首先确定控制器给变频器的控制线是否全部接好。如果变频器没有滑行停车输入信号,则必须将变频器设定为自由滑行停车的工作模式。如果变频器有此信号输入则确保和控制器接好。然后,在水泵进行切换动作时,控制器会给变频器一个滑行停车信号,即EMG信号。如果EMG信号线没有接通,会直接导致变频器过载,此类现象要绝对禁止,否则,容易损坏变频器。如果接有EMG信号线,请仔细检查线是否接实。确定接实,没有线路故障后,再用万用表检查控制器的EMG是否有输出。如果当控制器处于切换时,EMG信号没有输出,则说明是控制器有故障.另外,不论控制器的变频器控制方式是何种类型,切换时均为滑行停止模式。 问:变频恒压供水设备模拟输出不正常,变频器运行频率与控制器输出不符,为什么答:首先,应确定是什么硬件出了问题。使控制器进入手动调试状态,分别用万用表量出控制器输出0Hz及50Hz时所对应的模拟量输出值。如果控制器的模拟输出值在0Hz时大于30mV,或在50Hz时小于控制器第10项参数定标的电压值(请确定模拟输出增益为100%),则说明控制器输出存在问题。如果随着控制器的频率变化,输出一直保持不变,说明控制器的模拟输出电路损坏;如果模拟输出值也是变化的,但不能达到最大值,可通过调节模拟输出增益解决。其次,如果控制器的输出值正常,当控制器输出达到第10项参数定标的电压值时,变频器不能达到50Hz,说明是变频器的设定值存在问题,可调节变频器的频率增益解决。

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.doczj.com/doc/f44467406.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.doczj.com/doc/f44467406.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

恒压供水系统毕业设计

水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时会造成能量的浪费,同时还有可能造成水管爆裂和用水设备的损坏。传统调节供水压力的方式,多采用频繁启/停电机的控制和水塔二次供水调节的方式,前者产生大量能耗的,而且对电网中其他负荷造成影响,设备不断启停会影响设备寿命;后者则需要大量的占地与投资。且由于是二次供水,不能保证供水质的安全与可靠性。而变频调速式的运行十分稳定可靠,没有频繁的启动现象,启动方式为软启动,设备运行十分平稳,避免了电气、机械冲击,也没有水塔供水所带来的二次污染的危险。由此可见,变频调速恒压供水系统具有供水安全、节约能源、节省钢材、节省占地、节省投资、调节能力大、运行稳定可靠的优势,具有广阔的应用前景和明显的经济效益与社会。§1.2 设计目的《机电一体化系统设计》课程设计是大学生在完成《机电一体化系统设计》等专业课学习后进行综合性实践性教学环节,总的目的是在老师的指导下使学1生通过课程设计对所学课程理论知识进行一次系统的回顾检查复习和提高并运用所学理论通过调研设计一个机电控制方面的课题受到从理论到实践应用的综合训练,培养学生独立运用所学理论解决具体问题的能力具体有以下几点:1、通过检索查阅运用有关手册、标准及参考资料,培养起学生检索查阅资料、使用资料的方法和能力。2、通过回顾查阅课程理论知识、运用所学的基础课专业技术课和专业课知识,培养学生根据实际问题正确设计总体方案分析具体问题、进行工程设计的能力。3、本例综合了PLC 在多方面的应用,既有开关量I/O 也有模拟量I/O;既有PID 调节的典型应用,又有复杂的逻辑控制。另外本例中使用的三菱的变频器使电机实现软启动控制。通过一系列的学习,查找资料使得我们学到的知识加以巩固。§1.3 PLC 的历史及发展趋势§1.3.1 PLC 的历史20 世纪60 年代中期,美国通用汽车公司(GM)为适应生产工艺不断更新的需要,提出了一种设想:把计算机的功能完善、通用灵活等优点和继电控制系统的简单易懂、操作方便、价格便宜等优点结合起来,制成一种通用控制装置,并把计算机的编程方法和程序输入方式加以简化,采用面向控制过程、面向问题的语言编程,使不熟悉计算机的人也能方便地使用。美国数字设备公司(DEC)根据这一设想,于1969 年研制成功了第一台可编程序控制器PDP-14,并在汽车自动装配线上试用获得成功。这项新技术的成功使用,在工业界产生了巨大影响。从此,可编程序控制器在世界各地迅速发展起来。1971 年,日本从美国引进这项新技术,并很快研制成功了日本第一台可编程序控制器DCS-8。1973~1974 年原西德和法国也研制出了他们的可编程序控制器。我国从1974 年开始研制,1977 年研制成功了以一位微处理器MC14500 为核心的可编程序控制器,从并开始工业应用。1969 年出现第一2台PLC,经20 多年的发展,PLC 已经发展到了第四代。其发展过程大致如下:第一代在1969-1972 年。这个时期的产品,由中小规模集成电路组成,存储器为磁芯存储器。其功能也比较单一,仅能实现逻辑运算、定时、计数等功能。典型产品有:美国DEC 公司的PDP-14,日本富士公司的USC-4000,日本立石(OMRON)公司的SCY-022 等。第二代在1973-1975 年。这个时期的产品已开始使用微处理器作为CPU,存储器采用半导体存储器。其功能上有所增加,能够实现数字运算、传送、比较等功能,并初步具备自诊断功能,可靠性有了一定提高。典型产品有:美国歌德公司的MODICON184、284、384 系列,原西德西门子的SYMATIC S3、S4 系列,日本富士的SC 系列等。第三代在1976-1983 年。这个时期,PLC 进入了大发展阶段,美国、日本、原西德各有几十个厂家生产PLC。这个时期的产品已采用8 位和16 位微处理器作为CPU,部分产品还采用了多微处理器结构。其功能显著增强,速度大大提高,并能进行多种复杂的数学运算,具备完善的通讯功能和较强的远程I/O 能力,具有较强的自诊断功能并采用了容错技术。 §1.3.2 PLC 的发展趋势由于工业生产对自动控制系统需求的多样性,PLC 的发展方向有两

恒压供水技术方案

恒压供水技术方案文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

恒压供水技术方案 一、综述 1、概述:以变频器为核心的自动给水设备已经成为当下现代高楼自动供水设备的核心 设备。可以取代传统的高位水箱、气压罐供水,避免水质的二次污染,具有节能、操作方便、自动化程度高的特点。变频调速恒压供水设备可在生产生活用水、锅炉恒压补水、供暖系统、空调系统、定压差循环水、消防用水等方面直接应用。 2、特点: (1)高效节能; (2)可取代高位水箱或者水池,减少土建投资,避免水质二次污染; (3)采用恒压供水,大大提高供水品质; (4)延迟设备使用寿命,采用变频恒压供水,启动方式是软启动,对机械、电气设备冲击小,可大大延迟设备使用寿命,特别是机械设备。 (5)控制系统可根据客户需求配置人机管理系统、中文提示、中文监控操作,极大方便了客户的操作使用和设备维修; (6)全自动控制,无需人工干预; (7)具有完善的保护功能,变频器保护、欠电压保护、过电压保护、短路保护、过载保护、过热保护、缺相保护。 3、适用范围 (1)适用于自来水厂及加压泵站; (2)适用于住宅小区、宾馆、饭店及其它大型公共建筑的生活供水; (3)适用于大中型工矿企业的生产生活用水; (4)适用于居民住宅小区、宾馆、饭店、大型公共建筑和各种工矿企业的消防供水、生产供水; (5)适用于工矿企业恒压、冷却水工会和循环供水系统; (6)适用于热水供水、采暖、空调、通风系统的供水; (7)适用于污水泵站、污水处理中的污水提升系统; (8)适用于农田排灌、园林喷洒、水景和音乐喷泉系统; 二、工作原理

基于plc的恒压供水系统的设计

PLC 基于 plc 的恒压供水系统的设计 (恒压供水系统的原理及电气控制要求。Plc 在机电系统中的应用和工作原理。西门子变频 器的工作原理 MM440。Plc 编程原理及程序设计方法。电器原理图,接线图。) 一.恒压供水系统的原理 1.系统介绍 生产生活中的用水量常随时间而变化,季节、昼夜相差很大。用水和供水的不平衡集 中体砚在水压上,用水多而供水少则水压低,用水少而供水多则水压高。以前大多采用传 统的水塔、高位水箱 或气压罐式增压设备 容易造成二次污染,同时也增大了水泵的轴功 率和能量损耗。随着电力电子技术的发展 变频调速技术广泛应用于送水泵站、加压站、工 业给水、小区和高楼供水等供水等领域。相对于传统的技术而言,它具有节能效益明显、 保护功能完善 、控制灵活方便等优点 。 恒压供水控制系统的基本控制策略是:采用电动机调速装置与可编程控制器(PLC)构成 控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的 闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。系统的控制目标是总 管的出水压力及系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入 CPU 运算处理后,发出控制指令,控制泵电动机的投运台数和运行变量泵电动机的转速, 从而达到给水总管压力稳定在设定的压力值上。 恒压供水系统由 PLC 控制器,变频器,触摸屏显示器,压力变送器,水位变送器,软 启动器,水泵电机组,电机保护装置以及其他电控设备等构成,如图 1 所示。 水 压 水 位 压力变送器 水位变送器 变频器 触摸屏显示器 软启动器 控制回路 水泵电机 图 1 恒压供水系统示意图 电机保护装置 2.系统构成 系统采用了 S7-200 型 PLC (14 个输人点,10 个输出点)、MM440 型变频器、压力传

变频恒压供水系统

供水系统方案图

变频恒压供水系统构成及工作原理 1系统的构成 图3-1 系统原理图 如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,

一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。 (1)执行机构 执行机构是由一组水泵组成,它们用于将水供入用户管网,图2.3中的3个水泵分为二种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。 (2)信号检测 在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号: ①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 ②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。 (3)控制系统 供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。 ①供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水

全自动变频调速恒压变压供水设备

全自动变频调速恒压变压供水设备 一、概述 在改革开放形势下,随着国民经济的发展,能源已经成为制约国民经济发展的重要因素,节约用能、合理用能是经济发展的重要指标,采用高新科技提高供水系统的效率,足今后供水技术和设备的必然发展方向。 通常的气压供水装置,为保证系统的正常工作,气压罐内的压力,必须具有高出实际用水高度的“上限压力”,以维持调节水量所必须的压差,结果足增大了水泵的功率,加之在运行过程中电机启动频繁,启动电流大,所以在电能消耗方面是不合理的。为了更好的节省电能,提高运行效率,我公司经过大量的调查研究,在采用国际先进的一一交流电动机变频变压调速器的基础上,成功开发了BTS型电脑控制自动恒压供水装置系列产品。该产品打破了目前国内气压罐传统供水方式,采用变速泵、恒速泵供水。它通过电脑控制系统,根据用户实际用水量自动调节,根据变速泵的特性,当用水量减少到某一定值时,附属气压罐系统开始工作,以便更有效的节省电能。这种供水系统是目前世界各国采用的最经济的供水方式,节能效果显著。 BTS型供水装置配有微型电脑,功能齐全,保护性能可靠,操作方便,自动化程度高,更易实现无人管理运行。它比现在通用的气压供水设备有更多的优点,不仅实现了在耗能最低的条件下,满足用水点的水量和水压要求,而且占地面积小,调试方便,安装工程时间短,降低了供水工程投资。 二、节能原理 供水装置的水泵在运行过程中,有恒速和变速两种方式,均可按供水用户的要求进行流量调节。恒速运行时,一般采用节流调节,这种方式的缺点是效率低、能耗大。变速运行时在运行过程中改变水泵转速,从而调节输出流量以适应用水量的变化,并可保证管网压力恒定,水泵始终在高效率的工况下工作。用水量减少时,水泵降低转速运行。由于水泵的轴功率与转速的三次方成正比。转速下降时,轴功率下降极大,故变速调节流量在提高机械效率和减少能耗方面足最为经济合理的。 轴功率与转速关系式:

plc控制的恒压供水系统(开题报告)

长春科技学院 毕业设计(论文)开题报告 题目:PLC控制的恒压供水系统学院: 专业: 班级: 学号: 姓名: 指导教师: 填表日期:

一、选题依据及意义 在我国,节电节水的潜力非常大。据有关国际组织发表的资料显示:中国的单位国民经济总产值所消耗的电是美国、德国等的4倍左右,消耗的水是他们的2倍左右。我国的大量用电设备中,风机和泵类电机的耗电量占全国发电量的50%左右,若推广新型电机调速技术,可节电40%左右,即可以节约全国发电量的1/5。由于我国人均占有水、电资源相对于别国又少很多,因此,在我国一方面水电供应紧张,而另一方面,水电的浪费又十分惊人,节电节水,不仅潜力巨大,而且意义深远。 近十年来,变频技术的应用在我国有很大的发展,并取得了良好的效果。可以说,变频技术已为大多数用户所接受。但是,不能不指出,我国在变频技术的应用方面,与发达国家的水平尚有很大差距。目前,我国在用的交流电动机使用变频调速运行的仅6%左右,而工业发达国家已达60% - 70%;日本在风机、水泵上变频调速的采用率已达10%,而我国还不足0.01%;在日本,空调器的70%采用了变频调速,而我国才刚刚起步。从这个现实出发,变频技术尚有很大的发展空间。 变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,使我国供水行业的技术装备水平从90年代初开始经历了一次飞跃。恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统,在实际应用中得到了很大的发展。 二、国内外发展情况(文献综述) 随着变频器的问世,变频调速技术在以工频交流电为主的用电场合得到了广泛的应用,其中变频恒压供水便是在变频调速领域中典型的应用。以前,国外生产的变频器主要用来控制频率、控制电机的启停、控制电机正反转和转速调节以及各种保护功能。在变频恒压供水系统中,变频器是通过可编程序控制器控制,作为控制机构和系统执行机构之间的中间环节,为保证水管内水压恒定,满足不同时间段供水量大小的需求,需在变频器外部提供压力传感器和压力控制器,对水压进行闭环控制。目前我们国内有很多公司也在做变频恒压供水的工程,可是大部分采用国外的变频器控制水泵的转速,有的采用单片机及相应的软件予以实现;有的采用可编程控制器(PLC)及相应的软件予以实现。但在系统的稳定性能、动态性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能

相关主题
文本预览
相关文档 最新文档