当前位置:文档之家› 直流电动机的模型

直流电动机的模型

直流电动机的模型
直流电动机的模型

直流电动机的模型

电枢控制的他励直流电动机部件。直流电动机是将电能转化为机械能的一种典型的机电转 换装置。在电枢控制的直流电动机中,由输入的电枢电压

U d 在电枢回路产生电枢电流 i d , 再由电枢电流i d 与激磁磁通相互作用产生电磁转矩 M ,从而使电枢旋转,拖动负载运动。

1) 取电枢电压U d 为控制输入,负载转矩 M L (单位:Nm )为扰动输入,电动机转速 n (单 位:转/分)为输出量。

2) 忽略电枢反应、磁滞、涡流效应等影响,当激磁电流不变 将变量关系看作线性关系。

3) 电枢电压U d 在电枢回路产生电枢电流 i d ,列电枢回路电压平衡方程:

常数

Ed 电枢反电势,大小与激 磁磁通及转速成正比,

方向与电枢电压Ud 相反 C e

反电势常数

i f 时,激磁磁通视为不变,则 //

E d i d R d

di d E d C e n

L d dt U d

4)电枢电流i d与激磁磁通相互作用产生电磁转矩M,在激磁磁通不变时M与电枢电流成正比,M C m i d

5)电磁转矩拖动负载运动,列电机轴上的转矩平衡方程:

J J

dt

其中,f是电动机和负载折合到电动机轴上的粘性摩擦系数, 机轴上的转动惯量。

(工程计算中,往往不用转动惯量

差一个倍数。J m 2 m D)/ 其中P ---惯性半径(单位:米),

m---旋转部分的质量n---转速(转/分)2

M M L , 是电动机角速度,单位rad/s, —n

60

J是电动机和负载折合到电动

J,而用飞轮矩GD2,类似转动惯量J,只是单位不同,相

GD2/4g

(单位: D---惯性直径(单位:米)

kg),G---旋转部分的重量

2

,g---重力加速度,9.81m/s,

(单位:N)

则,转矩平衡方程变为: Jd^

2 2

GD22 dn GD2 dn 4g 60 dt 375 dt

(教材中,采用的是电动机的飞轮矩GD2,且电动机空载,并忽略粘性摩擦,所以f和M L

C 2 H n

均为零,即为方程M

6)消去中间变量,整理可得电动机的微分方程

L, GD2 R d d2n 375 C m C e dt2"

GD2尺dn

375C m C e d?

n C e U d

n

C e

7)在工程应用中,由于电枢电路电感Ld较小,通常忽略不计,则上式可简化为一阶方程: T m号n严

dt C e

画出电动机的动态结构图:

E d i d R d L d

di

d U d

dt

l d(S

)

L d s R d(U d(s)E d(s)) M(s) C m l d(s)

GD2 dn 375 dt

375 N(s)尿M⑸

E d C e n E d(s) C e N(s)

若以角速度为输出量,贝y J —

dt

M M L(S)占

bl]

(9)

(此处Kb与Ce相差一个倍数)

若以角位移为输出量,

d

dt

1

(s) - (s)

s

图2-53位置随动系统u1 3k0( r c) u 2k o( r c)

实习一:直流并励电动机

实验一直流并励电动机 一.实验目的 1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2.掌握直流并励电动机的调速方法。 二.预习要点 1.什么是直流电动机的工作特性和机械特性? 答:工作特性:当U = U N , R f + r f = C时,η, n ,T分别随P 2 变; 机械特性:当U = U N , R f + r f = C时, n 随 T 变; 2.直流电动机调速原理是什么? 答:由n=(U-IR)/Ceφ可知,转速n和U、I有关,并且可控量只有这两个,我们可以通过调节这两个量来改变转速。即通过人为改变电动机的机械特性而使电动机与负载两条特性的交点随之改变,从而达到调速的目的。 三.实验项目 1.工作特性和机械特性 保持U=UN和If=IfN不变,测取n=f(Ia)及n=f(T2)。 2.调速特性 (1)改变电枢电压调速 保持U=UN、If=IfN=常数,T2=常数,测取n=f(Ua)。 (2)改变励磁电流调速 保持U=UN,T2 =常数,R1 =0,测取n=f(If)。 (3)观察能耗制动过程 四.实验设备及仪器 1.MEL-I系列电机教学实验台的主控制屏。 2.电机导轨及涡流测功机、转矩转速测量(MEL-13)、编码器、转速表。 3.可调直流稳压电源(含直流电压、电流、毫安表) 4.直流电压、毫安、安培表(MEL-06)。

I S :涡流测功机励磁电流调节,位于MEL-13。 (2)测取电动机电枢电流I a 、转速n和转矩T 2 ,共取数据7-8组填入表1-8中 表1-8U=U N=220V I f=I f N=K a=Ω 2.调 速 特 性 (1) 改变 电枢 端电 压的调速 f fN2 (2)改变励磁电流的调速 2= 一7接线 MEL-09) MEL-03中两只900Ω电阻 MEL-05) .直流电动机起动前, 测功机加载旋钮调至零. 实验做完也要将测功机负载钮调到零,否则电机起动时,测功机会受到冲击。 2.负载转矩表和转速表调零.如有零误差,在实验过程中要除去零误差。 3.为安全起动, 将电枢回路电阻调至最大, 励磁回路电阻调至最小。 4.转矩表反应速度缓慢,在实验过程中调节负载要慢。 5.实验过程中按照实验要求, 随时调节电阻, 使有关的物理量保持常量, 保证实验数据的正确性。 七.实验数据及分析

他励、串励、并励、复励直流电动机的机械特性_及其工作特性与应用领域1

他励、串励、并励、复励直流电动机的机械 特性,及其工作特性与应用领域 一、他励直流电动机的机械特性,及其工作特性与应用领域 图中:n0为理想空载转速 n’0是实际空载转速。 他励电机的机械特性曲 线斜率小,机械硬度高。 他励直流电动机工作特性 1. 转速特性 2. 转矩特性 T T C C '=Φ 3. 效率特性 a a e e R U n I C C = + Φ Φ e T a T a T C I C I '==Φ2Fe mec Cuf a a a c 21a f 2Δ100%1() p p p I R I U P P U I I ??++++η= ?=- ?? +? ?

应用领域 他励电动机常用于转速不受负载影响又便于在大范围内调速的生产机械。如大型车床、龙门刨床。 二、串励直流电动机的机械特性, 串励电动机的机械特性为双曲线, 转速随转矩的增加而下降速率很快,称为软特性 Rj=0为自然机械特性 Rj不等于零为人工机械特性 工作特性

电动势平衡方程式 电动势公式 转矩平衡方程式 转矩公式 (其中,R fc 为串励绕组电阻) 应用领域 串励电机因转速可调范围广,启动扭矩大的特点被广泛的应用于电动工具,厨房用品,地板护理产品领域。 a e a a E C n C I n '==Φe 20 T T T =+2e T a T a T C I C I '==Φa e f C C K '=T T f C C K '=2e 200 602πP T T T T n =+=+?

三、并励直流电动机的机械特性 n0为理想空载转速,与端电压有关, 直线斜率k<0,表明n是T的减函数, 其下降速率与调节电阻Rj大小有关。 Rj=0为自然机械特性 Rj不等于零为人工机械特性 Rj=0时,特征曲线接近于水平线,表示硬特性。即硬度高。工作特性

直流电动机直接起动仿真

直流电动机直接起动仿真 直流电动机直接起动时,起动电流很大,可以达到额定电流的10-20倍,由此产生很大的冲击转矩。适用Simulink对直流电动机的直接起动过程建立仿真模型,通过仿真获得直流电动机的直接起动电流和电磁转矩的变化过程。 设备及器件: 计算机,一台(MA TLAB)。 内容: 建立仿真模型;通过图形验证。 要求: 能够正确使用simulink建立仿真模型,并观察分析图形。 直流电动机直接起动仿真模型图 图中的模块有直流电源(DC Voltage Source)、理想开关、直流电动机、开关、增益、电阻(RLC branch)、示波器(scope)、信号分离模块(Demux)。仿真模型中通过理想开关模块控制直流电源的接通和断开,使用开关模块控制电机的转矩,使电机在起动过程中的转矩为空载起动,当转速达到设定值后,使电机工作再给定的负载转矩。 直流电机模块参数:

直流电源模块参数: 定时模块:0s时输出为0, 0.5s时输出为1 理想开关:

开关模块:增益模块 常量模块:

电阻设置: 仿真时间为5s

通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。 这次课程设计终于顺利完成了,在设计中遇到了很多专业知识问题,最后在老师的辛勤指导下,终于游逆而解。同时,在老师的身上我们学也到很多实用的知识,在次我们表示感谢!

实验一 直流他励电动机在各种运转状态下的机械特性

实验一直流他励电动机在各种运转状态下的机械特性 一、实验目的 测定他励直流电动机的自然机械特性及各种电气参数变化时的人为机械特性。 通过试验掌握直流电动机在各种运行状态时的特点和能量转换的规律。 二、预习要点 1、改变他励直流电动机机械特性有哪些方法? 2、他励直流电动机在什么情况下,从电动机运行状态进入回馈制动状态?他励直流电动机回馈制动时,能量传递关系,电动势平衡方程式及机械特性又是什么情况? 3、他励直流电动机反接制动时,能量传递关系,电动势平衡方程式及机械特性。 三、实验项目 1、电动及回馈制动状态下的机械特性 2、电动及反接制动状态下的机械特性 3、能耗制动状态下的机械特性 四、实验设备及挂件排列顺序 1、实验设备 序 型号名称数量 号 1 DD01 电源控制屏1台 2 DD0 3 不锈钢电机导轨、测速系统及数显转速表1件 3 DJ15 直流并励电动机1台 4 DJ23 校正直流测功机1台 5 D51 波形测试及开关板1件 2、屏上挂件排列顺序D51 五、实验方法及步骤

按图1-1接线,图中M用编号为DJ15的直流并励电动机(接成他励方式),MG用编号为DJ23的校正直流测功机,直流电压表V1的量程为500V,直流电流表A2、A4的量程为200mA,A1、A3的量程为5A。R2 、R4选用R1、R3上的900Ω电阻分压接法,R1选用R2、R4上4个90Ω串联,R3选用R5上的900Ω并联加上R6上的90Ω串联和实验台面上两个1300Ω并联。开关S1、S2选用D51上的双刀双掷开关。 直流电动机运行于电动及回馈制动状态下的自然机械特性 (一)试验概述: (1)测定被试直流电动机M运行于电动状态的机械特性时,在其轴上可加负载的形式是多种多样的,然而要获得反接、回馈及能耗制动等状态时的机械特性,其最可行的方法是采用一台直流电机来做负载,利用负载机MG工作在不同的运行状态,来测出受试电动机M于不同运转状态的机械特性。 (2)本实验的自然机械特性从额定运行点开始,向空载、回馈发电方向进行,测取被试机M的n、I a然后计算它的转矩T,求得n=f(T )机械特性(由于直流电机T=C TφI,在φ保持不变时则T=I)。 (3)当被试机M运行于电动状态时(即第一象限运行),其负载机MG处于制动运行状态(可以是发电制动状态也可以是电枢反接、转速反向的制动状态)。本实验建议采用电枢反接、转速反向的制动状态运行,使MG服从于M的转向,因此负载机MG合闸时电枢串联的电阻R3应足够大,以免负载转矩太大,引起电枢电流太大,我们可以通过调节MG的电枢串联电阻R3的大小,而调节被试机M的负载的大小。 (4)当被试机M运行于回馈发电状态时(即第二象限运行),这时它需要负载机MG为原动机来拖动。因此负载机MG应处于正向高转速下的电动运行,这可以通过减小R3的阻值;或减小I4值而得到实现。 (二)原理和步骤 A)原理: (1)实验线路如图1-1,直流电动机的自然机械特性试验的条件是U=U N;I f=I fN;R1 = 0 求n=f(T),因此实验 过程中应注意保持试验条件不变。 (2)当被试机M正向电动时(即运行于第一象限): M:电枢正接,起动后R1 = 0 。 MG:电枢反接,(在R3于阻值最大时接通电源) 使负载机MG 处于反接制动运行,改变R3的阻值可以得到负载机MG的各个 不同斜率的负载特性曲线与被试机M的被测机械特性曲线相交 平衡,从而调节被试机M的负载,其运行图如图1-2所示的虚 线a、b、c、d、e点。 (3)当被试机M回馈制动运行时(即运行于第Ⅱ象限): M:电枢正接,(被负载机MG正拖到转速大于理想空载转速)。 MG:电枢正接,通过改变磁场电阻R4使负载机的理想空载转速大于被试机的理想空载转速。然后改变R3的阻值可以得到负载机MG的各个不同斜率的负载特性曲线与被试机M的被测机械特性曲线相交平衡,从而调

直流电动机的MATLAB仿真..

第一章课程设计内容及要求 1. 直流电动机的机械特性仿真; 2. 直流电动机的直接起动仿真; 3. 直流电动机电枢串联电阻启动仿真; 4. 直流电动机能耗制动仿真; 5.直流电动机反接制动仿真; 6. 直流电动机改变电枢电压调速仿真; 7. 直流电动机改变励磁电流调速仿真。 要求:编写M文件,在Simulink环境画仿真模型原理图,用二维画图命令画仿真结果图或用示波器观察仿真结果,并加以分析

第二章直流电动机的电力拖动仿真绘制 1)直流电动机的机械特性仿真 clear; U_N=220;P_N=22;I_N=115; n_N=1500;R_a=;R_f=628; Ia_N=I_N-U_N/R_f; C_EPhi_N=(U_N-R_a*Ia_N)/n_N; C_TPhi_N=*C_EPhi_N; Ia=0;Ia_N; n=U_N/C_EPhi_N-R_a/(C_EPhi_N)*Ia; Te=C_TPhi_N*Ia; P1=U_N*Ia+U_N*U_N/R_f; T2_N=9550*P_N/n_N; figure(1); plot(Te,n,'.-'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); ylim([0,1800]); figure(2); plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm');

hold on; R_c=0; for coef=1:;; U=U_N*coef; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('U=',num2str(U),'V'); s_y=1650*coef; text(50,s_y,str); end figure(3); n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); hold on; U=U_N;R_c=; for R_c=0::; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('R=',num2str(R_c+R_a),'\Omega'); s_y=400*(4-R_c*; text(120,s_y,str);

最新直流电动机数学模型的建立

直流电动机数学模型的建立 4.1 数学模型的建立 建立电动机动态数学模型的方法的要点是:首先列写出电动机主电路电压平衡方程式,轴上力矩平衡方程式和励磁电路电压平衡方程式等基本关系式,加以整理,然后进行拉普拉斯变换,根据此变换,即可求出电动机的动态结构图和传递函数的表达式[1,10]。 图4—1 上图为一他励直流电动机的等效电路,其中: a U E----分别为电动机电枢端电压和反电势; d I f I ---电动机电枢电流和励磁电流; a R a L ---电枢电路电阻和电感; f R f L ---励磁电路电阻和电感; f U -------电动机的励磁电压; ω-------电动机的角速度; J--------电动机轴上的转动惯量; e T l T ----电动机转矩和负载阻转矩。 4.1.1 写出平衡方程式、拉普拉斯变换 由上图可写出下列基本关系式: a U -E= a R (1+a T S ?) d I e T -l T =J ?S ? ω

f U = f R ()f f I T S ??+1 E= ω ωφ???=??f e I M p K Te= d f d m I I M p I K ???=??φ 其中:a a a R L T = 为电枢电路时间常数;f f f R L T = 为励磁电路时间常数;p 为电动机磁极对数;M 为励磁绕组和电枢绕组的互感; 4.1.2 动态结构图 将S=d/dt 看作算子,则上述诸式也就是它们的拉氏变换。所以由上式可画出直流电动机的结构。如图4—2所示。 图4—2 如果将讨论的问题限制在稳态工作点附近的小偏差情况,经过化简,可得此时系统的增量方程为:d a a a I T S R E U ??+?=-)1( ω ??=-S J T T l e f f f f I T S R U ??+?=)1( 0Ω???+???=f f I M p I M p E ω 0 0d f d f e I I M p I I M p T ???+???= 为简化起见,式中表示增量的下标1已删去。由诸式可画出直流电动机在独立电枢电压和磁场控制下的动态结构图如下所示:

他励直流电动机工作特性的测定

实验一他励直流电动机工作特性的测定 一、实验目的 1、进一步熟悉他励直流电动机的起动和调速方法。 2、测定他励直流电动机的工作特性和机械特性。 二、预习要点 1、做固有特性实验时,为什么首先要找电动机的额定运行点?如何找I fN ? 2、调节同轴的直流发电机的电枢电流与励磁电流,为什么能起到调节电动机电磁转矩的作用? 三、实验仪器设备 校正过的直流电动机DJ23 一台直流电动机DJ15 一台电机导轨及转速表0~1800 r/min 一套直流毫安表200mA 二块直流安培表5A 二块三相电阻器D41、D42 二台白炽灯组二组注:DJ23的名牌参数: P N =355W、U N =220V、I N =2.2A、n N =1500r/min、U FN =220V、I FN <0.16A DJ15的名牌参数: W 185 P N =、V 220 U N =、A 06 .1 I N =、V 220 U FN =、 FN I

直流电动机数学模型的建立

直流电动机数学模型的建立

直流电动机数学模型的建立 4.1 数学模型的建立 建立电动机动态数学模型的方法的要点是:首先列写出电动机主电路电压平衡方程式,轴上力矩平衡方程式和励磁电路电压平衡方程式等基本关系式,加以整理,然后进行拉普拉斯变换,根据此变换,即可求出电动机的动态结构图和传递函数的表达式[1,10]。 图4—1 上图为一他励直流电动机的等效电路,其中: a U E----分别为电动机电枢端电压和反电势; d I f I ---电动机电枢电流和励磁电流; a R a L ---电枢电路电阻和电感; f R f L ---励磁电路电阻和电感; f U -------电动机的励磁电压; ω-------电动机的角速度; J--------电动机轴上的转动惯量; e T l T ----电动机转矩和负载阻转矩。 4.1.1 写出平衡方程式、拉普拉斯变换 由上图可写出下列基本关系式: a U -E= a R (1+a T S ?) d I e T -l T =J ?S ? ω

f U = f R ()f f I T S ??+1 E= ω ωφ???=??f e I M p K Te= d f d m I I M p I K ???=??φ 其中:a a a R L T = 为电枢电路时间常数;f f f R L T = 为励磁电路时间常数;p 为电动机磁极对数;M 为励磁绕组和电枢绕组的互感; 4.1.2 动态结构图 将S=d/dt 看作算子,则上述诸式也就是它们的拉氏变换。所以由上式可画出直流电动机的结构。如图4—2所示。 图4—2 如果将讨论的问题限制在稳态工作点附近的小偏差情况,经过化简,可得此时系统的增量方程为:d a a a I T S R E U ??+?=-)1( ω ??=-S J T T l e f f f f I T S R U ??+?=)1( 0Ω???+???=f f I M p I M p E ω 0 0d f d f e I I M p I I M p T ???+???= 为简化起见,式中表示增量的下标1已删去。由诸式可画出直流电动机在独立电枢电压和磁场控制下的动态结构图如下所示:

直流电动机的人为机械特性(精)

直流电动机的人为机械特性 直流电动机可以通过改变电枢回路电阻、电枢电源电压、励磁磁通等方法使机械特性发生变化,以适应负载和工艺的要求。参数改变后对应的机械特性称为人为机械特性。下面以他励直流电动机为例说明三种人为机械特性。 (1)电枢回路串电阻的人为机械特性 电枢加额定电压U N ,每极磁通为额定值φN ,电枢回路串入电阻R 后,机械特性表达式为 T C C R R C U n N T e a N e N 2Φ+-Φ= 电枢串入电阻(R)值不同时的人为机械特性如图1所示。 图1 电枢回路串电阻的人为机械特性 图2 改变电枢电压的人为机械特性 显然,理想空载转速Φ=e C U n 0,与固有机械特性的n 0相同,斜率2 Φ=T e a C C R α与电枢回路电阻有关,串入的阻值越大,特性越倾斜。 电枢回路串电阻的人为机械特性是一组放射形直线,都过理想空载转速点。 (2)改变电枢电压的人为机械特性 保持每极磁通为额定值不变,电枢回路不串电阻,只改变电枢电压时,机械特性表达式为 T C C R C U n N T e a N e 2Φ-Φ= 电压U 的绝对值大小不能比额定值高,否则绝缘将承受不住,但是电压方向可以改变。改变电压大小的人为机械特性见图32所示。

显然,U 不同,理想空载转速Φ =e C U n 0随之变化,并成正比关系,但是斜率都与固有机械特性斜率相同,因此各条特性彼此平行。 改变电压U 的人为机械特性是一组平行直线。 (3)减少气隙磁通量的人为机械特性 减少气隙每极磁通的方法是用减小励磁电流来实现的。由于电动机磁路接近于饱和,增大每极磁通难以做到,改变磁通时,都是减少磁通。 图3 减少气隙磁通量的人为机械特性 电枢电压为额定值不变。电枢回路不串电阻,仅改变每极磁通的人为机械特性表达式为 T C C R C U n T e a e N 2Φ-Φ= 显然理想空载转速n 0 ∝Φ1,Φ越小,n 0越高;而斜率α∝21Φ ,Φ越小,特性越倾斜。改变每极磁通的人为机械特性如图3所示,是既不平行又不呈放射形的一组直线。

直流电动机控制系统

煤炭工程学院课程设计 题目:直流电动机转速控制系统 专业班级: 学生姓名: 学号: 指导教师: 日期:

摘要 当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 电机在各行各业发挥着重要的作用,而电机转速是电机重要的性能指标之一,因而测量电机的转速和电机的调速,使它满足人们的各种需要,更显得重要,而且随着科技的发展,PWM调速成为电机调速的新方式。 随着数字技术的迅速发展,微控制器在社会的各个领域得到了广泛的应用,由于数字系统有着模拟系统所没有的优势,如抗干扰性强、便于和PC机相联、系统易于升级维护。 本设计是以单片机AT89S52和L298控制的直流电机脉宽调制调速系统。利用AT89S52芯片进行低成本直流电动机控制系统的设计,能够简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。系统实现对电机的正转、反转、急停、加速、减速的控制,以及PWM的占空比在LCD上的实时显示。 关键词:直流电机;AT89S52;PWM调速;L298

九年级物理下册164安装直流电动机模型教学反思苏科版!

安装直流电动机模型 我今天上午第三节我讲了《电动机》,对我来说这是一节很特殊的课。因为我也亲自体验了一把从准备材料,到制作课件的全过程。虽然时间准备有些伧足,课件中还有不完善的地方,但让我还是收获了许多。反思起来我觉得有以下几方面还是值得自我欣赏的: 1.应用多媒体课件演示电动机换向器的作用比实物演示可见度大,而且转速容易控制,学生看得更清楚,虽然教材中没有涉及到电动机的转速控制,但在课件中经历了调速这个过程,学生也就会有所了解。 2.教学中还是尽可能让学生参与到课堂之中,一般学生能分析得出的结论由学生得出来,教师不包办代替。 3.课前让学生去经历了制作小电动机的过程,学生的制作热情高涨,锻炼了学生的动手能力,合作精神,同时也让学生去探究了电动机连续转动的原理。 我自认为本节课还有很多不足之处: 1.是用课件代替演示实验还有值得商讨的地方,课件虽然可以模拟实验条件,但毕竟不是实验,我们只有在不得以的条件下才可用课件代替实验,只有在权衡利弊后使用。 2.应用多媒体的应用水平有限,还只能做ppt,对flash的制作要加强学习,争取能自己制作flash课件。 3.由于本节内容较多,在让学生经历探究实验的过程时间给得不够充分,没有让学生亲自动手操作,对少中下水平学生来说显得节奏过快。 4.课堂氛不够活跃,和平时相比今天学生的表现有差距,可能受到听课教师的影响,有的学生的问题在课堂上想说而没敢说,课后才和我交流。 5.本节课由于学生受力学知识水平的限制,在电动机的受力分析教师完全替代了学生,总显得不够严谨,课堂环节就显得不够流畅。 总之,我完成了在达标课中的任务,我做得有很多不足的地方,我愿聆听各位专家的意见,同时把的有待改进的地方晒一晒,听课教师可以从中吸取教训,这也算是我的的一点贡献吧! 1

他励直流电动机的机械特性

他励直流电动机的机械特性 一、实验目的 了解和测定他励直流电动机在各种运转状态的机械特性 二、预习要点 1、改变他励直流电动机机械特性有哪些方法? 2、他励直流电动机在什么情况下,从电动机运行状态进入回馈制动状态?他励直流电动机回馈制动时,能量传递关系,电动势平衡方程式及机械特性又是什么情况? 3、他励直流电动机反接制动时,能量传递关系,电动势平衡方程式及机械特性。 三、实验项目 1、电动及回馈制动状态下的机械特性 2、电动及反接制动状态下的机械特性 3、能耗制动状态下的机械特性 四、实验方法 1、实验设备 2、屏上挂件排列顺序 D51、D31、D42、D41、D31、D44 按图1接线,图中M用编号为DJ15的直流并励电动机(接成他励方式),MG用编号为DJ23的校正直流测功机,直流电压表V1、V2的量程为1000V,直流电流表A1、A3的量程为200mA,A2、A4的量程为5A。R1、R2、R3、及R4依不同的实验而选不同的阻值。 3、R2=0时电动及回馈制动状态下的机械特性

(1) R 1、R 2分别选用D44的1800Ω和180Ω阻 值,R 3选用D42上4 只900 Ω串联共3600Ω阻值,R 4 选用D42上1800Ω再加上D41上6只90Ω串联共2340Ω阻值。 (2) R 1阻值置最小位置,R 2、R 3及R 4阻值置最大位置,转速表置正向1800r/min 量程。开关S 1、S 2选用D51挂箱上的对应开关,并将S 1合向1电源端,S 2合向2'短接端。 (3) 开机时需检查控制屏下方左、右两边的“励磁电源”开关及“电枢电源”开关都须在断开的位置,然后按次序先开启控制屏上的“电源总开关”,再按下“开”按钮,随后接通“励磁电源”开关,最后检查R 2阻值确在最大位置时接通“电枢电源”开关,使他励直流电动机M 起动运转。调节“电枢电源”电压为 220V ;调节R 2阻值至零位置,调节R 3阻值,使电流表A 3为100mA 。 (4) 调节电动机M 的磁场调节电阻R 1阻值,和电机MG 的负载电阻R 4阻值(先调节D42上1800Ω阻值,调至最小后应用导线短接)。使电动机M 的n=n N =1600r/min ,I N =I f +I a =1.2A 。此时他励直流电动机的励磁电流I f 为额定励磁电流I fN 。保持U=U N =220V ,I f =I fN ,A 3表为100mA 。增大R 4阻值,直至空载(拆掉开关S 2的2'上的短接线),测取电动机M 在额定负载至空载范围的n 、I a ,共取8-9组数据记录于表1中。 (5) 在确定S 2上短接线仍拆掉的情况下,把R 4调至零值位置(其中D42上1800Ω阻值调至零值后用导线短接),再减小R 3阻值,使MG 的空载电压与电枢电源电压值接近相等 (在开关S 2两端测),并且极性相同,把开关S 2合向1'端。 (6) 保持电枢电源电压U=U N =220V ,I f =I fN ,调节R 3阻值,使阻值增加,电动机转速升高,当A 2表的电流值为0A 时,此时电动机转速为理想空载转速(此时转速表量程应打向正向3600r/min 档),继续增加R 3阻值,使电动机进入第二象限回馈制动状态运行直至转速约为1900 r/min ,测取M 的n 、I a 。共取8~9组数据记录于表2中。 电枢电源 图 1他励直流电动机机械特性测定的实验接线图

直流他励电动机机械特性.

实训三直流他励电动机机械特性 自动化0933班徐林 一.实验目的 了解直流电动机的各种运转状态时的机械特性 二.预习要点 1.改变他励直流电动机械特性有哪些方法? 2.他励直流电动机在什么情况下,从电动机运行状态进入回馈制动状态?他励直流电动机回馈制动时,能量传递关系,电动势平衡方程式及机械特性又是什么情况? 3.他励直流电动机反接制动时,能量传递关系,电动势平衡方程式及机械特性。 三.实验项目 1.电动及回馈制动特性。 2.电动及反接制动特性。 3.能耗制动特性。 四.实验设备及仪器 1.实验台主控制屏。 2.电机导轨及转速表 3.三相可调电阻900Ω(NMEL-03) 4.三相可调电阻90Ω(NMEL-04) 5.旋转指示灯及开关板(NMEL-05B) 6、直流电压、电流、毫安表(NMEL-06A) 7.电机起动箱(NMEL-09) 8.直流电机仪表、电源(含在主控制屏左下方,MMEL-18) 五.实验方法及步骤 1.电动及回馈制动特性 接线图如图5-1 M为直流发电机M01作电动机使用(接成他励方式)。 G为直流并励电动机M03(接成他励方式),U N=220V,I N=1.1A,n N=1600r/min; 直流电压表V1为MMEL-18中220V可调直流稳压电源自带,V2的量程为300V (NMEL-06A);

直流电流表mA 1、A 1分别为MMEL-18中220V 可调直流稳压电源自带毫安表、安倍表; mA 2、A 2分别选用量程为200mA 、5A 的毫伏表、安培表。 R 1选用900Ω欧姆电阻(NMEL-03) R 2选用180欧姆电阻(NMEL-04中两90欧姆电阻相串联) R 3选用3000Ω磁场调节电阻(NMEL-09) R 4选用2250Ω电阻(用 NMEL-03中两只900Ω电阻相 并联再加上两只900Ω电阻相串联) 开关S 1、S 2选用 NMEL-05B 中的双刀双掷开关。 按图5-1接线,在开启电源前,检查开关、电阻等的设置; (1)开关S 1合向“1”端,S 2合向“2”端。 (2)电阻R 1至最小值,R 2、R 3、R 4阻值最大位置。 (3)直流励磁电源船形开 关和220V 可调直流稳压电源船形开关须在断开位置。 实验步骤。 a .按次序先按下绿色“闭合”电源开关、再合励磁电源船 型开关和220V 电源船形开关, 使直流电动机M 起动运转,调 节直流可调电源,使V 1读数为U N =220伏,调节R 2阻值至零。 b .分别调节直流电动机M 的磁场调节电阻R 1,发电机G 磁场调节电阻R 3、负载电阻R 4(先调节相串联的900Ω电阻旋钮,调到零用导线短接以免烧毁熔断器,再调节900Ω电阻相并联的旋钮),使直流电动机M 的转速n N =1600r/min ,I f +I a =I N =0.55A ,此时I f =I fN ,记录此值。 c .保持电动机的U=U N =220V ,I f =I fN 不变,改变R 4及R 3阻值,测取M 在额定负载至空载范围的n 、I a ,共取5-6组数据填入表中。 表5-1 U N =220伏 I fN = 0.075 A I a (A ) 0.4 0.37 0.34 0.30 0.28 0.26 n (r/min ) 1782 1802 1807 1813 1818 1818 d .折掉开关S 2的短接线,调节R 3,使发电机G 的空载电压达到最大(不超过220伏),并且极性与电动机电枢电压相同。 e .保持电枢电源电压U=U N =220V ,I f =I fN ,把开关S 2合向“1”端,把R 4值减小,直至为零(先调节相串联的900Ω电阻旋钮,调到零用导线短接以免烧毁熔断器)。再调节R 3阻值使阻值逐渐增加,电动机M 的转速升高,当A 1表的电流值为0时,此时电动机转速为理想空载转速,继续增加R 3阻值,则电动机进入第二象限回馈制动状态运行直至电流接近0.8倍额定值(实验中应注意电动机转速不超过2100转/分)。 测取电动机M 的n 、I a ,共取5-6组数据填入表5-2中。 电动及回馈制动特性 图5-2 直流他励电动机I 图5-1 直流他励电动机机械特性测定接线图R 直 流电 机 励磁 电 源 R 1U 可调直 流稳压 电 源 S V 11 112f R 32S A G M A I a 21V 22 R 421直流电动机M01同步发电机M08mA 2mA 1

(完整版)直流电动机建模及仿真实验

动态系统建模仿真 实验报告 姓名: 学号: 联系方式:(Tel) (Email)

2010年11月11日

目录 1直流电动机建模及仿真实验 (1) 1.1实验目的 .............................................................................................................. 1 1.2实验设备 .............................................................................................................. 1 1.3实验原理及实验要求 .......................................................................................... 1 1.3.1实验原理 ....................................................................................................... 1 1.3.2实验要求 ....................................................................................................... 2 1.4实验内容及步骤 .................................................................................................. 3 1.4.1求电动机的传递函数模型和频率特性 ....................................................... 3 1.4.2设计Simulink 框图求电机的调速特性 ....................................................... 5 1.4.3设计Simulink 框图求电机的机械特性 ....................................................... 7 1.4.4求电机转速的阶跃响应和机电时间常数 ................................................... 8 1.5实验结果分析 . (10) 2考虑结构刚度时的直流电动机-负载建模及仿真实验 (11) 2.1实验目的 ............................................................................................................ 11 2.2实验设备 ............................................................................................................ 11 2.3实验原理及实验要求 ........................................................................................ 11 2.3.1实验原理 ..................................................................................................... 11 2.3.2实验要求 ..................................................................................................... 13 2.4实验内容及步骤 ................................................................................................ 13 2.4.1求从a u 到m θ的传递函数模型和频率特性 ................................................ 13 2.4.2求从m θ到L θ的传递函数模型、频率特性和根轨迹 ............................... 15 2.4.3求不同刚度系数对应的从a u 到L θ的电机-负载模型的频率特性 ........... 17 2.5实验结果分析 . (18)

基于单片机控制直流电动机

单片机原理及系统课程设计 专业: 班级: 姓名: 学号: 指导教师: ......... 2015年12月27日

基于单片机控制直流电动机 1 引言 通过一个学期的学习,我认为要学好单片机这门课程,不仅要认真学习课本知识,更重要的是要学会通过实践巩固学到的知识,本次课设中我们设计制作的题目是基于单片机的直流电动机的转速检测与PWM调制。 1.1 设计背景 PWM 直流电机应用对市场调查显示,目前各工业各产品都大量用到PWM 调速电机,直流调速电机对市场需求量是相当的大。 1.2直流电机的发展 1834 德国雅可比发明直流发动机1888 南斯拉夫裔美国特斯拉发明了交流电动机1821年英国科学家法拉第首先证明可以把电力转变为旋转运动。最先制成电动机的人,据说是德国的雅可比。他于1834年前后成了一种简单的装置:在两个U型电磁铁中间,装一六臂轮,每臂带两根棒型磁铁。通电后,棒型磁铁与U型磁铁之间产生相互吸引和排斥作用,带动轮轴转动。后来,雅可比做了一具大型的装置。安在小艇上,用320个丹尼尔电池供电,1838年小艇在易北河上首次航行,时速只有2.2公里,与此同时,美国的达文波特也成功地制出了驱动印刷机的电动机。 2 设计方案及原理 2.1 系统设计方案 本次设计用单片机输出PWM 到电机驱动电路H桥,通用按键调节电机的速度。用单片机定时器发生PWM 用按键改变定时初值,可以改变PWM的占空比从而改变速度。

主要研究内容: 1)硬件电路单片机最小系统、H桥驱动电路、按键模块、 2)软件程序用Proteus进行仿真加工,使用C语言编写程序。 2.2H桥原理图 图1H桥电路原理图 2.2.1H桥驱动电路 图2中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图2及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左

直流电动机的模型

直流电动机的模型 电枢控制的他励直流电动机部件。直流电动机是将电能转化为机械能的一种典型的机电转换装置。在电枢控制的直流电动机中,由输入的电枢电压u d 在电枢回路产生电枢电流i d ,再由电枢电流i d 与激磁磁通相互作用产生电磁转矩M ,从而使电枢旋转,拖动负载运动。 1)取电枢电压u d 为控制输入,负载转矩M L (单位:Nm )为扰动输入,电动机转速n (单位:转/分)为输出量。 2)忽略电枢反应、磁滞、涡流效应等影响,当激磁电流不变i f 时,激磁磁通视为不变,则将变量关系看作线性关系。 3)电枢电压u d 在电枢回路产生电枢电流i d ,列电枢回路电压平衡方程: 反电势常数 相反 方向与电枢电压磁磁通及转速成正比,电枢反电势,大小与激--==++e e d d d d d d d C n C E u dt di L R i E Ud Ed

4)电枢电流i d 与激磁磁通相互作用产生电磁转矩M ,在激磁磁通不变时M 与电枢电流成正比,d m i C M = 5)电磁转矩拖动负载运动,列电机轴上的转矩平衡方程: n s M M f dt d J L 60 2,/rad ,πωωωω=-=+是电动机角速度,单位 其中,f 是电动机和负载折合到电动机轴上的粘性摩擦系数,J 是电动机和负载折合到电动机轴上的转动惯量。 (工程计算中,往往不用转动惯量J ,而用飞轮矩GD 2,类似转动惯量J ,只是单位不同,相差一个倍数。g GD D m m J 4/422 2===ρ 其中ρ---惯性半径(单位:米),D---惯性直径(单位:米),g---重力加速度,9.81m/s 2, m---旋转部分的质量(单位:kg ),G---旋转部分的重量(单位:N ) n---转速(转/分) 则,转矩平衡方程变为:dt dn GD dt dn g GD dt d J 375602422==πω ) (教材中,采用的是电动机的飞轮矩GD 2,且电动机空载,并忽略粘性摩擦,所以f 和M L 均为零,即为方程dt dn GD M 3752=) 6)消去中间变量,整理可得电动机的微分方程 e d e m d e m d d d C u n dt dn C C R GD dt n d C C R GD R L =++3753752222 e d m d m C u n dt dn T dt n d T T =++22 7)在工程应用中,由于电枢电路电感Ld 较小,通常忽略不计,则上式可简化为一阶方程: e d m C u n dt dn T =+ 画出电动机的动态结构图: ))()((1)(s E s U R s L s I u dt di L R i E d d d d d d d d d d d -+=?=++ )()(s I C s M i C M d m d m =?= )(375)(37522s M s GD s N dt dn GD M =?= )()(E d s N C s n C E e e d =?=

他励直流电动机的机械特性曲线的分析

浅析:他励直流电动机的机械特性 在电源电压U 和励磁电路的电阻R f 为常数的条件下,表示电动机的转矩n 和转矩之间的关系n=f (T )曲线,称为机械特性曲线。利用机械特性和负载转矩特性可以确定拖动系统的稳定转速,在一定条件下还可以利用机械特性和运动方程式分析拖动系统的动态运动情况,如转速、转矩及电流随时间的变化规律。可见,电动机的机械特性对分析电力拖动系统的启动、调速、制动等运行性能是十分重要的。 下图是他励直流电动机的电路原理图,他励直流电动机的机械特性方程式,可由他励直 流电动机的基本方程式导出。由公式 , 和 导出机械特性方程式 ( 1-1 ) 他励直流电动机电路原理图 当电源电压U =常数,电枢回路总电阻R =常数,励磁磁通Φ=常数时,电动机的机械特性如下图所示,是一条向下倾斜的直线,这说明加大电动机的负载,会使转速下降。特性 曲线与纵轴的交点为n 0时的转速,称为理想空载转速。 他励直流电动机的机械特性 实际上,当电动机旋转时,不论有无负载,总存在有一定的空载损耗和相应的空载转矩, 而电动机的实际空载转速 将低于n 0。由此可见式(1-1)的右边第二项即表示电动机带负载后的转速降,用 表示,则 ( 1-2 ) 式中 β——机械特性曲线的斜率。 β越大, 越大,机械特性就越“软”,通常称β大的机械特性为软特性。一般他励电动机在电枢没有外接电阻时,机械特性都比较“硬”。 机械特性的硬度也可用额定转速调整率△n N %来说明,转速调整率小,则机械特性硬度就高。 电动机的机械特性分为固有机械特性和人为机械特性 。 固有机械特性是当电动机的电枢工作电压和励磁磁通均为额定值,电枢电路中没有串入附加电阻时的机械特性,其方程式为 固有机械特性如下图中的 曲线 所示,由于 较小,故他励直流电动机固有机械特性较“硬”。 他励直流电动机串电阻时的机械特性 人为机械特性是人为地改变电动机电路参数或电枢电压而得到的机械特性,即改变公式(1-1)中的参数所获得的机械特性,一般只改变电压、磁通、附加电阻中的一个,他励电动机有下列三种人为机械特性。 (1) 枢串电阻时的人为机械特性 此时 ,人为机械特性的方程式 与固有特性相比,理想空载转速n 0不变,但是,转速降△n 增大 。R pa 越大,△n 也越大,特性变“软”,这类人为机械特性是一组通过 n 0 ,但具有不同斜率的直线。 如下图所示 (2) 改变电枢电压时的人为机械特性 a a a R I E U + =n E a Φe C =φa T em I C T =em T R U n 2T e e C C C ΦΦ-=Φ e 0C U n =0 n 'n ?em em T T R n βΦ==?2T e C C n ?em N a N N T R U n 2T e e C C C ΦΦ-=pa a N N R R R U U +===,,ΦΦem N pa a N N T R R U n 2T e e C C C ΦΦ+-=0=pa R N ΦΦ=

相关主题
文本预览
相关文档 最新文档