当前位置:文档之家› 大学物理实验---液晶光阀

大学物理实验---液晶光阀

大学物理实验---液晶光阀
大学物理实验---液晶光阀

大学物理实验报告及答案

(此文档为word格式,下载后您可任意编辑修改!) 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的(1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 U 实验方法原理根据欧姆定律,R =,如测得U 和I 则可计算出R。值得注意的是,本实验待测电阻有两只, I 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置待测电阻两只,0~5mA 电流表1 只,0-5V 电压表1 只,0~50mA 电流表1 只,0~10V 电压表一只,滑线变阻器1 只,DF1730SB3A 稳压源1 台。 实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学生参照第2 章中的第2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录U 值和I 值。对每一个电阻测量3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由?U =U max ×1.5% ,得到?U 1 = 0.15V,?U2 = 0.075V ; (2) 由?I = I max ×1.5% ,得到?I 1 = 0.075mA,?I 2 = 0.75mA; (3) 再由u= R ( ?U )2 + ( ?I ) 2 ,求得u= 9 ×101?, u= 1?; R 3V 3I R1 R2 (4) 结果表示R1 = (2.92 ± 0.09) ×10光栅衍射实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。?, R 2 = (44 ±1)? (3) 观测汞灯在可见光范围内几条光谱线的波长实验方法原理

大学物理实验答案.doc

实验7 分光计的调整与使用 ★1、本实验所用分光计测量角度的精度是多少?仪器为什么设两个游标?如何测量望远镜转过的角度? 本实验所用分光计测量角度的精度是:1'。为了消除因刻度盘和游标盘不共轴所引起的偏心误差,所以仪器设两个游标。望远镜从位置Ⅰ到位置Ⅱ所转过的角度为2 )_()('1'212?????+-= ,注:如越过刻度零点,则必须按式)(120360??--来计算望远镜的转角。 ★2、假设望远镜光轴已垂直于仪器转轴,而平面镜反射面和仪器转轴成一角度β,则反射的小十字像和平面镜转过1800后反射的小十字像的位置应是怎样的?此时应如何调节?试画出光路图。 反射的小十字像和平面镜转过180o 后反射的小十字像的位置是一上一下,此时应该载物台下螺钉,直到两镜面反射的十字像等高,才表明载物台已调好。光路图如下: ★3、对分光计的调节要求是什么?如何判断调节达到要求?怎样才能调节好? 调节要求:①望远镜、平行光管的光轴均垂直于仪器中心转轴;②望远镜对平行光聚焦(即望远调焦于无穷远);③平行光管出射平行光;④待测光学元件光学面与中心转轴平行。 判断调节达到要求的标志是:①望远镜对平行光聚焦的判定标志;②望远镜光轴与分光计中心转轴垂直的判定标志;③平行光管出射平行光的判定标志;④平行光管光轴与望远镜光轴共线并与分光计中心轴垂直的判定标志。 调节方法:①先进行目测粗调;②进行精细调节:分别用自准直法和各半调节法进行调节。 4、在分光计调节使用过程中,要注意什么事项? ①当轻轻推动分光计的可转动部件时,当无法转动时,切记不能强制使其转动,应分析原因后再进行调节。旋转各旋钮时动作应轻缓。②严禁用手触摸棱镜、平面镜和望远镜、平行光管上各透镜的光学表面,严防棱镜和平面镜磕碰或跌落。③转动望远镜时,要握住支臂转动望远镜,切忌握住目镜和目镜调节手轮转动望远镜。④望远镜调节好后不能再动其仰角螺钉。 5、测棱镜顶角还可以使用自准法,当入射光的平行度较差时,用哪种方法测顶角误差较小? ?2 1=A 的成立条件是入射光是平行的,当入射光的平行度较差时,此公式已不再适用,应用自准直法测三棱镜的顶角,用公式?-=1800 A 来计算,误差较小。

地球物理测井课程实验报告

《地球物理测井》课程实验报告 院系:地球科学与工程学院 班级:地质1401 姓名:周天宇 学号: 0130 指导老师:赵军龙 2016年11月9日

1、课程实验的目的 《地球物理测井》课程安排8个学时的上机实验,使学生了解测井数据基本格式、测井曲线基本类型、学会用有关专业软件绘制测井综合曲线图;就实际资料开展岩性、物性及含油气性定性分析,从而为测井资料定量处理奠定基础。 2、课程实验主要内容 常规测井曲线类型 常规测井曲线类型包括:岩性测井系列(包括自然电位、自然伽马、井径测井),孔隙度测井系列(包括声波时差测井、密度测井、中子测井)和电阻率测井系列(包括深中浅探测的普通视电阻率测井、侧向测井以及感应测井等)。 测井资料定性分析方法 1.对于岩性分析,可以根据“表格1”来进行 表格 1 主要岩石的岩性分析测井特征 2.对于砂岩段的物性分析 ⑴声波时差测井值越大,密度测井值越小,中子测井值越大,则物性越好即砂岩的空隙度越发育;(2)如果AC、CNL、DEN变化幅度比较大,则该砂岩段物性不均匀;(3)如果下层物性比上层物性好,则该砂岩段为正韵律地层;(4)如果GR值与AC值增大,则此处为泥质夹层;如果AC值减小且AT值增大,则此处为物性夹层;如果GR值减小,AC值增大,AT 值增大,则此处含钙质夹层;(5)泥岩的声波时差约为280μs/m,泥质砂岩的声波时差约为177μs/m,渗透砂岩的声波时差为400-220μs/m。 3.含油气性分析 在已找到物性较好的砂岩段进行分析,并结合深中浅感应测井和电阻率测井曲线的变化:一般来说,含油砂岩段的电阻率值会明显增大。 测井综合曲线图模板的生成及测井数据的加载

液晶光阀试验报告电子版

液晶光阀试验报告 04级11系姓名:徐文松学号:PB04210414 日期:2006.03.31 CONTENTS OF THIS REPORT (Click while press CTRL to locate it) 实验名称 实验目的 实验原理 数据处理 实验讨论 思考题 实验名称return 液晶光阀特性研究 实验目的return 在大背景的情况下,从基本原理的角度出发, 测量相关曲线,理解并解释相关现象。 实验原理return 1.液晶 液晶光阀中的关键部分液晶是一种高分子化合物,其物理特性介于固体和液体之间。当液晶分子在取向膜层的影响下有序排列表现出的各向异性,又导致电、磁、光、力的各向异性。由于液晶分子之间的相互作用远低于固体分子之间的相互作用力,所以液晶的各向异性在外场作用下会发生显著变化。 2.偏振分光棱镜 由于s光和p光在某种晶体中折射率不同,因此 可以找到一个入射角,使之满足布儒斯特角条件,在 这样一个条件下,激光由棱镜左侧入射后,在右侧透 射的光为p分量光,在侧面反射的光为s分量光。这

样就实现了偏振分光。 3.液晶光阀 本实验中的液晶主要是向列型液晶,光通过液晶层时发生双折射效应,反射回来的各种不同的椭圆偏振光。液晶层两侧加一定电压,液晶的方向矢向电场方向偏转,从而改变双折射效应。液晶光阀工作时,光导层9在外加写入光时电阻率急剧下降,隔光层8分离写入光与读出光。在无写入光时,光导层电阻率高,电压几乎加在光导层上,液晶层上电压降很小,这时液晶对光的调制作用维持原来的状态;当有写入光时(如一光点照在液晶光阀的某一表面位置),光导电阻急剧下降,于是液晶层上电压迅速增大,使液晶光轴方向发生偏转,从而改变双折射效应。 4.光路图

卤族元素实验报告

卤族元素性质 复习重点 1。卤素单质在物理性质和化学性质上的主要差异及递变规律; 2。卤族元素的化合物性 质的递变性; 3。卤化银的性质、用途及碘与人体健康的关系。 4。重点考查卤素性质的变化规律。 1。 氯气 [氯气的物理性质] (1)常温下,氯气为黄绿色气体。加压或降温后液化为液氯,进一步加压或降温则变 成固态氯。(2)常温下,氯气可溶于水(1体积水溶解2体积氯气)。 (3)氯气有毒并具有强烈的刺激性,吸入少量会引起胸部疼痛和咳嗽,吸入大量则会 中毒死亡。因此,实验室闻氯气气味的正确方法为:用手在瓶口轻轻扇动,仅使少量的氯气 飘进鼻孔。 [氯气的化学性质] 氯原子在化学反应中很容易获得1个电子。所以,氯气的化学性质非常活泼,是一种强 氧化剂。(1)与金属反应:cu + c12 cucl2 ? 实验现象:铜在氯气中剧烈燃烧,集气瓶中充满了棕黄色的烟。一段时间后,集气瓶 内壁附着有棕黄色的固体粉末。向集气瓶内加入少量蒸馏水,棕黄色固体粉末溶解并形成绿 色溶液,继续加水,溶液变成蓝色。 2na + cl 2 2nacl 实验现象:有白烟产生。 说明:①在点燃或灼热的条件下,金属都能与氯气反应生成相应的金属氯化物。其中, 变价金属如(cu、fe)与氯气反应时呈现高价态(分别生成cucl2、fecl3)。 ②在常温、常压下,干燥的氯气不能与铁发生反应,故可用钢瓶储存、运输液氯。 ③“烟”是固体小颗粒分散到空气中形成的物质。如铜在氯气中燃烧,产生的棕黄色的 烟为cucl2晶体小颗粒;钠在氯气中燃烧,产生的白烟为nacl晶体小颗粒;等等。 (2)与氢气反应。h2 + cl2 2hcl 注意:①在不同的条件下,h2与c12均可发生反应,但反应条件不同,反应的现象也不 同。点燃时,纯净的h2能在c12中安静地燃烧,发出苍白色的火焰,反应产生的气体在空气 中形成白雾并有小液滴出现;在强光照射下,h2与c12的混合气体发生爆炸。 ②物质的燃烧不一定要有氧气参加。任何发光、发热的剧烈的化学反应,都属于燃烧。 如金属铜、氢气在氯气中燃烧等。 ③“雾”是小液滴悬浮在空气中形成的物质;“烟”是固体小颗粒分散到空气中形成的物 质。要注意“雾”与“烟”的区别。 ④h2与cl2反应生成的hcl气体具有刺激性气味,极易溶于水。hcl的水溶液叫氢氯酸, 俗称盐酸。(3)与水反应。 c12 + h2o =hcl + hclo 离子方程式: cl2 + h2o =h + + cl- + hclo 说明:①c12与h2o的反应是一个c12的自身氧化还原反应。其中,cl2 既是氧化剂又是还原剂,h2o只作反应物。 ②在常温下,1体积水能溶解约2体积的氯气,故新制氯水显黄绿色。同时,溶解于水 中的部分c12与h2o反应生成hcl和hclo,因此,新制氯水是一种含有三种分子(c12、hclo、 h2o)和四种离子(h+、cl-、clo-和水电离产生的少量oh-)的混合物。所以,新制氯 水具有下列性质:酸性(h+),漂白作用(含hclo),cl-的性质,c12的性质。

大学物理实验内容

物理实验教程 3.2 钢丝杨氏模量的测定 3.5 固体的导热系数的测定 3.8 惠更斯电桥 3.14 示波器的使用 3.15 霍尔效应的应用 3.17 分光计的调节和使用 3.19 等厚干涉的应用 407宿舍

3.2钢丝杨氏模量的测定 【实验目的】 1.了解静态拉伸法测杨氏模量的方法 2.掌握光杠杆放大法测微小长度变化的原理和方法 3.学会用逐差法处理数据 【实验内容与步骤】 1.用拉伸法测钢丝的杨氏模量 1.1 调整杨氏模量测定仪 调节杨氏模量测定仪的底脚调整螺钉,使立柱铅直。调节平台的上下位置,使随钢丝伸长的夹具B 上端与沟槽在同一水平面上(为什么?)。加1Kg 砝码在砝码托盘上,将钢丝拉直,检查夹具B 是否能在平台的孔中上下自由地滑动,钢丝是否被上下夹子夹紧. 1.2 调整光杠杆镜尺组 光杠杆后两足置于沟槽内,前足置于夹具B 上,让平面镜竖直,镜尺组安放在光杠杆正前方约1.2m 处,并尽量使望远镜水平并与光杠杆镜面同高,标尺竖直。 调节望远镜(移动或转动望远镜支架)使得从望远镜上方沿镜筒轴线方向在平面镜中能看到标尺的像,调节望远镜的目镜,看清镜筒内的十字叉丝,调节望远镜的调焦旋钮,使标尺的像清晰并无视差。 仔细调节光杠杆,使与望远镜同高的标尺刻度像与十字叉丝的横叉丝重合。(为什么?) 1.3 测量n ? 轻轻的依次将1Kg 的砝码加到砝码托盘上(砝码托自重不计),记录不同力作用下望远镜中标尺读数'i n (共6次),然后将砝码再依次轻轻取下,再记录不同力作用下标尺读数" i n ,两次读数的平均值作为不同力作用下标尺的读数i n ,用逐差法求n ? 注意:测量时应随时注意检查和判断测量数据的合理性;加砝码时勿使砝码托摆动,并将砝码缺口交叉放置,以免倒落。 1.4 测L 、D 用钢卷尺测量光杠杆镜面到标尺的距离D 和上下夹具之间钢丝的长度L 。 1.5 测 b 用印迹法(即将光杠杆拿下放在纸上压出三个脚尖的迹点)测出光杠杆前足到后两足连线的垂直距离b 。 1.6 用螺旋测微计测量钢丝的直径d,选择上中下三处,每处都要在互相垂直方向上各测一次,

大学物理实验:光的干涉

4.11光的干涉—-牛顿环 要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠起来。由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。获得相干光方法有两种。一种叫分波阵面法,另一种叫分振幅法。 牛顿环是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现,所以叫牛顿环。在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。 【实验目的】 1. 通过实验加深对等厚干涉的理解。 2. 学会使用读数显微镜并通过牛顿环测量透镜的曲率半径。 3. 学会使用读数显微镜测距。 4. 学会用图解法和逐差法处理数据。 【实验仪器】 读数显微镜,牛顿环仪,钠光灯。 【实验原理】牛顿环仪是由曲率半径 较大的平凸透镜L 和磨光的平玻璃板 P 叠和装在金属框架F 中构成,如图 4-11-1所示。框架边上有三个螺旋H 用来调节L 和P 之间的接触,以改变 干涉条纹的形状和位置。调节H 螺旋不可旋得过紧,以免接触压力过 大引起透镜弹性形变,甚至损坏透镜。 1114--图F

如图4-11-2所示平凸透镜的凸面与玻璃平板之间的空气 层厚度从中心到边缘逐渐增加,若以平行单色光垂直照射到 牛顿环上,则经空气层上、下表面反射的二光束存在光程差, 它们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到 的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环 (如图4-11-3所示),称为牛顿环。由于同一干涉环上各处 的空气层厚度是相同的,因此它属于等厚干涉。??? ?? 由图4-11-2可见,如设透镜的曲率半径为R,与接触点 O相距为r处空气层的厚度为d,其几何关系式为: 222)(r d R R +-= 2222r d Rd R ++-= 由于R>>d,可以略去d 2得 R r d 22= (4-11-1) ?? 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃板 上反射会有半波损失,从而带来λ/2的附加光程差,所以总光程差 为 ?? 22λ+ =?d (4-11-2) 产生暗环的条件是: ? ?=(2k+1)2λ (4-11-3) 其中k=0,1,2,3,...为干涉暗条纹的级数。综合(4-11-1)、(4-11-2)和(4-11-3)式可得第k级暗环的半径为: ?? λkR r k =2 (4-11-4) 由(4-11-4)式可知,如果单色光源的波长λ已知,测出第m级的暗环半径rm ,即可得出平凸透镜的曲率半径R;反之,如果R已知,测出rm 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层中有了尘埃,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环的半径rm 和rn 的平方差来计算曲率半径R。 因为?? rm 2=mRλ , rn 2=nRλ 两式相减可得?? λ)(22n m R r r n m -=- 所以?? λ)(2 2n m r r R n m --=或λ)(42 2n m D D R n m --= (4-11-5) 图4-11-3

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

大学物理实验 光的偏振

实验27 光的偏振 一、实验目的 1、观察光的偏振现象,加深对光的偏振的理解。 2、了解偏振光的产生及其检验方法。 3、观测布儒斯特角,测定玻璃折射率。 4、观测椭圆偏振光与圆偏振光。 5、了解1/2波片和1/4波片的用途。 二、实验原理 1、光的偏振状态 光是电磁波,它是横波。通常用电矢量E表示光波的振动矢量。 (1)自然光其电矢量在垂直于传播方向的平面内任意取向,各个方向的取向概率相等,所以在相当长的时间里(10-5秒已足够了),各取向上电矢量的时间平均值是相等的,这样的光称为自然光,如图27-l所示。 (2)平面偏振光电矢量只限于某一确定方向的光,因其电矢量和光线构成一个平面而称其为平面偏振光。如果迎着光线看,电矢量末端的轨迹为一直线,所以平面偏振光也称为线偏振光,如图27-2所示。 (3)部分偏振光电矢量在某一确定方向上较强,而在和它正交的方向上较弱,这种光称为部分偏振光,如图27-3所示。部分偏振光可以看成是线偏振光和自然光的混合。 (4)椭圆偏振光迎着光线看,如果电矢量末端的轨迹为一椭圆,这样的光称为椭圆偏振光。椭圆偏振光可以由两个电矢量互相垂直的、有恒定相位差的线偏振光合成得到。 (5)圆偏振光迎着光线看,如果电矢量末端的轨迹为一个圆,则这样的光称为圆偏振光。圆偏振光可视为长、短轴相等的椭圆偏振光。 图27-4 椭圆偏振光

2、布儒斯特定律 反射光的偏振与布儒斯特定律 如图27-5所示,光在两介质(如空气和玻璃片等)界面上,反射光和折射光(透射光)都是部分偏振光。当反射光线与折射光线的夹角恰为90°时,反射光为线偏振光,其电矢量振动方向垂直于入射光线与界面法线所决定的平面(入射面)。此时的透射光中包含平行于入射面的偏振光的全部以及垂直于入射面的偏振光的其余部分,所以透射光仍为部分偏振光。由折射定律很容易导出此时的入射角 α 满足关系 1 2 tan n n = α (27-1) (27-1)式称为布儒斯特定律,入射角 α 称为布儒斯特角,或称为起偏角。若光从空气入射到玻璃(n 2约为1.5),起偏角约56°。 3、偏振片、起偏和检偏、马吕斯定律 (1)由二向色性晶体的选择吸收所产生的偏振 自然光 偏振光 偏振片 P 1P 2 I 0 起偏器 检偏器 自然光 I ' 图a 偏振片起偏 图b 起偏和检偏 图27-6 偏振片 有些晶体(如电气石)、长链分子晶体(如高碘硫酸奎宁),对两个相互垂直振动的电矢量具有不同的吸收本领,这种选择吸收性称为二向色性。在两平板玻璃间,夹一层二向色性很强的物质就制成了偏振片。自然光通过偏振片时,一个方向的电矢量几乎完全通过(该方向称为偏振片的偏振化方向),而与偏振化方向垂直的电矢量则几乎被完全吸收,因此透射光就成为线偏振光。根据这一特性,偏振片既可用来产生偏振光(起偏),也可用于检验光的偏振状态(检偏)。 (2)马吕斯定律 用强度为I 0的线偏振光入射,透过偏振片的光强为I ,则有如下关系 θ 20cos I I = (27-2) (27-2)式称为马吕斯定律。 θ 是入射光的E 矢量振动方向和检偏器偏振化方向之间的夹角。以入射光线为轴转动偏振片,如果透射光强 I 有变化,且转动到某位置时 I =0,则表明入射 光为线偏振光,此时θ =90°。 4、波片 (1)两个互相垂直的、同频率的简谐振动的合成 设有两各互相垂直且同频率的简谐振动,它们的运动方程分别为 )cos() cos(2211?ω?ω+=+=t A y t A x (27-3) 合运动是这两个分运动之和,消去参数t ,得到合运动矢量末端运动轨迹方程为 )(sin )cos(2122 12212 2 2212????-=--+A A xy A y A x (27-4) 上式表明,一般情况下,合振动矢量末端运动轨迹是椭圆,该椭圆在2122A A ?的矩形范围内。如果(27-3)式表示的是两线偏振光,则叠加后一般成为椭圆偏振光。下面讨论相位 差 12???-=?为几种特殊值的情况。 ①当π?k 2=?(k =0, ±1, ±2, …)时,(27-4)式变为

2020年近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修 课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信,

了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。 二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴 尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四﹑液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握

用MATLAB软件和液晶光阀实现傅立叶变换计算全息制作及其再现

用MATLAB 软件和液晶光阀实现傅立叶变换计算全息制作及其再现 姚雪灿 指导教师 阎晓娜 (上海大学理学院物理系,上海 200444) 摘要:利用MATLAB 语言制作了一个迂回相位编码的傅立叶变换全息图,使用电寻址的液晶光阀作为全息图的实时记录介质对得到的傅立叶计算全息图进行光学再现,并对编码过程中加随机相位和不加随机相位后的再现图进行了比较讨论。 关键词:计算全息 傅立叶变换全息 MATLAB 液晶光阀 迂回相位编码 全息制作包括二种方式,光学全息和计算全息。光学全息用光学干涉原理制作,计算全息是用计算机对物波场的数学描述进行抽样、计算、编码而制作。计算全息可以制作已存在物体的全息图,也可以制作不存在物体的全息图,只要物光波场可以用数学描述出来。制作的计算全息图要以适合光学再现的尺寸和方式来输出。由于计算全息图上每个抽样单元的尺寸在微米量级,需要专门的光学缩微照相系统或微光刻系统。在要求较低情况下也可用照相机将显示在计算机屏幕或打印输出的计算全息原图缩拍到高分辨感光胶片上,通过显影、定影等处理得到可用于光学再现的全息图。由于记录介质是照相胶片,这就限制了它在实时处理中的应用。 近年来,随着高分辨电寻址空间光调制器的发展,像元尺寸在微米量级,像素数超过100万的振幅型或相位型空间光调制器已经完全实用化。其中最具代表性的是液晶光阀,电寻址的液晶光阀是由驱动电路驱动的LCD ,根据寻址电信号改变每一液晶像素的透过率,从而把电信号转换成空间的光强分布。液晶光阀可以作为实时的信号处理和显示器件,代替全息干板可进行实现计算全息图的实时输出和再现。 本文提出一种利用电寻址液晶光阀作为实时记录介质的计算机制全息图的产生方法,实验结果证明了这种方法的可行性。 1 用Matlab 软件实现傅立叶变换计算全息图 傅立叶变换全息记录的复数波面是物光波的傅立叶变换。计算傅立叶变换全息图的制作包括:对物光波抽样、离散傅立叶变换、编码、画图、图像的输出。在制作全息图的过程中,编码是最关键的一步,通过编码把二维光场的复振幅分布变换为全息图的二维透过率分布。本文以迂回相位编码来介绍编码过程。 设抽样后物光波的复振幅经过离散傅里叶变换后的频谱分布为复数F(m,n), 记为 F(m,n) = R(m,n)+iI(m,n), F(m,n) = A(m,n)·exp[i φ(m,n)] (1) 其中, A(m,n)和φ(m,n)分别代表全息图上各点的幅值和相位, A(m,n) =),(),(22n m I n m R +, φ(m,n) =arctg[I(m,n)/R(m,n)] (2) 由于光学模板的最大透过率为1,所以在编码前还应对A(m,n)的值进行归一化,使其最大值为 1。假定将物面分为N×N 个抽样单元, 抽样间距为δx 和δy, 其间距要遵循Nyquist 判据。采用罗曼Ⅲ型编码方法,通过改变每个抽样单元内通光孔径的面积来编码振幅,通过改变通光孔径中心与抽样单元中心的位置来编码相位。最后每个像素用一个矩形孔表示,矩形孔的宽度为Wδx, 其中W 为一常数。矩形孔径的高度为Lmnδy,与归一化振幅成正比, Pmnδx 是孔径中心与单元中心的距离,并与抽样点的位相成正比。孔径参数与复值函数的关系如下, mn L =mn A , mn P =mn φ/2πK (3) 经过计算,取W =1/2, K =1。 根据以上二元傅里叶变换全息图的实现原理,采用以下的算法思想在MATLAB 中进行二元傅里叶变换计算全息图的制作,采用罗曼Ⅲ型编码方式且以字母K 为例。其编码如下: b=zeros(128,128); %采样点阵为128X128。 b(8:120,24:40)=1;

大学物理实验实验步骤总结

液体表面张力 1、不加水,调零(-80mv~0mv ) 2、两点定标(定标后不再动“mv ”旋钮):挂上砝码盘(不能使用手,必须用镊子小心挂上)依次加入第一个砝码,记录数据u1,加入第二个砝码,记录数据u2,加入第三个砝码,不用记录数据,取下第三个砝码,待稳定后记录数据u2’,取下第二个砝码,记录数据u1’,取下第一个砝码和砝码盘。 U=FB U 为单个砝码电压:(u1+u1’)/2=u01; (u2+u2’)/2=u02; U=(u02-u01)*10^-3(mv 换算成V) F 为单个砝码重力:F=0.5*10^-3(单个砝码质量,换算成kg )*9.8 B 为仪器灵敏度:B=U/F 3、挂上吊环(吊环应多次调整水平,可利用旋转吊环观察吊环是否水平;用镊子挂上用镊子取下)。在培养皿中装上水,培养皿先擦干净后,装水并保证培养皿外表面没有水。吊环下沿应完全浸没(浸没1mm 左右即保证完全浸没)。转动放置培养皿转台下部的升降螺丝,将吊环拉离水面,此时,观察环浸入液体中及从液体中拉起时的电压值,记录即将脱离水面的最大电压值U1,吊环完全脱离水面悬空后的电压值U2(U1,U2测量过程中若未观察到最大值可重复试验直到测量到为止;U1-U2约为40~60) B D D U U )(212 1+-= πσ σ为所求表面张力系数。 4、仪器整理:除了培养皿内表面可以有水外其他地方都不能有水,吊环、砝码盘、砝码需擦干后放入盒内,关闭电源,仪器归位摆放整齐。 电子示波器的调节和使用 1、开机找亮点(三个信号都断开):内部信号(TIME/DIV )关闭(逆时针旋转到底);5个小旋钮所有缺口竖直向上;SOURCE 打到CH1/CH2;MODE 打到AUTO ;按下交替出发(TRIG.ALT );断开外接信号(CH1/CH2都打到GND );灰度关到最小(逆时针旋转到底)。开机,灰度顺时针旋转到最大,屏幕中心出现亮点。 2、调节直线(接通CH1/CH2):打开函数发生器,将CH2调节到SIN 正弦信号。(函数发生器显示屏幕下方的蓝色按钮对应屏幕上对应符号,调节频率在数字键盘上按键,左右按键可调节光标位置)。(默认频率CH1为1CH2为1.5) 调出水平有限线段(接通CH1):接通函数发生器上的CH1信号;示波器上CH1打到AD/DC ;MODE (示波器面板下方中间)打到CH1;内部信号关掉(TIME/DIV 逆时针旋转到底)。此时屏幕出现水平线段,按指定要求调节到指定长度(双色旋钮和左右按键合作调节)。 调出竖直有限线段(接通CH2):接通函数发生器上的CH2信号;示波器上CH2打到AD/DC ;MODE (示波器面板下方中间)打到CH2;内部信号关掉(TIME/DIV 逆时针旋转到底)。此时屏幕出现竖直线段,按指定要求调节到指定长度(双色旋钮和左右按键合作调节)。 3、调出正弦波型(接通内部信号+CH1/CH2) 调出通道1的正弦波型(CH1+内部信号):函数发生器上CH1选择SIN 波型,并打开CH1信号;示波器上CH1打到AD/DC ;MODE 打到CH1;内部信号打开(TIME/DIV 顺时针旋转到底)。此时屏幕上出现通道1的正弦波型,通过调节左右旋钮和SWP.V AR 旋钮调整出指定完整波形个数。 调出通道2的正弦波型(CH2+内部信号):函数发生器上CH2选择SIN 波型,关闭CH1信号并打开CH2信号;示波器上CH2打到AD/DC ;MODE 打到CH2;内部信号打开

液晶物性实验报告

液晶物性实验报告 摘要 本实验主要是对液晶的基本物理性质进行探究。在实验中测量了透过液晶盒的光强随入射光偏振方向与液晶分子主方向间角度的变化,了解了双折射效应的机制;观察液晶盒的旋光效应,测量出液晶盒的扭曲角为120度;分别测量了液晶在常黑模式和常白模式下响应时间;观察了液晶的衍射现象;并在常黑模式下设计测量了对应升压和降压过程的电光响应曲线。 关键词 液晶物性、电光效应、响应时间、液晶衍射 引言 19世纪末奥地利植物学家莱尼兹尔在测定有机化合物熔点时发现了液晶。到了20世纪20年代随着更多液晶材料的发现及技术的发展,人们对液晶进行了系统深入的研究,并将液晶分类。30年代到50年代人们对液晶的各向异性、液晶材料的电光效应等进行深入的研究。到了60年代液晶步入了使用研究阶段。自1968年海尔曼等人研制出世界上第一台液晶显示器以来,在四十年的时间里,液晶显示器以由最初在手表、计算器等“小、中型”显示器发展到各种办公自动化设备、高清晰的大容量平板显示器领域。 本实验通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。 实验原理 液晶态与普通的物质三态不同,不是所有的物质都具有这种性质。那些有较大的分子且分子的形状是杆状的物质容易形成液晶。对由杆状分子形成的液晶,根据分子排列的平移和取向的有序性可以分成三类:近晶相,向列相,胆缁相。 近晶相:分子排成层,层内分子平行排列,既有取向有序性又有重心平移周期性。 向列相:液晶分子保持平行排列状态,但分子重心混乱无序。 胆缁相:分子排列成层,层内分子取向有序,但不同层分子取向稍有变化,沿层的法线方向排列成螺旋结构。 1、液晶的介电各向异性 当外电场平行于或者垂直于分子长轴时,分子极化率不同表示为α、α⊥。当一个任意取向的分子被外电场极化时,由于α、α⊥的区别,造成分子感生电极矩的方向和外电场的方向不同,从而使分子发生转动。如果考虑到液晶内各个分子之间的相互作用以及分子与基片表面的作用,旋转将引起类似于弹性恢复力造成的反方向力矩,使得分子在转动一个角度后不再转动。因此产生电场对液晶分子的取向作用。

光寻址及电寻址液晶光阀实验报告模板(知识学习)

实验报告 课程名称: 光信息综合实验 课程代码: 11120090 学年: 2013-2014 学期: 秋冬 指导老师: 林远芳 实验名称: 光寻址及电寻址液晶光阀实验 实验类型:综合型 成绩:___ ____ 一、实验目的 1、了解光寻址及电寻址液晶光阀的工作原理和使用方法;加深对液晶的电光效应的理解。 2、掌握采用光寻址液晶光阀实现非相干光——相干光图像转换和图像反转的工作原理和方法。 3、掌握应用光寻址液晶光阀进行光学图像实时相减和实时微分的方法,加深对光学图像实时处理的理解。 4、掌握利用电寻址液晶光阀的响应曲线进行图像反转和图像边缘增强的工作原理及方法。 5、了解全息原理和计算全息的特性并学会进行全息图的光学再现。 二、实验原理 1. 光寻址液晶光阀的工作曲线 (1) 按照液晶光阀的工作原理,也可以从电学特性的角度考虑,将液晶层、介质高反膜、光阻隔层和光导层都相应地看作电阻和电容的组合,从而得出结论:LCLV 不能在直流状态下工作,也不能在高频状态下工作,对于一个特定的光阀而言,存在一个最佳工作点。 (2) 实验表明,液晶光阀的读出光与写入光,即输出光强与输入光强有关,在一定的输入光强范围内,输出光强与输入光强呈线性关系。 (3) 称无写入光时液晶光阀的输出光强与液晶光阀上所加的驱动电压的关系曲线为液晶光阀的工作曲线,该曲线存在多峰,输出光强在驱动电压取得某些值时出现极小值;而取另外一些值时,输出光强出现极大值。极小值处为正像工作点,极大值处为负像工作点,在做图像反转实验时。为了使正负图像对比度最好,可以选取极大值、极小值处为图像反转实验的工作点。 2. 光学图像的实时微分、相减原理 La —He-Ne 激光器,L1—扩束镜, L2—准直透镜,PBS —偏振分光棱镜 LCLV —液晶光阀,L3-成像透镜,物—图象透明片,S —观测屏,Lamp —卤钨灯 (1) 通常液晶光阀的读出光强与输入光强不是单值对应的。 (2) 利用液晶区域的这种非线性输入输出特性,可以实现图像的微分处理,获得图像的实时边缘增强,通过调整液晶光阀的驱动电压、驱动频率和入射偏振方向,能达到最佳的增强效果。 (3) 右光路中放置有λ/4波片,两图像在输出面上叠加时,相互间存在相位差,适当旋转λ/4波片,两图像在输出面叠加的结果,可以得到一个强度正比于输出图像之差的处理图像。该图像重叠在强度恒定的背景上, Lamp 物1 L 3 LCLV PBS L 2 L1 La 物2 λ/4 接收屏 姓名: 王加琪 学号: 3100102617 日期: 地点: 玉泉校区教三209-211

大学物理实验课后答案

(1)利用f=(D+d)(D-d)/4D 测量凸透镜焦距有什么优点? 答这种方法可以避免透镜光心位置的不确定而带来的测量物距和像距的误差。 (2)为什么在本实验中利用1/u+1/v=1/f 测焦距时,测量u和v都用毫米刻度的米尺就可以满足要求?设透镜由于色差和非近轴光线引起的误差是1%。 答设物距为20cm,毫米刻度尺带来的最大误差为0.5mm,其相对误差为 0.25%,故没必要用更高精度的仪器。 (3)如果测得多组u,v值,然后以u+v为纵轴,以uv为横轴,作出实验的曲线属于什么类型,如何利用曲线求出透镜的焦距f。 答直线;1/f为直线的斜率。 (4)试证:在位移法中,为什么物屏与像屏的间距D要略大于4f? 由f=(D+d)(D-d)/4D → D2-4Df=d2→ D(D-4f)=d2 因为d>0 and D>0 故D>4f 1.避免测量u、ν的值时,难于找准透镜光心位置所造成的误差。 2.因为实验中,侧的值u、ν、f都相对较大,为十几厘米到几十厘米左右,而误差为1%,即一毫米到几毫米之间,所以可以满足要求。 3.曲线为曲线型曲线。透镜的焦距为基斜率的倒数。 ①当缝宽增加一倍时,衍射光样的光强和条纹宽度将会怎样变化?如缝宽减半,又怎样改变? 答: a增大一倍时, 光强度↑;由a=Lλ/b ,b减小一半 a减小一半时, 光强度↓;由a=Lλ/b ,b增大一倍。 ②激光输出的光强如有变动,对单缝衍射图象和光强分布曲线有无影响?有何影响? 答:由b=Lλ/a.无论光强如何变化,只要缝宽不变,L不变,则衍射图象的光强分布曲线不变 (条纹间距b不变);整体光强度↑或者↓。 ③用实验中所应用的方法是否可测量细丝直径?其原理和方法如何? 答:可以,原理和方法与测单狭缝同。 ④本实验中,λ=632。8nm,缝宽约为5*10^-3㎝,屏距L为50㎝。试验证: 是否满足夫朗和费衍射条件? 答:依题意: Lλ=(50*10^-2)*(632.8*10^-9)=3.164*10^-7 a^2/8=(5*10^-5)^2/8=3.1*10^-10 所以Lλ<

液晶物性实验报告资料

液晶物性 【摘要】本实验主要观察了液晶盒的旋光现象、双折射现象、衍射现象和电光效应。先在不加电压的情况下,观测液晶盒的旋光性和双折射现象。在对液晶盒加电压观察响应时间和响应曲线,最后观察液晶盒的衍射现象并计算光栅常数。通过对液晶这些现象的观察,了解液晶在电场作用下的变化,及液晶盒的性质。 关键词:液晶、双折射、旋光性、电光效应、衍射 一、引言 1888年,奥地利布拉格德国大学的植物生理学家莱尼茨尔在测定有机化合物熔点时,观察到胆甾醇苯酸酯(简称CB )在热熔时的特殊性质。它在145.5℃(熔点)时熔化成浑浊的液体,温度升到178.5℃(清亮点)后,浑浊的液体会突然变成各向同性的清亮的液体。在熔点和清亮点之间的温度范围内,CB 处于不同于各向同性液体的中介相。莱尼茨尔将这一现象告诉德国物理学家莱曼。经过系统研究,莱曼发现物质在中介相具有强烈的各向异性物理特征,同时又具有普通流体那样的流动性。因此这种中介相被称为液晶相,可以出现液晶相的物质被称为液晶。本实验主要观察了液晶盒的旋光现象、双折射现象、衍射现象和电光效应。先在不加电压的情况下,观测液晶盒的旋光性和双折射现象。 二、实验原理 1.液晶形态与组成结构 液晶态不是所有物质都具有的,只有分子量较大、分子成杆状(轴宽比在4:1~8:1)的物质比较容易具有液晶态。液晶可根据分子排列的平移和取向分为三大类:近晶相、向列相、胆甾相。 图1 液晶分子的三种不同排列方式 2.液晶的介电各向异性 液晶的各向异性是决定液晶分子在电场中行为的主要参数。若用//ε、⊥ε分别表示液晶

平行、垂直于分子取向的介电常数,介电各向异性可用

相关主题
文本预览
相关文档 最新文档