当前位置:文档之家› 工业免维护滑板铁基自润滑材料在不同速度下的摩擦学行为_李炎粉

工业免维护滑板铁基自润滑材料在不同速度下的摩擦学行为_李炎粉

工业免维护滑板铁基自润滑材料在不同速度下的摩擦学行为_李炎粉
工业免维护滑板铁基自润滑材料在不同速度下的摩擦学行为_李炎粉

粉末冶金摩擦材料-培训教材

粉末冶金摩擦材料 (培训教材) 中国粉末冶金实验基地

目录 1.概述 2.粉末冶金摩擦材料的特点 3.我国生产的粉末冶金摩擦材料4.粉末冶金摩擦材料的装配 5.粉末冶金摩擦材料的组成 6.粉末冶金摩擦材料的生产 7.对摩材料

1.概述 摩擦材料是制动器(刹车制动)、离合器(传递扭矩)使用的一种功能性材料,它对制动器、离合器的工作起着重要的作用。例如,飞机的刹车片、汽车的刹车带、火车的制动闸瓦(闸片)等,是用做制动器中的摩擦材料。离合器片则是用在离合器中的摩擦材料。与摩擦材料一起摩擦进行工作的材料在飞机上称为对偶,或者叫作对摩材料;而在火车和汽车上则称为制动盘材料。摩擦材料和对摩材料构成一组摩擦副。尽管摩擦副的工作是由摩擦材料和对摩材料的共同性质所决定的,但是在其中起主要作用的、决定性作用的仍然是摩擦材料。 制动就是强制运转的机器或机械减速和停止的过程。在制动器中,摩擦副吸收机器或机械的动能,并把它转化为热能。一部分热量发散到周围的环境中去,而另一部分为摩擦副所吸收,使摩擦副本身的温度升高。传递扭矩摩擦副的工作和制动摩擦副的工作没有什么本质的区别,同样都是摩擦副中摩擦材料和对摩材料的相对速度发生变化。工作开始时相对速度最大,而后逐渐减小到零的过程。区别是工作时间的长短(制动时间一般是从几秒到十几秒,传递扭矩的时间一般是十分之几秒到几秒)不同,吸收能量的大小不同,摩擦因数不同,因而摩擦副的工作温度也不同。 摩擦副在工作过程中总是要吸收能量,使本身的温度升高。因此,摩擦材料不是在室温,而是在较高的温度下工作的。 摩擦材料工作时的温度和升温速度,在结构一定的情况下,主要和摩擦副工作时必须吸收的能量大小、吸收这些能量的时间间隔有关。吸收的能量越大、时间间隔越短,那么摩擦材料的温度越高,升温速度也越大。在某些情况下,发生热冲击,也就是在很短的时间间隔之内,摩擦表面产生极高的温度。例如,飞机在着陆制动时,在3~5秒种之内,摩擦材料工作表面温度可达到1000℃以上,体积温度高达400℃~600℃。 在油中工作的离合器摩擦副(称为湿式工作条件下),尽管工作时吸收的能量也很大,但由于有油的存在,一般工作表面的温度和整个摩擦材料的体积温度不超过200℃。 摩擦材料是靠表面工作的。在工作中,摩擦材料的工作表面温度很快升高,而后靠传导作用,使整个摩擦材料的温度升高。因此,摩擦材料的工作表面温度和整

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/T14667.1-93 <二> MPIF-35

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊

固体润滑材料

固体润滑材料 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第四章: 固体润滑 二、固体润滑材料 固体润滑剂的作用是以固体润滑物质(如固体粉末、薄膜及固体复合材料等)来减少作相对运动两表面的摩擦与磨损,并保护该表面,在固体润滑过程中,固体润滑剂和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低磨擦磨损。固体润滑剂的材料有无机化合物(石墨、二硫化钼、氮化硼等)、有机化合物(蜡、聚四氟乙烯、酚醛树脂)和金属(Pb\Sn\Zn)以及金属化合物,其中以石墨和二硫化钼应用最广。 固体润滑剂的适用范围比较广,从1000℃以上的白热高温到液体氢的深冷低温,无论在严重腐蚀气体环境中工作的化工机械,还是受到强辐射的宇宙机械,都能有效地进行润滑。 1、常见固体润滑剂的种类: ①粉状润滑剂:有二硫化钼粉剂、二硫化钨粉剂、二硫化钼P型、胶体石墨粉。 ②膏状润滑剂:有二硫化钼重型机床油膏、二硫化钼齿轮油润滑油膏、二硫化钼高温齿轮油膏、特种二硫化钼油膏、齿轮润滑用GM-1型成油膜膏。 2、固体润剂的基本性能 与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用。 ①、物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 ②、化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 要求固体润滑剂有较高的承载能力:因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 3、固体润滑剂的使用方法 1)作成整体零件使用:某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。 2)作成各种覆盖膜来使用:通过物理方法将固体润滑剂施加到摩擦界面或表面,使之成为具有一定自润滑性能的干膜,这是较常用的方法之一。成膜的方法很多,各种固体润滑剂可通过溅射、电泳沉积、等离子喷镀、离子镀、电镀、粘结剂粘结、化学生成、挤压、浸渍、滚涂等方法来成膜。市面上已出现了无润滑轴承及采用纳料技术的固体润滑剂。 3)制成复合或组合材料使用:所谓复合(组合)材料,是指由两种或两种以上的材料组合或复合起来使用的材料系统。这些材料的物理、化学性质以及形状都是不同的,而且是互不可溶的。组合或复合的最终目的是要获得一种性能更优越的新材料,一般都称为复合材料。 4)作为固体润滑粉末使用:将固体润滑粉末(如MoS2)以适量添加到润滑油或润滑脂中,可提高润滑油脂的承载能力及改善边界润滑状态等,如MoS2油剂、MoS2 油膏、MoS2润滑脂及

聚合物基自润滑材料的研究现状和进展

聚合物基自润滑材料的研究现状和进展 由于聚合物本身具有较低的摩擦系数,优良的机械性能及耐腐蚀性等优点,其基自润滑复合材料具有非常优异的摩擦磨损性能,正在被广泛的应用到减摩领域。本文综述了聚醚醚酮、聚四氟乙烯及聚酰亚胺等几种高聚物的摩擦磨损特点及其应用,聚合物基自润滑复合材料发展现状。指出目前聚合物基高性能自润滑材料的制备途径主要是通过聚合物与聚合物共混及添加纤维、晶须等来提高基体的机械强度,通过添加各类固体自润滑剂来提高摩擦性能,有效提高其综合性能。聚合物基自润滑材料可取代传统金属材料,成为全新的一类耐摩擦磨损材料。 论文关键词:高聚物,复合材料,自润滑材料,摩擦,磨损 1、聚醚醚酮(PEEK) 1.1 聚醚醚酮(PEEK)的特点 聚醚醚酮(PEEK)是一种高性能热塑性高聚物,具有良好机械性能、抗化学腐蚀性和抗辐射性,显着的热稳定性和耐磨性。它可以在无润滑、低速高载下或在液体、固体粉尘污染等 收稿日期: 修订日期: 作者简介:刘良震(1980-),男,助理讲师, E-mail:ldcllfz@https://www.doczj.com/doc/f43709104.html, 恶劣环境下使用。因而关于聚醚醚酮及其复合材料的研究越来越受到人们重视。聚醚醚酮是一种半晶态热塑性聚合物,为了改善其机械性能,尤其是摩擦学性能,常在其中添加聚四氟乙烯(PTFE)、聚丙烯腈(PAN)和碳纤维(FC)等材料,也可添加颗粒增强型材料或进行特种表面处理等离子体处理等。当聚醚醚酮及其复合材料与金属材料相互对磨时,通常在金属表面形成聚合物转移膜,其结构、成分均与原有的聚合物及复合材料不同,其性能、厚度及连续程度均对摩擦副的摩擦学性能有重大影响[4]。 1.2 对聚醚醚酮(PEEK)摩擦性能的研究 章明秋等人[5,6]对聚醚醚酮(PEEK)在无润滑滑动条件下磨损产生的磨屑的形态进行研究,结果表明,聚醚醚酮(PEEK)的磨屑具有分形特征,其分形维数与载荷的关系对应于磨损率与载荷的关系,能够反映聚醚醚酮(PEEK)磨损机制的变化。在给定的试验条件下,随着载荷的增大,聚醚醚酮(PEEK)的磨损机制从粘着磨损为主伴随着疲劳-剥层磨损,进而转变为热塑性流动磨损。 张人佶等[7,8]利用扫描电镜、扫描微分量热仪、红外光谱仪、俄歇电子谱仪等分析手段系统的研究了聚醚醚酮(PEEK)及其复合材料的滑动转移膜,结果表明:纯聚醚醚酮(PEEK)在滑动摩擦过程中形成不连续的转移膜。聚四氟乙烯(PTFE)的光滑分子结构有助于使转移膜更光滑,固体润滑效果也更好。在PEEK/FC30中,不仅加入PTFE,而且加入具有层状

Fe在铜基粉末冶金摩擦材料中的作用

收稿日期:2006-02-20 基金项目:湖南省科技重大项目产业化研究资助(01-96-10)作者简介:陈 洁(1978-),女(汉),湖南长沙人,在读博士,主要从事复合材料的研究。 Fe 在铜基粉末冶金摩擦材料中的作用 陈 洁,熊 翔,姚萍屏,李世鹏 (中南大学粉末冶金研究院国家重点实验室,湖南 长沙 410083) 摘 要:研究了Fe 在铜基粉末冶金航空摩擦材料中的摩擦磨损作用及机理。研究表明:Fe 在 铜基摩擦材料中起到了摩擦组分的作用,对材料的机械性能和摩擦磨损性能起到了重要的作用。Fe 能提高铜基摩擦材料的强度、硬度;当Fe 含量超过4%后,随Fe 含量的增加,材料的摩擦系数及稳定性增加;高速摩擦条件下,Fe 能促进摩擦面氧化膜的形成,减小材料的摩擦系数和磨损量。 关键词:粉末冶金摩擦材料;摩擦磨损;摩擦组分;摩擦机理中图分类号:TF12512 文献标识码:A 文章编号:1006-6543(2006)04-0016-05 THE WOR KIN G OF Fe IN COPPER -BASED P/M FRICTION MA TERIAL CHEN Jie ,XIONG Xiang ,YAO Ping -ping ,L I Shi -peng (Stare K ey Laboratoty of Powder Metallurgy ,Central S outh University ,Changsha 410083,China ) Abstract :The working mechanism of Fe in a new type of copper -based P/M friction material was studied 1The results show that Fe works as frictional component in copper -based friction ma 2terials ,influening the mechanical and frictional property of materials 1Fe can increase the strength and hardness of friction material ;when Fe is more than 4%,with the increase of Fe ,the friction coefficient and stability of the material are enhanced 1At the same time ,at high speed friction ,Fe takes part in formation of oxide film on friction surface ,so the wear loss of friction material is de 2creased 1 K ey w ords :P/M friction material ;friction and wear ;friction component ;friction mechanism 铜基粉末冶金摩擦材料由于其良好的导热性、耐磨性而被广泛应用于各种离合器和刹车装置中[1]。粉末冶金摩擦材料是以金属及其合金为基体,添加硬质颗粒摩擦组元和固体润滑组元,用粉末冶金的方法制造而成的金属基颗粒复合材料[2]。因此,可以通过调节和控制复合材料中各组元的含量及存在形式来改善材料的物理机械性能,进而提高材料的摩擦磨损性能,最终得到综合性能优异的粉末冶金摩擦材料。 粉末冶金摩擦材料中大都加有Fe 作为摩擦组元,以提高材料的摩擦系数[3,4],其含量一般在5%~25%的范围内。有资料显示[5],Fe 含量在5%以下时,摩擦系数才有所提高,随后Fe 含量增加,材料的摩擦系数变化不大,且Fe 含量增加,材料磨损量增加,对偶磨损量则减少[6]。本文即针对Fe 在新型铜基粉末冶金摩擦材料中的作用机理进行了系统的分析,明确了Fe 对铜基粉末冶金摩擦材料摩擦磨损性能的影响。 第16卷 第4期 2006年8月 粉末冶金工业POWDER METALL URG Y IN DUSTR Y Vol.16No.4Aug.2006

粉末冶金材料标准表完整版本

公司制造的铁基粉末冶金零件执行标准与成分性能 <一> GB/T14667.1-93 <二> MPIF-35 编辑版word

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊 编辑版word

固体润滑剂(优质参考)

固体润滑剂 固体润滑剂就是在两个有载荷作用的相互滑动面间,用以降低摩擦和磨损的固体状态的物质。 要求:剪切抗力低,与被润滑表面有较好的亲和力,不腐蚀被润滑表面、耐高温、耐低温等特点。 包括金属材料,无机非金属材料和有机材料等。 可分为固体粉末润滑材料、粘结或喷涂固体润滑膜、自润滑复合材料。 固体润滑材料的适应范围比较广,以1000℃以上的白热高温到液体氢的深冷低温;严重腐蚀气体环境中工作的化工机械,是受到强辐射的宇航机械上(如月球表面的工作机械),在原子能工业、宇航和国防工业、电子工业、化学工业、机械工业、交通运输、食品工业、纺织印染等轻工业部门都已经得到了应用。 固体润滑剂主要用在高温、低温、高真空、放射线高辐射场、腐蚀性大、挥发性低、不易测定条件润滑、不容许受润滑油、脂沾污等场合和机件上。 一、固体润滑三种机理 1、形成固体润滑膜,它的润滑机理与边界润滑机理相似; 2、软金属固体润滑剂,它利用软金属抗剪切强度低的特点来起润滑作用; 3、层状结构的特点起润滑作用。图6—8为石墨的品体结构,由图6—8可知石墨具有层状,在层与层之间的接合力较弱,所以剪切抗力低。 一般常用的固体润滑剂有:二硫化钼、石墨、云母、二硫化钨、滑石粉、氮

化硼;塑料包括聚四氟乙烯、聚胺脂、聚乙烯、浇铸尼龙—6等以及某些金属如铅、锌、锡、银等低熔点金属及其合金。 二、固体润滑剂的优点 1)免除了油脂的污染及滴漏。如在空气压缩机实现固体润滑(包括轴承、密封、活塞环)后,可以提供不被油污染的空气;又如在纺织机械、食品加工机械、造纸机械、印刷机械采用固体润滑后,能避免油污,提高产品质量; 2)取消了供油脂所用的润滑油站及油路系统,节省了投资、降低了维修费用; 3)适应比较广泛的温度范围。它可用于特殊的工况条件(如在具有放射性条件下能抗辐射、耐高真空、抗腐蚀)以及不适宜使用润滑油脂的场合。 4)增强了防锈蚀能力。这对于潮湿气候的南方具有重要意义。 5)固体润滑剂分散悬浮在液体润滑剂中,既可以发挥固体润滑剂本身的性能,弥补固体润滑剂的摩擦系数大和导热性能不良的缺点。 三、固体润滑材料缺点 1)摩擦系数较大(比润滑油等流体润滑的摩擦系数大100—500倍,比润滑脂润滑的摩擦系数大50—100倍), 2)散热性能差,因而固体润滑剂主要用在其他润滑材料不能承担的润滑场合。 3)固体润滑膜的寿命较短,保膜时不仅增加工作量,有时还要停车检查,在一定程度上影响生产。 4)导人性不好,即使是粉末状,不易补充到摩擦表面。 5)塑料自润滑材料存在强度不高、线膨胀系数大、导热性差、不耐高温、摩擦系数有的还不够低的缺点。因此目前还不能完全取代润滑油脂。 四、对固体润滑剂的要求 固体润滑剂应满足以下性能要求: 1)较低的摩擦系数在滑动方向要有低的剪切强度,而在受载方向则要有高的屈服极限。同时还要具有防止摩擦表面凸峰的穿透的能力(即材料的物理性能是各向异性的); 2)附着力要强。要求附着力要大于滑动时的剪切力,以免固体润滑剂(或膜)从底材上或金属表面被挤刷(或撕离)掉; 3)固体润滑剂粒子间要有足够的内聚力,以建立足够厚的润滑膜,以防止摩擦表面的凸峰穿透并能贮存润滑剂; 4)润滑剂粒子的尺寸在低剪切强度方向应最大,这样才能保证粒子在滑动表面间能很好地定向; 5)在较宽的温度范围内,能保持性能稳定而不起化学反应。 要完全满足上述要求是不容易的。 不同的固体润滑剂,具有不同的特殊性能,一般情况只能满足或达到上述要

固体自润滑复合材料分类

固体自润滑复合材料分类 根据基体材质不同大致可将固体自润滑复合材料分为聚合物基、陶瓷基和金属基等三大类。 A.聚合物固体自润滑复合材料 目前常见的减摩用聚合物有:聚酰亚胺、聚醚醚酮(PEEK)、聚四氟乙烯、尼龙(PA)、聚甲醛(POM)、聚乙烯(PE)等。其中PTFE本身也是一种良好的固体润滑剂,是研究较早且应用最广的耐热性聚合物基自润滑材料,其分子结构规整,静摩擦系数可达0.04,是已知的可实用的滑动材料中摩擦系数最小的。然而,聚合物材料机械强度低、耐热和传热性能不理想,即使环境温度不升高,但在摩擦条件十分苛刻的条件下,传热性能低的聚合物材料很容易发生局部升温而达到耐热极限,因此不适宜高温、高速、重载等工作条件。 B.陶瓷基固体自润滑复合材料 新型结构陶瓷材料具有高强度、高硬度、低密度,以及优异的化学稳定性和高温力学性能等特点,因此有关陶瓷基自润滑复合材料及摩擦学性能的研究日益 受到重视。Sliney等选择了Cr 3C 2 为陶瓷相,以Ni为粘结相,CaF 2 和BaF 2 的共 熔物与银为润滑剂,制备了性能优异的高温自润滑金属陶瓷涂层PS200,对上述 配方进行调整可制得PS212涂层及PM212陶瓷复合材料,对解决斯特林发动机等的高温润滑问题有重要意义。王静波等考察了Ni-WC-PbO系自润滑金属陶瓷的高温摩擦学特性,发现摩擦化学产物PbW0 4 是该类材料具有优异摩擦学特性的主要 原因,直接加入PbW0 4 时材料的摩擦学性能较好,但其机械性能略差。陈晓虎研究了润滑组元(石墨、氮化硼)与氧化铝基体化学相容、物理匹配关系及其对自润 滑陶瓷材料摩擦学性能的影响,将石墨和氮化硼同时引入A1 20 3 陶瓷基体之中, 润滑减摩性能明显提高。总体上讲,自润滑陶瓷材料成为解决极端苛刻工况条件下实现自润滑要求的有效途径,但目前自润滑陶瓷材料的研究仍处于起步阶段,离实际应用还存在一定的距离。 C.金属基固体自润滑复合材料 金属基固体自润滑复合材料是固体润滑剂作为组元加入到金属基体中形成的复合材料,它具有如下特点:熔点高,机械强度高,有较好的韧性和延展性;热传导性和导电性好;尺寸稳定,耐潮湿,摩擦因数小,耐磨寿命长等优良的摩

烧结气氛论文:烧结工艺对铜基粉末冶金摩擦材料性能的影响

烧结气氛论文:烧结工艺对铜基粉末冶金摩擦材料性能的影响 【中文摘要】随着我国铁路运输业的飞速发展,列车运行速度一提再提,这就对制动摩擦材料提出了更为苛刻的要求。铜基粉末冶金摩擦材料因其具有高的机械强度、高导热性和优良的摩擦磨损性能而成为高速列车制动闸片的首选材料,如何通过制备工艺和原料体系的改进提高材料的耐温性能和摩擦稳定性一直是人们研究的重点。本文通过采用不同的烧结工艺制备了铜基粉末冶金摩擦材料,研究不同烧结温度和烧结气氛对材料显微组织、物理机械性能和摩擦磨损性能的影响,并探讨了材料在不同制动条件下的摩擦磨损行为及机理,结果 表明:(1)铜基粉末冶金摩擦材料中各组元分布均匀,组元间接触紧密,鳞片状石墨垂直于压制方向呈层状分布,SiO2以黑色大颗粒状镶嵌于铜基体内。随的烧结温度提高,材料中各组元间的孔隙减少,当达到一定程度后,孔隙不再减少;烧结气氛对材料的形貌无明显影响。(2) 烧结工艺对材料的物理-机械性能影响较大。随烧结温度的提高,采用N2和N2+H2混合气制备材料的密度先升后降,抗压强度较大,且随之呈上升趋势;H2气氛制备材料的密度呈下降趋势,抗压强度与其他两种气氛下制备的相比显著降低,且呈下降趋势。(3)相同制动压力下,材料的摩擦系数随的转速的提高先升高后降低,磨损量随着转速的提高逐渐增加;在较低转速时,磨损以粘着磨损为主,随着转速提高,磨损逐渐表现为氧化磨损和疲劳磨损。N2+H2混合气氛烧结材料在较低

转速下具有较好的摩擦性能,磨损量很低,且随烧结温度提高呈下降 趋势;N2气氛烧结材料在较高转速下摩擦性能较好,摩擦稳定性好,而且磨损量也较低。(4)在一定转速下,随着制动压力的提高,材料的摩擦系数呈下降趋势,摩擦稳定性系数先升高后下降,磨损量显著增加;较低压力时,磨损主要由粘着机理控制,较高压力时,磨损主要表现为疲劳磨损和剥层脱落。N2+H2混合气氛烧结材料在高制动压力下具有较好的摩擦性能,摩擦稳定性最高,磨损量最小,且随烧结温度升高先减少后增加,在1000℃时最低。 【英文摘要】With the development of train transport, the requirements are stiffer and stiffer in the properties of the braking materials by the speed improvement. Because of the high mechanical strength, high conductibility and excellent friction and wear properties, Cu-based P/M friction materials have been the leading material for friction brake of high-speed train.Cu-based P/M friction material has been made by different sintering process. The effect of sintering temperature and atmosphere on the micro-structure, physical and mechanical properties and friction and wear properties of material have been investigated, and the friction and wear behavior and mechanism in the different braking conditions have been discussed. The results show:(1) Scaly graphite and SiO2 are well-distributed in Cu-based P/M materials. With the

碳纤维增强复合材料在自润滑轴承中的应用综述

碳纤维增强复合材料的研究开发 嘉兴天翼科技有限责任公司唐清 2013年2月16日 以热固性树脂制成的轴承在市场上出现以来,在轴承领域里,各种聚合物和聚合物为主的各种混合物的应用已不断增加。可以用作轴承材料的塑料品种很多,如聚四氟乙烯、尼龙、聚酰亚胺、聚甲醛、低压聚乙烯等,它们都有很好的自润滑性,摩擦系数小,功率损耗比金属轴承约小15 %。聚四氟乙烯为目前氟塑料中综合性能最突出、应用最广、产量最大的一个品种,它有高度的化学稳定性,耐强腐蚀,极好的自润滑性,摩擦系数极小等特点。但纯聚四氟乙烯尺寸稳定性差,耐磨性差,而加入填充剂可以改善其摩擦性能,提高其硬度和强度。经过反复试验,我公司开发出新型热固型钨-碳纤维轴承,相比传统轴承,钨-碳纤维轴承具有更好的性能和性价比。 2 W-CFRP 轴承的工作机理与摩擦特性 2.1 W-CFRP 轴承的工作原理 W-CFRP 轴承一般与金属轴形成一对旋转摩擦副。 在跑合阶段,由于旋转轴表面有一定的粗糙度,具有不同的“凸峰”和“凹谷”,夸大来讲就好像钢锉一样对W-CFRP 轴承内表面产生磨削作用,磨削下来的W-CFRP 大部分填充到

凹谷中。随着转轴运动的持续进行,磨削下来的W-CFRP 粉末累积量不断增加,填充更多的凹谷。“磨削一填充”过程持续进行,导致转轴表面上所有凹谷均填满了W-CFRP 微屑。在转子重力作用下,凹谷内W-CFRP 微屑被压实,使轴外表面紧密粘附一层W-CFRP 膜层,且形成连续光滑面。这全过程完成了轴承内表面W-CFRP 的部分“转移”,转移的结果是:由金属与W-CFRP 两种材料变为W-CFRP 一种材料之间的相互摩擦。由于CFRP 良好的自润滑性能,因此在跑合以后的工作阶段,轴承表面的磨损量随之下降到一个极低的水平,从而使摩擦副表面得到保护,大大减轻了转轴与轴承表面的磨损,延长了工作寿命。 2.2 W-CFRP 轴承的摩擦磨损特性 自润滑轴承属于干摩擦,因此可根据古典摩擦理论的基本公式求出其摩擦力,进而求出轴承的耗功量。 F=fW 式中F—摩擦力,kgf ; f —摩擦系数:W —接触面积的法向载荷,kgf 。公式中的摩擦系数 f 只适用于干摩擦或边界摩擦的状况。对于任一给定摩擦副的表面,其摩擦力大致与载荷成比例,因而摩擦系数 f 为一常数。就初步近似而言,摩擦力也与物体的面积无关。然而摩擦系数 f 不能视为接触时材料的恒定特征值,因为摩擦力取决于许多可变因素,例如表面的宏观形状、表面粗糙度、表面可能形成

粉末冶金摩擦材料原料作用分析

高铁粉末冶金刹车片用原材料作用分析粉末冶金摩擦材料的问世距今已有近百年的历史,尤其在近几年发展尤为迅猛。粉末冶金工艺可以将金属和非金属组分的不同性能很好地配合于一种材料中,已有逐渐代替有机物粘结高分子材料的趋势。 粉末冶金摩擦材料一般由三部分组成:构成基体金属骨架的组元、润滑组元和摩擦组元。是一种含有金属和非金属多种组分的假合金。 1构成基体金属骨架的组元 简称基体组元。常用铜、铁、二硫化钼、镍、钛、铬、钼、钨、磷、锡、铝、锌等。 基体组元由基本组元和辅助组元两部分组成,基本组元在成分中占的比重最大。在铁基中,基本组元是铁。在铜基中,基本组元是铜。辅助组元与基本组元形成合金,从而改善基本组元的性能,或者是赋予基本组元以某种所需要的性能。辅助组元在铁基材料中有二硫化钼、镍、铬、钼、铜及磷等。在铜基中主要是锡、铝、锌及磷等。 粉末冶金摩擦材料的性能、工艺特点在很大程度上取决于基体组元的化学成分、结构和物理机械性能。基体组元保证了材料的承载能力、热稳定性、耐磨性,以及在高温工作时保持住摩擦剂和润滑剂颗粒的能力。一般在粉末冶金摩擦材料中,基体组元占铁基材料的50%~70%,占铜基材料的60%~90%。 1.1铁 近年来铁基粉末冶金摩擦材料的发展很快,主要是由于它节省有色金属,在高温高负荷下显示出更加优良的摩擦性能,机械强度高,能够承受比较大的压力,因而它应用在很多领域。但是,由于铁与对偶具有很强的亲和性,有利于粘结过程的发展,因此需加入大量的其他元素使铁合金化以降低铁的塑性,提高其强度、屈服极限和硬度,以克服次缺点,但同时也提高了成本和加工工艺复杂度。 铁基材料的基体组元中,加入镍、铬、钼,主要目的在于提高材料机械-物理性能和耐热耐腐性能。加入磷,能提高材料的强度,提高耐磨性。加入二硫

自润滑复合材料论文-自润滑材料及其摩擦特性(精)

自润滑复合材料论文-自润滑材料及其摩擦特性摘要:自润滑复合材料是材料科学研究领域的一个重要发展方向,由于其在特殊使用条件下具有优良的摩擦学特性而受到人们的广泛关注。本文主要介绍国内外自润滑复合材料的开发与进展,讨论了对材料摩擦学性能的影响因素。 关键词:固体润滑摩擦磨损自润滑复合材料 一、前言: 液态润滑(润滑油、脂是传统的润滑方式,也是应用最为广泛的一种润滑方式。但液体润滑存在一下问题: 1.高温作用下添加剂容易脱落; 2.随温度升高,其粘性下降,承载能力下降; 3.高温环境下其性能衰减等问题; 4.液体润滑会增加成本,如切削加工中的切削液; 5.液体润滑会造成环境污染。 所以,自润滑材料已成为润滑领域的一类新材料,成为目前摩擦学领域的重要研究热点。 二、自润滑材料的种类 自润滑材料一般分为金属基自润滑材料、非金属基自润滑材料和陶瓷自润滑材料。其制备方法通常为粉末冶金法,此外,等离子喷涂、表面技术和铸造法也被应用于自润滑复合材料的制备。 1金属基自润滑材料

金属基自润滑复合材料是以具有较高强度的合金作为基体,以固体润滑剂作为分散相,通过一定工艺制备而成的具有一定强度的复合材料。目前已开发的 金属基自润滑复合材料,如在铁基、镍基高温合金中添加适量的硫或硒及银基和铜基自润滑材料,都已得到一定程度的应用。 2非金属基自润滑材料 非金属基自润滑材料主要是指高分子材料或高分子聚合物,如尼龙等。它在航空航天、汽车制造、电子电气、医疗和食品加工等领域得到广泛应用。目前高分子基自润滑材料的制备途径主要是通过聚合物与聚合物共混及添加纤维、晶须等来提高基体的机械强度;通过添加各类固体自润滑剂来提高摩擦性能。 3陶瓷自润滑材料 陶瓷材料以其独特的特点和优点,使得陶瓷及陶瓷复合材料的自润滑研究 已经引起了较为广泛的重视。 三、自润滑减摩材料的特点、性能 1 粉末冶金法制造减摩材料的特点 (1在混料时可掺入各种固体润滑剂(如石墨、硫、硫化物、铅、二硫化钼、氟化钙等,以改善该材料的减摩性能; (2利用烧结材料的多孔性,可浸渍各种润滑油,或填充固体润滑剂,或热敷和滚轧改性塑料带等,使材料更具自润滑性能,减摩性能特佳; (3优良的自润滑性,使它能在润滑剂难以到达之处和难以补充加油或者不希望加油(如医药、食品、纺织等工业的场合,能安全和无油污染的使用; (4较易制得无偏析的、两种以上金属的密度差大的铜铅合金—钢背、铝铅合金—钢等双金属材料;

粉末冶金摩擦材料原料作用分析

高铁粉末冶金刹车片用原材料作用分析 粉末冶金摩擦材料的问世距今已有近百年的历史,尤其在近几年发展尤为迅猛。粉末冶金工艺可以将金属和非金属组分的不同性能很好地配合于一种材料中,已有逐渐代替有机物粘结高分子材料的趋势。 粉末冶金摩擦材料一般由三部分组成:构成基体金属骨架的组元、润滑组元和摩擦组元。是一种含有金属和非金属多种组分的假合金。 1构成基体金属骨架的组元 简称基体组元。常用铜、铁、二硫化钼、镍、钛、铬、钼、钨、磷、锡、铝、锌等. 基体组元由基本组元和辅助组元两部分组成,基本组元在成分中占的比重最大。在铁基中,基本组元是铁。在铜基中,基本组元是铜。辅助组元与基本组元形成合金,从而改善基本组元的性能,或者是赋予基本组元以某种所需要的性能。辅助组元在铁基材料中有二硫化钼、镍、铬、钼、铜及磷等。在铜基中主要是锡、铝、锌及磷等。 粉末冶金摩擦材料的性能、工艺特点在很大程度上取决于基体组元的化学成分、结构和物理机械性能。基体组元保证了材料的承载能力、热稳定性、耐磨性,以及在高温工作时保持住摩擦剂和润滑剂颗粒的能力。一般在粉末冶金摩擦材料中,基体组元占铁基材料的50%~70%,占铜基材料的60%~90%。 1.1铁 近年来铁基粉末冶金摩擦材料的发展很快,主要是由于它节省有色金属,在高温高负荷下显示出更加优良的摩擦性能,机械强度高,能够承受比较大的压力,因而它应用在很多领域。但是,由于铁与对偶具有很强的亲和性,有利于粘结过程的发展,因此需加入大量的其他元素使铁合金化以降低铁的塑性,提高其强度、屈服极限和硬度,以克服次缺点,但同时也提高了成本和加工工艺复杂度。 铁基材料的基体组元中,加入镍、铬、钼,主要目的在于提高材料机械-物理性能和耐热耐腐性能。加入磷,能提高材料的强度,提高耐磨性.加入二硫化钼,

粉末冶金材料学

1.粉末冶金技术的特点(优越性) 能制造熔铸法无法获得的材料和制品 1、难熔金属及其碳化物、硼化物和硅化物; 2、孔隙可控的多孔材料 3、假合金 4、复合材料;5 微、细晶(准晶)和过饱和固溶的块体金属和制品; 能制造性能优于同成分熔铸金属的粉末冶金材料 1、制造细晶粒、均匀组织和加工性能好的稀有金属坯锭; 2、制造成分偏析小、细晶、过饱和固熔的高性能合金; 具有高的经济效益 1、少无切削; 2、工序短,效率高; 3、设备通用性好,适合于大批量生产; 2.粉末冶金材料的分类 1、机械材料和零件; 2、多孔材料及制品; 3、硬质工具材料 4、电接触材料; 5、粉末磁性材料; 6、耐热材料; 7、原子能工程材料; 3.粉末冶金材料的孔隙产生过程及其存在形态 产生过程:颗粒间隙(松装粉末聚集体或粉末成形素坯)烧结形成孔隙。存在形态:开孔:与外表面连通的孔隙,半开孔:孔隙只有一端与外表面连通的孔隙,闭孔:与外表面不连通的孔隙,连通孔:互相连通的孔隙 4. 孔隙对材料性能影响的基本理论; 减小承载面积;应力集中剂(减小孔隙尺寸、孔隙球化、孔隙内表面圆滑处理能有效降低应力集中,从而提高强度和韧性)应力松弛剂:裂纹遇到孔隙后被磨钝,提高断裂水平 5.哪些力学性能对孔隙形状敏感:强度、弹性模量、延伸率、断裂韧性、冲击韧性、硬度 6. 提高粉末冶金材料密度的方法:复压复烧,溶浸、粉末冶金热锻 7.固溶强化机理:晶体中有合金元素,固溶原子与晶体中缺陷的交互作用,溶质元素使基体(溶剂)金属的塑性变形抗力、强度、硬度增大,延性和韧性降低 8.影响固溶度(合金溶解度)的因素:晶格因素,相对尺寸因素,化学亲和力,电子浓度因素 9.什么是金属材料热处理?将固态金属或合金采用适当的方式进行加热、保温和冷却,以改变金属或合金的内部组织结构,使材料满足使用性能要求。 10.加热奥氏体化时影响粒度的因素:加热温度和保温时间,加热速度,合金元素,原始组织 11.刚冷却时等温转变的基本类型及对应组织结构的名称 共析钢等温转变:珠光体,贝氏体,马氏体;亚共析钢等温转变:奥氏体,铁素体,珠光体;过共析钢等温转变:奥氏体,渗碳体,珠光体 12.烧结钢热处理的工艺特点及注意事项 工艺特点:奥氏体化温度高:致密钢为AC+30~50℃,烧结钢为AC+100~200℃,密度的要求:烧结钢密度过低(<6.0g/cm3)淬火无任何效果,淬透性比致密钢差 注意事项:(1)孔隙率>10%易腐蚀,不能在盐浴中加热(2)表面热处理前应进行封孔处理:滚压、精整、或氮化、硫化处理 (3)加热时应气氛保护或添加保护性填料 (4)淬火介质不能用水。 13.烧结钢淬透性的影响因素:孔隙度,合金元素,氧、碳含量 14.身高结钢合金化的特点:1、孔隙的影响:密度低于6.5g/cm3,合金的强化作用很弱;2、某些强化效果好合金元素,如Cr、Mn易氧化,常以中间合金粉或预合金粉引入;3、铜和磷常用,4、烧结钢中常用的合金元素除碳外,主要有Cu、Ni、Mo、Cr、P等 15. C含量对烧结Fe-C系结构与性能的影响 珠光体随C含量而增大而增大,渗碳体随C含量而增大而增大强度有极大值,塑性(延伸率、断面收缩率)单调下降;由于碳分布不均匀,一般烧结钢显微组织为:珠光体+铁素体+少量渗碳体+孔隙+夹杂 16.常见烧结碳钢显微组织:铁素体,珠光体,渗碳体 17.影响烧结碳钢化合碳含量的因素:1、石墨加入量,2、烧结气氛3、烧结温度4、烧结时间5、氧含量

【CN110016277A】用于制备自润滑耐磨材料的组合物、自润滑耐磨涂料、自润滑耐磨涂层、自润滑耐

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910375103.9 (22)申请日 2019.05.07 (71)申请人 河南科技大学 地址 471003 河南省洛阳市涧西区西苑路 48号 (72)发明人 邱明 李迎春 程蓓 庞晓旭  谷守旭  (74)专利代理机构 郑州睿信知识产权代理有限 公司 41119 代理人 张兵兵 李宁 (51)Int.Cl. C09D 163/00(2006.01) C09D 7/61(2018.01) (54)发明名称 用于制备自润滑耐磨材料的组合物、自润滑 耐磨涂料、自润滑耐磨涂层、自润滑耐磨材料 (57)摘要 本发明涉及一种用于制备自润滑耐磨材料 的组合物、自润滑耐磨涂料、自润滑耐磨涂层、自 润滑耐磨材料,属于自润滑材料技术领域。本发 明的用于制备自润滑耐磨材料的组合物,主要由 树脂和以下重量份数的组分组成:二硫化钼11~ 12份、石墨烯0.088~0.3份。本发明的组合物,以 二硫化钼为润滑剂,以石墨烯作为润滑添加剂, 利用二硫化钼和石墨烯二维层状结构的相似性, 将两者按照特定比例与树脂进行复合制成耐磨 材料可以发挥二硫化钼和石墨烯的协同润滑效 应,使耐磨材料的耐磨性能和自润滑性能得到显 著提高;尤其是采用本发明的组合物制得的自润 滑减摩耐磨涂层在干摩擦和海水条件下均具有 良好的润滑减摩、 耐磨和环境自适应性能。权利要求书1页 说明书7页 附图2页CN 110016277 A 2019.07.16 C N 110016277 A

权 利 要 求 书1/1页CN 110016277 A 1.一种用于制备自润滑耐磨材料的组合物,其特征在于:主要由树脂和以下重量份数的组分组成:二硫化钼11~12份、石墨烯0.088~0.3份。 2.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述树脂与二硫化钼的质量比为2~3:1。 3.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述石墨烯的平均粒径为0.5~2μm。 4.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述石墨烯的平均层数为5~7层。 5.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述二硫化钼的平均粒径为10~20μm。 6.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述组合物还包括溶剂;所述溶剂与树脂的质量比为1:1~2.5。 7.一种自润滑耐磨涂料,其特征在于:包括组分A和组分B;所述组分A为如权利要求1所述的用于制备自润滑耐磨材料的组合物;所述组分B包括固化剂。 8.一种采用如权利要求7所述的自润滑耐磨涂料制得的自润滑耐磨涂层。 9.根据权利要求8所述的自润滑耐磨涂层,其特征在于:所述自润滑耐磨涂层的厚度为20~30μm。 10.一种自润滑耐磨材料,其特征在于:包括基体以及涂覆在基体上的自润滑耐磨涂层;所述自润滑耐磨涂层是将如权利要求7所述的自润滑耐磨涂料的组分A与组分B混合后涂覆在基体上固化得到。 2

金属粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能一、GB/T14667.1-93 二、MPIF-35

烧结铁和烧结碳钢的化学成分 (%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲ 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。烧结铁-铜合金和烧结铜钢的化学 成分(%). 材料牌 号 Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-0208 93.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成 分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为 了特殊目的而添加的其它元素)总量 的最大值为2.0%

相关主题
文本预览
相关文档 最新文档