当前位置:文档之家› 【混凝土】温控措施

【混凝土】温控措施

【混凝土】温控措施
【混凝土】温控措施

混凝土温度控制

1概述

温控措施要求

(2) 常温混凝土为低温季节不采用预冷措施拌制的自然温度混凝土,也称自然入仓温度混凝土;预冷混凝土为高温季节或较高温季节采用预冷措施拌制的低温混凝土。

(3)应根据混凝土施工配合比、气温资料、施工方法等及设计允许最高温度推算出浇筑块所需的浇筑温度及出机口温度,并建立相应的关系,报监理人审批后执行。4月及10月浇筑贴坡混凝土时,混凝土出机口温度需达到7~10℃,混凝土浇筑温度控制在12~14℃。

(4) 为减少预冷混凝土温度回升,应严格控制混凝土运输时间和仓面浇筑坯覆盖前的暴露时间,混凝土运输机具应加保温设施,并减少转运次数,使预冷混凝土自出机口至仓面浇筑坯被覆盖前的温度满足浇筑温度要求。

15.14.5.3 合理的层厚及间歇期

(1)混凝土浇筑分层按设计要求进行,贴坡混凝土浇筑层厚一般采用 1.5~2m,加高混凝土浇筑层厚采用2~3m。若需变动,应经监理人书面批准。

(2) 大体积混凝土层间间歇应满足表15-7的要求,墩、墙浇筑层厚3~4m

,层间间歇时间4~9天。

表15-7 大体积混凝土浇筑层间间歇时间单位:天

注:低温季节浇筑取下限值。

(3)应在混凝土浇筑前按施工进度要求和有关层厚及间歇期要求,规划好各部位混凝土浇筑具体层厚及间歇期。

(4) 对施工计划中预计为长间歇停浇面,应在仓面布设防裂钢筋。

15.14.5.4 合理的施工程序和进度

主体建筑物施工程序和进度安排,应满足以下几点要求:

(1) 混凝土在设计规定的间歇期内连续均匀上升,不得出现薄层长间歇。

(2) 贴坡混凝土安排在10月至次年4月施工。

(3) 贴坡混凝土相邻坝段之间高差不宜大于4~6m。

15.14.5.5 混凝土表面保护

(1) 大体积混凝土温控防裂满足以上温控要求外,还应满足表面保护要求。

(2) 应根据设计表面保护标准确定不同部位、不同条件的表面保温要求。尤其应重视基础约束区,贴坡部位及其它重要结构部位的表面保护。应重视防止气温骤降及寒潮的冲击。所有混凝土工程在最终验收之前,还必须加以维护及保护,以防损坏。浇筑块的棱角和突出部分应加强保护。

各部位主要保温要求如下:

1) 保温材料:保温材料应选择保温效果好且便于施工的材料,保温后表面等效放热系数:一般部位混凝土β≤2.0~3.0w/m2·℃;对永久暴露面、棱角部位、溢流面、闸墩等重要部位β≤1.5~2.0w/m2·℃。

2) 对于除过流部位之外的新浇混凝土上、下游永久暴露面,浇完拆模后立即设施工期的永久保温层。施工期的永久保温指保温至本标工程完工前。β值取15.14.5.5(2) 1)中下限值。

3) 每年入秋(9月底),应将竖井、廊道及其他所有孔洞进出口进行封堵。

4) 当日平均气温在2~3天内连续下降超过(含等于)6℃时,28天龄期内混凝土表面(顶、侧面)必须进行表面保温保护。β值取15.14.5.5(2) 1)中上限值。

5) 低温季节如拆模后混凝土表面温降可能超过6~9℃以及气温

骤降期间,须在拆模后立即采取表面保护措施。

6) 当气温降到冰点以下,龄期短于7天的混凝土应覆盖满足要求

的保温材料作为临时保护层。

7)应采用耐久性较好的保温材料作为施工期的永久性保温措施。

8)应在投标文件中,作出详细的保温设计。在混凝土开始浇筑前,

应将选用的保温材料、保温措施报监理人批准。

15.14.5.6 其它

(1) 所有混凝土冬季浇筑时浇筑温度不得低于5℃。当外界气温低于低温季节标准时,应采取有效措施满足冬季混凝土施工要求。

(2) 各部位混凝土浇筑时,如果已入仓的混凝土浇筑温度不能满足有关要求时,应立即通知监理人,根据监理人指示进行处理,并立即采取有效措施控制混凝土浇筑温度。

15.14.6 通水冷却

15.14.6.1 一般要求

在混凝土浇筑前2个月应制订通水冷却有关材料、管道安装及埋

设系统配制、施工工艺等报监理人审批;在每年6月份以前将本年9

月至次年3月的中、后期通水冷却供水总、干管布置设计文件及冷却

通水计划等报监理人审批。

15.14.6.2 冷却水管布置

(1) 埋设部位:需要进行接缝灌浆的临时施工缝两侧坝体部位、

大坝所有贴坡混凝土部位以及有中期通水冷却要求的加高部位均需

埋设冷却水管,冷却水管采用1英寸(直径2.54cm)黑铁管,也可采用

塑料、高密聚乙烯类管材。

(2) 承包人应在各仓冷却水管埋设前2个月向监理人递交冷却水管、供水管的材料类型、制造厂家及各仓冷却水管埋设图等资料报监理人批准后执行。冷却水管埋设时应作好施工记录。

(3) 冷却水管及供水管的规格、类型、间距长度等应满足坝体设计最高允许温度、填塘陡坡通水降温及坝体初、中、后期通水降温各项要求,并报监理人批准。

(4) 冷却水管的布置要求

1) 供水管按两套布置,在坝外布置进回水交换设施,以满足通水冷却的要求,制冷水应考虑回收。

2) 供水管布置应自成系统,冷却通水供水管的布置应尽可能利用现有的廊道布置,避免相互干扰,如现场施工条件限制需要穿过其它标段时,承包人应采取一定的措施减少相互之间的干扰,承包各方应相互理解、相互配合,如引起纠纷由监理人协商解决。

3) 贴坡部位的蛇形水管一般按1.5m(浇筑层厚)×2.0m(水管间距)或者 2.0m(浇筑层厚)×1.5m(水管间距)布置,埋设时要求水管距上游老混凝土1.0m、距下游坝面2.5m~3.0m,水管距接缝面、坝内孔洞周边1.0~1.5m。对仅有中期通水的大坝加高混凝土,蛇形水管一般按 2.0m(浇筑层厚)×2.0m(水管间距)布置,埋设时要求距接缝面、坝内孔洞周边的距离与贴坡部位埋设的蛇形水管相同,距上游面2.0m~2.5m,距坝顶的距离控制在3~5m,通水单根水管长度不宜大于250m。坝内蛇形水管按接缝灌浆分区范围结合坝体通水计划就近引入廊道。引入廊道的水管应排列有序,作好标记记录。应注意引入廊道的水管布置不得过于集中,以免混凝土局部超冷,引入廊道的水管间距一般不小于1m、距廊道底板50~100cm。管口应朝下弯,管口长度不应小于15cm,并对管口妥善保护,防止堵塞。

(5) 采用黑铁管作冷却水管时宜预先加工成弯管段和直管段两部分,在仓内拼装成蛇形管圈。埋设的冷却水管不能堵塞,并应固定和清除表面的鳞锈、油漆和油渍等物。管道的连接可用丝扣、法兰、焊接等方法,并应确保接头连接牢固,不得漏水。混凝土浇筑前和在

浇筑过程中应对已安装好的冷却水管各进行一次通水检查,通水压力0.3~0.4MPa,如发现堵塞及漏水现象,应立即处理。在混凝土浇筑过程中,应注意避免水管受损或堵塞。

(6) 中、后期冷却通水前1个月应对埋设的冷却水管进行检查。对于不通或微通的水管,承包人应采取有效措施进行处理,要求处理至满足设计有关文件要求和使监理人认可为止。

15.14.6.3 通水冷却

(1) 初期通水:贴坡混凝土在混凝土浇筑后一个月内进行初期通水将浇筑块温度降温至16~18℃,对于高温季节采用预冷混凝土浇筑的加高部位坝体混凝土最高温度仍可能超过设计允许最高温度时应采取初期通水冷却削减混凝土最高温度,初期通水可采用水温10~12℃的制冷水或水库低温水,在混凝土浇筑收仓后12小时内开始通水,黑铁管单根通水流量不小于18升/分,塑料水管单根通水流量不小于20升/分。

(2) 中期通水:每年9月初开始对当年5~8月浇筑的加高部位混凝土、10月初开始对当年4月及9月浇筑的加高部位混凝土、11月初开始对当年10月浇筑的加高部位混凝土进行中期通水冷却,削减混凝土内外温差。中期通水一般采用水库低温水进行,通水时间1.5~2.5个月,以混凝土块体温度达到20~22℃为准,水管通水流量应达到20~25升/分。

(3) 后期通水:需进行坝体接缝灌浆部位,在灌浆前,必须进行后期通水冷却,后期通水冷却要求如下:

1) 承包人应根据坝体接缝灌浆进度和坝体温度计算确定各部位通水类别和通水时间,通水时间以坝体达到灌浆温度为准。

2) 坝体应保证连续通水,坝体混凝土与冷却水之间的温差不宜超过20~25℃,控制坝体降温速度不大于1℃/天。水管通水量通制冷水时黑铁管不小于18升/分,塑料水管不小于20升/分,通江水时应达到20~25升/分。

3) 坝体通水冷却后的温度应达到设计规定的坝体接缝灌浆温度。

控制坝体实际接缝灌浆温度与设计接缝灌浆温度的差值在+1℃和-2℃范围内,应避免较大的超温和超冷。

坝体温度主要考虑控制四个环节,即混凝土浇筑温度控制、混凝土最高温度控制、内外温差控制、接缝灌浆前温度控制等。混凝土浇筑温度主要由拌和厂制冷设施和混凝土浇筑过程进行控制;混凝土最高温度主要由混凝土配合比、浇筑层厚、层间间歇期及一期冷却措施进行控制;内外温差由中期通水冷却控制;接缝灌浆前温度主要由后期通水冷却措施进行控制。

(一)凝土浇筑温度控制

(1)严格控制混凝土出机口温度。4、5、9、10月生产7~10℃混凝土,6~8月生产14℃混凝土;4月及10月浇筑贴坡混凝土时,混凝土出机口温度需达到7~10℃,混凝土浇筑温度控制在12~14℃。

(2)高温季节施工时,混凝土运输机具采取遮阳保温措施,减少转运次数减少预冷混凝土温度回升,满足浇筑温度要求。尽可能避免高温时段浇筑混凝土,充分利用低温季节和高温季节早晚及夜间气温低的时段,加大浇筑强度。

(3)高温季节浇筑混凝土时,在仓面进行表面喷雾,降低仓面环境温度,保持混凝土表面湿润和降低水分蒸发损失,但水分不能过量,雾滴直径40μm~80μm,以防混凝土表面泛出水泥浆液。

(4)高温季节浇筑时,避开高温时段,减小浇筑层厚,混凝土收仓后,采取流水养护直至上层混凝土开浇,避免出现干湿交替;

(5)严格控制混凝土浇筑层厚和层间间歇时间。混凝土浇筑分层按设计要求进行,贴坡混凝土浇筑层厚一般采用1.5~2m,加高混凝土浇筑层厚采用2~3m。

大体积混凝土层间间歇满足招标文件和其他有关规定要求,墩、墙浇筑层厚3~4m,层间间歇时间4~9天。大体积二期混凝土部位,浇筑层厚按1.5~2.5m控制,对于门槽等结构尺寸较小的二期混凝土浇筑层厚为3~5m。

(6)贴坡部位混凝土1~4月通水库32M处的低温水进行初期冷却, 10~12月通10℃冷水进行初期冷却,通水时间按15~20天考虑。加高部位混凝土9~12月通水库60M处的低温水进行中期冷却,通水时间按1.5~2.5个月考虑。

(7)为减少预冷混凝土温度回升,严格控制混凝土运输时间和仓面浇筑坯覆盖前的暴露时间,混凝土运输机具加保温设施,并减少转运次数,使预冷混凝土自出机口至仓面浇筑坯被覆盖前的温度满足浇筑温度要求。

(8)所有混凝土冬季浇筑时浇筑温度不得低于5℃。当外界气温低于低温季节标准时,采取有效保温等温控措施满足冬季混凝土施工要求。

2、混凝土最高温度控制

(1)优化混凝土配合比,掺加优质粉煤灰及高效缓凝减水剂,减少胶凝材料用量,降低水化热温升。

(2)按设计要求分层,保证合理间歇时间。

(3)高温季节在混凝土开始浇筑时即开始通水冷却,通水时间30天左右,通水流量20升/分,冷却水温度10~12℃左右,每24h 调换一次冷却水的方向。

3、加强混凝土表面保护

根据设计表面保护标准确定不同部位、不同条件的表面保温要\求。尤其重视基础约束区,贴坡部位及其它重要结构部位的表面保温材料:保温材料选择聚苯乙烯保温材料。

(1)等效放热系数控制:一般部位混凝土β≤2.0~3.0w/m2·℃;对永久暴露面、棱角部位、溢流面、闸墩等重要部位β≤1.5~2.0w/m2·℃。

2) 对于除过流部位之外的新浇混凝土上、下游永久暴露面,浇完拆模后立即设施工期的永久保温层。

3) 每年入秋(9月底),将竖井、廊道及其他所有孔洞进出口进行封堵。

4) 当日平均气温在2~3天内连续下降超过(含等于)6℃时,28天龄期内混凝土表面(顶、侧面)进行表面保温保护。

5) 低温季节如拆模后混凝土表面温降可能超过6~9℃以及气温骤降期间,须在拆模后立即采取表面保护措施。

6) 当气温降到冰点以下,龄期短于7天的混凝土覆盖满足要求的保温材料作为临时保护层。

7)在混凝土开始浇筑前,将选用的保温材料、保温措施报监理人批准。

在气温骤降的季节,新浇混凝土拆模后在混凝土面覆盖保温被,对坝体新浇混凝土外露面全年粘贴聚苯乙烯泡沫塑料板。

4、中期通水每年的9月初开始对当年5~8月浇筑的加高混凝土、10月初开始对当年4月及9月浇筑的加高混凝土、11月初开始对当年10月浇筑的加高混凝土进行中期通水冷却,削减混凝土内外温差;中期通水采用水库低温水进行,通水流量20~25升/分、通水时间1.5~2.5个月,以混凝土坝块达到20~22℃为准。

5、接缝灌浆和后期冷却

(1)各坝段接缝灌浆温度为16℃,后期冷却采用通江水和通制冷水冷却到灌浆要求的温度,采用分层通水,由低到高逐层进行,通水时间20~40天,坝体混凝土与冷却水之间的温差不宜超过20~25℃,控制坝体降温速度不大于1℃/天,通水流量20~25升/分,并控制坝体实际接缝灌浆温度与设计接缝灌浆的差值在+1℃~-2℃范围内,以避免较大的超温和超冷。(2)接缝灌浆集中制浆站供浆、一般从下部灌区逐层分区顺次向上灌注、自中间相向两岸推进。为使接缝充分张开,避免已灌横缝不会因灌浆层以上的混凝土产生温度应力而拉开,对同一接缝两侧坝段,同一灌缝的上下两层灌区,灌区顶上层盖重混凝土均应同时降至相应的灌浆温度。且各灌区同时满足要求并取得终灌证后方可进行灌浆。一般部位采用强度等级42.5的普通硅酸盐水泥配制的湿磨细水泥浆液灌注,部分灌注湿磨细水泥达不到标准者、采用改性水泥或化学材料灌注。

(1)在施工中,对新浇筑混凝土应每天定时检测混凝土内外温

度,根据温度变化适时调整通水量和通水温度。

(2)在通水冷却期间,每天定时测量冷却水管进出口水温,使温差控制在规定的标准之内,并使混凝土冷却速度每天不超过1℃。

(3)冷却水管通水方向应每24小时改变一次,以确保混凝土均衡冷

6. 低温度施工措施可采用:拌和水的加热和骨料加热

拌和用水可在锅炉房加热后用泵送至拌和楼储水箱,也可在半和楼的储水箱内直间加热,加热的方式有蒸汽直间加热和热交换器加热,两种,

(一)蒸汽直接加热。在水池和水箱内安装蒸汽管,管上钻有孔径约3~4mm的小孔,孔数可按其总面积等于汽管截面积计算。蒸汽直接加热水箱和管道布置

(二)蒸汽间接加热。间接加热法采用热交换器,使用于水量较大的情况。简单的热交换起可在水箱内设盘管如水质矿化度高,引起水管结逅须作必要的水化学处理。

骨料加热:

骨料可在料堆内或储仓内加热,亦可利用解冻室加热。蒸汽和热风可用以直接加热亦可用于间接加热,热水一般可用于直接加热。

(一)蒸汽直接加热。以直径为50~60mm的钢管,孔碧钻有直径3~4mm的小孔,成梅花型布置,分层埋入料堆内通以蒸汽加热,作用半径谣为0.5~0.75m。

(二)在沙石料之间埋设钢排管,通过管壁进行热交换,排管一般

采用50mm~100mm的厚壁无缝钢管管的间距不宜小于0.5m,有竖直和水平两种布置形式。竖直布置对粗骨料均适用,水平布置仅使用于沙。

(三)解冻室排管加热。运送成品骨料时,可在解冻室解冻的同时加热骨料。解冻室的温度平均约85度,只中方式适用于用量不大的情况下。

(四)热风直接加热。有热风炉提供高温燃气,通过埋在料层内的风管直接吹入骨料加热,仅适用于大中石的加热。热风还可以直接吹入旋转鼓筒内加热,加热速度快而均匀,特别适用于小石、细石和沙的加热。

大体积混凝土温控及防裂技术

建筑工程 Architecture 114 大体积混凝土温控及防裂技术 王静静杜崇磊 (烟建集团有限公司混凝土分公司) 中图分类号:TU75 文献标识码:B 文章编号1007-6344(2015)02-0114-01 摘要:混凝土结构中,经常会出现由于温度效应产生的裂缝。大体积混凝土施工中,温度变形产生的裂缝成为了最常见以及最严重的质量通病。 关键词:大体积混凝土温控防裂技术 混凝土基础温差的控制是人们过去经常关注的问题,对混凝土的后期保护却没有引起足够重视,以致很多混凝土建筑都有不同程度的裂缝出现。随着科技水平的不断发展,人们逐渐认识到温度变化是造成大体积混凝土开裂的关键因素。 一、大体积混凝土温度变形产生的原因分析 大体积混凝土中主要温度因素是水泥水化热,其温升经常会到达30--50摄氏度。水泥水化作用,使混凝土在硬化过程的最初几天,产生大量的水化热。然而,导热不良的混凝土就会对这种热量进行累积,以致混凝土温度升高、体积增大。大体积混凝土结构的壁越厚,其中心的水化热升温就越大。混凝土未充分硬化部分的弹性模量在升温时很小,壁内累积的压应力数值较小;混凝土已混凝土本结硬,在降温收缩时弹性模量特别大,这种收缩就会产生极大的拉应力。浇筑温度与水化热温度共同构成了最高温度。如果对最高温度值,没有采取适当的方法进行控制,没有对内外温度差通过恰当的保温措施进行减少,没有对温度应力通过改善约束条件进行减少,就会使大体积混凝土结构出现温度裂缝,甚至会出现贯穿性裂缝。 外界气温变化就会引起混凝土内部温度变。尤其在大陆性气候地区或寒冷地区,混凝土温度变形的最主要因素就是外界温度变化。很多事例显示,寒潮期间经常会出现大体积混凝土裂缝。因为气温比较低,混凝土短时间内徐变不能充分发挥,同时温度梯度大,就会形成很大的温度应力。建筑施工期间,混凝土内部经常会产生很大的拉应力。 水化热、浇灌温度以及外界气温变化等各种温度差,以及叠加应力,共同形成了混凝土的内部温度应力。强迫变形引起了温度应力,约束力越大,应力就会越大。而混凝土属于脆性材料,抗拉强度只有抗压强度的10%左右,混凝土内部温度应力大于混凝土抗拉强度时,混凝土自然就会因为温度变形而产生裂缝。受弯断面和孔洞四周应力集中的区域、混凝强度最差的地方、温度变化较大的表面以及应力最大的核心区域是混凝土温度变形最易发生的地方。 二、避免大体积混凝土出现裂缝的措施分析 (一)配制混凝土的材料分析 1、水泥 水化热就会引起混凝土内部大的温差,混凝土内部较大的温差就会产生温度裂缝。因此降低混凝土内部温差以及有效控制水化热,就能预防温度裂缝的产生。只有处理好混凝土的主要材料水泥,就能从整体上降低水化热。低水化热的水泥就能对水化热起到很好的控制作用。通过诸多实验得出,水泥中的主要放热成分铝酸三钙与硅酸三钙占的比例较大,因此,通过向水泥中加入中热硅酸盐、低热矿渣等有效物质,就能够对这两种成分有效的中和,就能降低水泥的水化热。 2、粉煤灰 硅、铝氧化物是构成粉煤灰的主要成分。硅铝氧化物与水泥接触就会发生二次反应,对材料的活性有很好的增强作用,同时,减少了水泥在混凝土中的含量,进而会有效避免混凝土裂缝的出现。粉煤灰颗粒能够在二次反应后均匀的分布在混凝土中,有效的改变与完善混凝土的内部结构,进而使混凝土内部的孔隙率减小,对孔结构起到优化作用,就会很大程度的增强混凝土硬化后的性能。因此,实际施工过程中,经常会在混凝土中加入粉煤灰,对混凝土出现裂缝起到很好防治的作用。 3、骨料 粗骨料:粒径的大小与级配有很大的关系,选择粒径较大的骨料就会降低水泥砂浆及水泥的使用量,进而会降低水化热,就能很好的预防裂缝的形成。细骨料:同样道理,配制混凝土时,应选用中粗沙。同时,应调整沙子的含泥量,这能够有效的防止混凝土出现收缩变化,进而防止混凝土产生裂缝。 4、外加剂 混凝泥土中加入适当的减水剂、缓凝剂以及引气剂等外加剂,也能有效的避免混凝土出现过多的裂缝。其原理是:减水剂对混凝土的融合性有很好的促进作用,进而提高了混凝土的强度,使水灰比降低,水泥含量降低,就能有效防止裂缝的出现。缓凝剂能够延长混凝土放热峰值的时间。引气剂对混凝土的和易性与可泵性具有很好的增强作用,能够充分发挥混凝土的耐久性,就增强了混凝土的抗裂性。应该注意,添加外加剂的混凝土与基准混凝土的收缩比一定保持在35%左右,必须有效控制外加剂的使用量,防止用量过大,改变混凝土的使用性能。 (二)混凝土施工方式的选择分析 1、混凝土的拌制与浇筑 施工过程中,混凝土的拌制非常重要,混凝土材料的使用性能会直接受到混凝土拌制效果的影响。因此,施工中要严格按照标准对混凝土进行拌制,并有效的控制混凝土出机口坍落度。同时,要调整好混凝土拌合物出机口的温度,对温度进行合理控制,可以利用送冷风以及冷却的方式调节。 运用有效的振捣方式,进行混凝土的浇筑,并合理分布振捣的时间,尤其是泛浆与间距的控制。同时,浇筑工作完成后,要适当的压实与抹平浇筑表面,能够很好的控制混凝土的裂缝的产生。另外,使用分层浇筑的方式,能够使下层混凝土在初凝时内凝结良好,对防止裂缝的产生也有很好的预防效果。 2、混凝土隔热保护与日常维护分析 大体积混凝土出现裂缝的主要原因是内外温差大,因此,采取一定的措施对混凝土的温度控制是浇筑结束后非常重要的工作。通过实施隔热保护就能促进混凝土表面快速散热。拆模时,更应注意外部的环境温度,必须实施有效的表面保护,防止因温差形成裂缝。 混凝土浇筑施工结束后,一定要采取日常维护措施。对混凝土的表面进行洒水,保持湿润状态,就能增加混凝土内部的强度。混凝土浇筑结束12--18小时后,就应对其进行实施保护,维护时间应持续20天以上。 三、建议与结语 (一)建议 1、改善混凝土的约束条件 混凝土结构的约束决定了混凝土应力的大小,分缝间距与约束作用有密切关系。合理的分缝不仅能减轻约束作用,而且也能缩小约束范围。通畅分缝间距以12--18米为宜。同时,应考虑后浇缝的宽度,以及应满足同截面钢筋的搭接比度,一般以1米为宜。应选用膨胀水泥配制后浇缝混凝土,整体结构浇筑40天后,就能进行后浇缝。 2、对结构的钢筋进行合理搭配 限制裂缝的出现还与合理的配筋有关。合理的配筋能够减少数目小而宽度大的裂缝,改善数目多而宽度小的裂缝,这样就减轻了裂缝的程度。构造钢筋部位不仅要设置在结构表层,而且在结构薄弱部位也要设置。 3、对混凝土一定要加强保温与养护 为了有效减少混凝土内外温度差及混凝土表面温度梯度,防止表面裂缝,无论是常温还是负温施工,都必须实施混凝土的保温措施。常温保护能够缓冲混凝土受到大气温度变化与雨水侵袭的温度影响。负温保护层一定要使用不透气的材料,才能见效,应根据工程特点、气温以及控制混凝土内外温度差等条件设计负温保护层。保温层还有保湿的作用,同样能够提高混凝土表面抗裂能力。养护期以不低于一个月为宜,较寒冷的地区应该适当延长。 (二)结语 大体积混凝土结构使用性能,会因裂缝受到很大的影响。只有对大体积混凝土的裂缝做好预防措施,发现裂缝并及时采取措施进行修补调整,才能不使其应用受到影响。 参考文献 [1]唐祥胜.大体积混凝土裂缝控制与防止措施[D].合肥工业大学,2005. [2]李树奇.大体积混凝土防裂技术措施的研究[D].天津大学,2004. [3]刘琳莉.桥梁大体积混凝土水化热施工控制研究[D].西南交通大学,2012.

简述大体积混凝土温度控制措施

大体积混凝土温度控制措施 摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。 关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。 大体积混凝土的温度裂缝的产生原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 1、水泥水化热 在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝 2、外界气温变化 大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施 针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。 一、温度控制标准 混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。 二、混凝土的配置及原料的选择 1、使用水化热低的水泥 由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温

混凝土温控及防裂措施

8.11 混凝土温控防裂措施 8.11.1 基本条件及要求 8.11.1.1 混凝土允许最高温度 根据招标文件要求,坝后厂房混凝土允许设计最高温度见表8.11-1。 表8.11-1坝后厂房工程混凝土设计允许最高温度单位:℃ 注:L为浇筑块长边尺寸。 8.11.1.2 控制浇筑层最大高度和间歇时间 基础和老混凝土约束部位浇筑层高控制为 1.5m~2.0m,基础约束区以外最大浇筑高度控制在2.0m~3.0m以内,上、下层浇筑间歇时间为5d~7d,对混凝土浇筑层较厚、温控要求较严部位可适当延长2d~3d。在高温季节,可采用表面流水冷却的方法进行散热。应严格按施工图纸所示或经监理人批准的分层分块图进行浇筑。 8.11.2 混凝土出机口温度控制 (1)混凝土拌制过程中,降低混凝土的水化热温升 1) 尽量选用水化热低的水泥。 2) 在保证混凝土质量满足设计、施工要求的前提下,改善混凝土骨料级配,掺加优质的掺和料和外加剂以适当减少单位水泥用量。 (2)根据招标文件要求,在高温季节或较高温季节浇筑混凝土时,应采用预冷混凝土浇筑,在计算混凝土浇筑温度时应充分考虑混凝土运输过程中的温度回升。各月、分部位混凝土浇筑温度及出机口温度控制指标见表8.11-2。

8.11.3.1 混凝土运输温控 (1)采用搅拌车运输时,在运输混凝土前对机械运输设备喷雾或冲洗预冷,采取隔热遮阳措施。 (2)通过汽车运输的混凝土,根据拌和楼和建筑塔机、布料杆、混凝土泵等的生产能力,以及仓面浇筑的情况,合理安排汽车数量及拌和强度,一般每车运输混凝土不少于3.0m3,运输车辆安装遮阳棚,运输途中拉上遮阳棚,拌和楼前安装喷雾装置,对回程的车辆喷雾降温。 (3)运输道路优选最短路径,以使混凝土在最短时间内到达浇筑地点。 (4)在条件允许的施工现场搭设遮阳棚,启动冷却水降温系统,所有待料搅拌车进行待料洒水降温。 8.11.3.2 浇筑过程温控 (1)高温季节浇筑时,在下料的间歇期,用聚乙烯卷材覆盖仓面,防止温度倒灌。 (2)夏季浇筑仓内配备喷雾设施,喷雾设备有轴流风机、摆动式喷雾机雾化管等,根据仓面特点来配置喷雾设备,考虑摆动式喷雾机降温效果较好,一般情况下,选择用摆动式喷雾机,局部不宜用喷雾机的部位用雾化管。 (3)混凝土浇筑前,配置足够的施工设备,加快入仓强度和浇筑强度,缩短运输时间和混凝土浇筑时间,减少太阳对运输混凝土的辐射。 (4)为缩短坯层覆盖时间,加大入仓强度,可减少坯层厚度,每坯层厚调整为35~40cm。 8.11.4 混凝土冷却通水 8.11.4.1 冷却水管的布置及埋设 (1)埋设部位:有初期通水、中期通水和后期冷却要求的部位均需埋设冷却水管。冷却水管采用1英寸(直径2.54cm)黑铁管,也可采用塑料、高密聚乙烯类管材。 (2)冷却水管及供水管的规格、类型、间距长度、通水量等应满足初期、中期通水降温的要求。 (3)冷却水管的布置要求:冷却水管一般按1.5m×1.5m布置,当层厚大于2.0m时,应在浇筑层中间埋设一层冷却水管。冷却水管单根水管长度不得超过250m。中间埋设的冷却水管一般采用高密聚乙烯类管材,随仓位浇筑到高程埋设。 (4)冷却水管宜预先加工成弯段和直段两部分,在仓内拼装成蛇形管圈。

大体积混凝土温控措施方案

大体积混凝土温控措施 2.16.6.1 温控标准 混凝土温度控制的原则是:1)尽量降低混凝土的温升、延缓最高温度出现时间;2)降低降温速率;3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温 (季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。根据本工程的实际情况,制定如下温控标准: ?砼浇筑温度: 锚塞体、承台及重力锚锚体混凝土浇筑温度夏季控制在30C以内,冬季控 制在20r以内。 ?最大内表温差及相邻块温差: 锚塞体、承台及重力锚锚体混凝土w 20 r ?冬季混凝土表面温度与气温之差》20 r,混凝土表面养护水温度与混凝土表面温度之差w i5r。 ?混凝土最大降温速率w 2.0 r/ d o 2.16.6.2 现场温度控制措施 在锚碇等大体积混凝土施工中,将从混凝土的原料材选择、配比设计以及混凝土的拌和、运输、浇筑、振捣到通水、养护、保温等全过程实行有效监控,具体措施如下:(1)混凝土配合比设计及原材料选择 为使大体积混凝土具有良好的抗侵蚀性、体积稳定性和抗裂性能,混凝土配制应遵循如下原则: ?选用低水化热和含碱性量低的水泥,避免使用早强水泥和高C3A含量的水泥; ?降低单方混凝土中胶凝材料及硅酸盐水泥的用量; ?选用坚固耐久、级配合格、粒形良好的洁净骨料; ?尽量降低拌和水用量,使用性能优良的高效减水剂; ?有抗渗要求的钢筋混凝土应采用较大掺量矿物掺和料的低水胶比混凝 土。单掺粉煤灰的掺量不宜小于25%,单掺磨细矿渣的掺量不宜小于50%,且

宜使用粉煤灰加硅灰、粉煤灰加矿渣或两种以上的矿物掺和料。 (2)混凝土浇筑温度的控制 降低混凝土的浇筑温度对控制混凝土裂缝非常重要。相同混凝土,入模温度 高的温升值要比入模温度低的大许多。混凝土的入模温度应视气温而调整。在炎热气候下不应超过28C,冬季不应低于5C。在混凝土浇筑之前,通过测量水泥、粉煤灰、砂、石、水的温度,可以估算浇筑温度。若浇筑温度不在控制要求内,则应采取相措施。 ①夏季降低混凝土入仓温度的措施有: 水泥使用前应充分冷却,确保施工时水泥温度w 50C。 搭设遮阳棚,堆高骨料、底层取料、用水喷淋骨料。 避免模板和新浇筑混凝土受阳光直射,入模前的模板与钢筋温度以及附近的局 部气温不超过35C。为此,应合理安排工期,尽量采用夜间浇筑。 当浇筑温度超过28 C,应采用拌和水加冰措施。 当气温高于入仓温度时,应加快运输和入仓速度,减少混凝土在运输和浇筑过 程中的温度回升。混凝土输送管外用草袋遮阳,并经常洒水。 混凝土升温阶段,为降低最高温升,应对模板及混凝土表面进行冷却,如洒水降温、避免暴晒等。 ②冬季施工如日平均气温低于5C时,为防止混凝土受冻,可采取拌和水加 热及运输过程的保温等措施。 (3)控制混凝土浇筑间歇期、分层厚度 各层混凝土浇筑间歇期应控制在7天左右,最长不得超过10天。为降低老混凝土的约束,需做到薄层、短间歇、连续施工。如因故间歇期较长,应根据实际情况在充分验算的基础上对上层混凝土层厚进行调整。官山侧锚塞体混凝土拟分8次浇筑,分层厚度综合考虑结构的特点,分层厚度示意图见附图2.16-4 ; 承台2次浇筑,分层厚度示意图见附图2.16-5 ;牛轭侧重力锚块分9次浇筑,分层厚度示意见图2.16-6 ;牛轭侧重力锚支墩分6次浇筑,分层厚度示意见图 2.16-7

混凝土温控措施(1)知识交流

混凝土温度控制 1概述 温控措施要求 (2) 常温混凝土为低温季节不采用预冷措施拌制的自然温度混凝土,也称自然入仓温度混凝土;预冷混凝土为高温季节或较高温季节采用预冷措施拌制的低温混凝土。 (3)应根据混凝土施工配合比、气温资料、施工方法等及设计允许最高温度推算出浇筑块所需的浇筑温度及出机口温度,并建立相应的关系,报监理人审批后执行。4月及10月浇筑贴坡混凝土时,混凝土出机口温度需达到7~10℃,混凝土浇筑温度控制在12~14℃。 (4) 为减少预冷混凝土温度回升,应严格控制混凝土运输时间和仓面浇筑坯覆盖前的暴露时间,混凝土运输机具应加保温设施,并减少转运次数,使预冷混凝土自出机口至仓面浇筑坯被覆盖前的温度满足浇筑温度要求。 15.14.5.3 合理的层厚及间歇期 (1)混凝土浇筑分层按设计要求进行,贴坡混凝土浇筑层厚一般采用 1.5~2m,加高混凝土浇筑层厚采用2~3m。若需变动,应经监理人书面批准。 (2) 大体积混凝土层间间歇应满足表15-7的要求,墩、墙浇筑层厚3~4m ,层间间歇时间4~9天。 表15-7 大体积混凝土浇筑层间间歇时间单位:天 注:低温季节浇筑取下限值。 (3)应在混凝土浇筑前按施工进度要求和有关层厚及间歇期要求,规划好各部位混凝土浇筑具体层厚及间歇期。 (4) 对施工计划中预计为长间歇停浇面,应在仓面布设防裂钢筋。

15.14.5.4 合理的施工程序和进度 主体建筑物施工程序和进度安排,应满足以下几点要求: (1) 混凝土在设计规定的间歇期内连续均匀上升,不得出现薄层长间歇。 (2) 贴坡混凝土安排在10月至次年4月施工。 (3) 贴坡混凝土相邻坝段之间高差不宜大于4~6m。 15.14.5.5 混凝土表面保护 (1) 大体积混凝土温控防裂满足以上温控要求外,还应满足表面保护要求。 (2) 应根据设计表面保护标准确定不同部位、不同条件的表面保温要求。尤其应重视基础约束区,贴坡部位及其它重要结构部位的表面保护。应重视防止气温骤降及寒潮的冲击。所有混凝土工程在最终验收之前,还必须加以维护及保护,以防损坏。浇筑块的棱角和突出部分应加强保护。 各部位主要保温要求如下: 1) 保温材料:保温材料应选择保温效果好且便于施工的材料,保温后表面等效放热系数:一般部位混凝土β≤2.0~3.0w/m2·℃;对永久暴露面、棱角部位、溢流面、闸墩等重要部位β≤1.5~2.0w/m2·℃。 2) 对于除过流部位之外的新浇混凝土上、下游永久暴露面,浇完拆模后立即设施工期的永久保温层。施工期的永久保温指保温至本标工程完工前。β值取15.14.5.5(2) 1)中下限值。 3) 每年入秋(9月底),应将竖井、廊道及其他所有孔洞进出口进行封堵。 4) 当日平均气温在2~3天内连续下降超过(含等于)6℃时,28天龄期内混凝土表面(顶、侧面)必须进行表面保温保护。β值取15.14.5.5(2) 1)中上限值。

大体积混凝土温控计算书

大体积混凝土温控计算书 1、混凝土的绝热升温 式中:T (t )—混凝土龄期为t 时的绝热温升「C ) m c ——每m 3混凝土胶凝材料用量,取415kg/m 3 Q ——胶凝材料水热化总量,Q=kQ Q o —水泥水热化总量377KJ/kg (查建筑施工计算手册) C —混凝土的比热:取0.96KJ/ (kg.C ) p —混凝土的重力密度,取2400kg/m 3 m ——与水泥品种浇筑强度系有关的系数取 0.3d -1(查建筑施工计算手 册) t ——混凝土龄期(d ) 经计算:Q=kQ=(为+Kr1)Q °=(0.955+0.928-1)X377=332.9KJ/kg 2、混凝土收缩变形的当量温度 (1)混凝土收缩的相对变形值计算 0 (A A-0.01t\ 皿 §(t )= § (1-e ) m 1m 2m 3..…mu 式中:勺(t )——龄期为t 时混凝土收缩引起的相对变形值 『 -- 在标准试验状态下混凝土最终收缩的相对变形值取 3.24X104 m 〔m 2m 3..…mu ——考虑各种非标准条件的修正系数 m 1=1.0 m 2=1.0 m 3=1.0 m 4=1.2 m 5=0.93 m 6=1.0 m 7=0.57 m 8=0.835 m 9=1.0 m 10=0.89 mn=1.01 m 1m 2m3 ... m 11=0.447 T (t )二 m c Q c ? -mt 、 (1-e )

(2)混凝土收缩相对变形值的当量温度计算 T y(t)=啊a 式中:T y(t)——龄期为t时,混凝土的收缩当量温度 5 a——混凝土的线膨胀系数,取 1.0X10- 3、混凝土的弹性模量 E t)=^E o(1-e为 式中:E t)——混凝土龄期为t时,混凝土弹性模量(N/mm2) E o——混凝土的弹性模量近似取标准条件下28d的弹性模量:C40 E o=3.25X1(fN/mm2 ?——系数,近似取0.09 混凝土中掺和材料对弹性模量修正系数,=1.005 4、各龄期温差 (1 )、内部温差 T nax=T+ &)T(t) 式中:T m ax——混凝土内部的最高温度 T——混凝土的浇筑温度,因搅拌砼无降温措施,取浇筑时的大气平均温度,取15C T t)—在龄期t时混凝土的绝热温升 &)—在龄期t时的降温系数

混凝土温控措施

1.8混凝土温控防裂措施 1.8.1混凝土温控要求 浇筑大体积混凝土应在一天中气温较低时进行。混凝土的浇筑温度(振捣后 50~100mm 深处的温度)不宜高于28℃。在炎热季节浇筑大体积混凝土时,宜将 混凝土原材料进行遮盖,避免日光爆晒。根据原料温度推算拌合后混凝土的温度 可按下式进行: max 0()t T T T ξ=+ (1) 式中: ξ —不同浇筑块厚度、不同龄期时的降温系数,可由表查得 0T —混凝土的浇筑入模温度 max T —混凝土内部最高温度 ()t T —在t 龄期时混凝土的绝热温升 ()(1)mt c t m Q T e C ρ -=- (2) 式中: c m —每立方米混凝土水泥用量 Q —每千克水泥水化热量 C —混凝土的比热,一般取0.96J/Kg ·K ρ —混凝土的质量密度,取2400Kg/m 3 e ―常数,为2.718 m ―与水泥品种,浇筑时与温度有关的经验系数,取0.3 t ―混凝土浇筑后至计算时的天数 1.8.2混凝土温控措施 为防止大体积混凝土温差过大产生温度裂缝,从而保证混凝土的质量,在混 凝土施工中,我们主要采取了以下措施: 1、采用低水化热水泥 施工中选用了水化热较低的矿渣硅酸盐水泥,同时,为减少混凝土配合比中

的水泥用量,在确保混凝土强度及坍落度的条件下,适当掺入了粉煤灰及外加剂,以降低混凝土的水化热温升,控制最终水化热。 2、控制混凝土入模温度 混凝土的入模温度指混凝土运输至浇筑时的温度,降低混凝土的入模温度措施是用冷水对粗骨料进行冲洗,选择在夜间浇筑混凝土,混凝土入模温度控制在了24℃以内。 3、控制混凝土分层浇筑厚度 尽量减少浇筑层厚度,以便加快混凝土散热速度。施工采用汽车泵泵送入模时候,混凝土浇筑时严格控制分层厚度为每30cm一层,自一侧向另一侧顺序浇筑,保证在下层混凝土初凝前浇筑完成上层混凝土。分层厚度利用钢筋或其它标尺做参照物,派专人进行负责,一个下料点到位后,移至下一个下料点,依次进行,混凝土布料完成且平整后开始振捣。 4、加强混凝土的振捣质量 浇筑过程中配备6条插入式振动棒,分区负责保证振捣质量,尤其是在钢筋密集处,必须保证其密实性和均匀性,防止出现过振、漏振现象。 混凝土浇筑到设计标高后,要除去表面浮浆,安排专人找平。为防止混凝土表面出现收缩裂缝,用木抹进行二次收浆找平。 5、及时保温养护 (1)在遇气温骤降的天气或寒冷季节浇筑大体积混凝土后,应注意覆盖保温,加强养护。 (2)保温养护采用在混凝土表面蓄水养护的方法,养护安排专人进行,个别蓄水养护不到的部位给予覆盖并经常洒水,保持混凝土表面湿润不失水。6、做好混凝土温度监测 对于重要结构在混凝土内部埋设电阻式温度计测量混凝土温度,全面掌握混凝土内部温度,出现较大温差时及时采取降温措施。每100m2仓面面积应不少于1个测点,每一浇筑层应不少于3个测点。测点应均匀分布在浇筑层面上时、浇筑块内部的温度观测,除按设计规定进行外,应根据混凝土温度控制的需要,补充埋设仪器进行观测。 1.8.3混凝土裂缝、漏浆处理

大体积混凝土温控技术

宁波铁路枢纽大体积混凝土温控技术 摘要 随着我国地铁交通事业的蓬勃发展,大体积混凝土的使用也随之增加。而大体积混凝土的裂缝问题也日益突出,已成了普遍性的问题。本文通过开展对宁波南站站大体积混凝土温度控制研究,选用中低热水泥,掺入矿粉和粉煤灰,降低水化热,设计冷却系统,严格控制保温养护措施,对施工过程实施温度监测,实现了大体积混凝土温度控制的信息化施工,达到了预期的混凝土防裂要求。 关键词:大体积混凝土;温度控制;裂缝;水化热. 1.引言 大体积混凝土施工地铁车站施工中最为常见的施工工艺,而通过温控措施,保证大体积混凝土结构的质量,控制温度应力导致的结构裂缝便是重中之重。大体积混凝土特点是:体积大、钢筋密、混凝土用量多,结构厚实、工程条件复杂,施工技术和质量要求高,水泥水化热易积聚而使结构产生温度变形、混凝土绝热温升高和收缩大。 本文通过对宁波铁路枢纽南站改工程底板大体积混凝土施工的温控研究,采取降温措施,监控混凝土内部温度,达到了预期的混凝土防裂要求。 2工程概况 宁波市轨道交通二号线铁路南站站车站全长245.45m(外包),里程为SDK6+404.184~SDK6+581.784。车站标准段基坑形状不规则,标准段净宽43.7m~46.1m,南端头井净宽约为60.2m,北端净宽约为58.4m。铁路南站站主体占地面积约为11863平方米。 结构底板厚度为2.5m,局部厚度3.85m,其中最大一块底板混凝土方量共为5000m3,该段底板南北距离为41m,东西距离为47m。 3大体积混凝土的温控方案设计 3.1优化配合比,降低水化热

铁路南站站底板厚2.5m,底板梁厚3.85m,混凝土为C40P10。底板施工时正值夏季,昼夜温差大,白天温度高达35℃左右,导致混凝土结构内外温差大,容易产生温度裂缝。为了减少温度裂缝产生对混凝土的质量的影响,项目部搅拌站根据图纸及规范要求进行多次配合比论证,降低水化热。同时降低混凝土的出机温度,混凝土入模温度以达到控制温度裂缝的目的。因此,项目部从原材料处入手,优化配合比,优选了如下材料: (1)水泥:水泥用量控制在285kg/m3左右;水泥进场时必须有质量证明书并及时进行取样复试试验报告,同时要求水泥入机温度不大于60℃。 (2)粉煤灰:粉煤灰作为胶凝材料的一部分起增强作用,发热的速率较低,等量取代水泥可使混凝土内部顶峰温度显著降低。达到顶峰温度的时间也向后推迟,水化热缓慢释放,减小了升温的幅度,从而降低了混凝土内外部的温差,防止大体积混凝土开裂。粉煤灰代替部分水泥,同时也可代替部分砂子而增加混凝土的和易性、流动性、粘聚性、保水性、稳定性和可泵性,增加灰浆,减少了泌水性,提高了密实度和抗渗性,也改善混凝土的后期强度。 (3)矿粉:本工程采取矿粉和粉煤灰双掺的方式以充分发挥二者之间的“优势互补效应”。粉煤灰和矿粉的微集料效应和二次水化效应,使后期强度均有大幅度的增长,解决大体积混凝土的水化热和收缩问题,提高其抗裂性。 (4)细骨料:采用河砂,级配良好,细度模数宜在2.6~2.8之间,含泥量在3%以下,砂率应控制在38%~42%之间。 (5)粗骨料:采用5-25mn连续级配、空隙率小的碎石,其含泥量不超过1.0%,选择强度高、含泥量低的粗骨料,一是为了增强骨料本身的强度,二是可以提高骨料在混凝土中的所占体积,能大幅度降低水泥用量,而且石块本身也吸收热量,从而降低混凝土的温升,使水化热进一步降低。

大体积混凝土测温方案

大体积混凝土测温方案 一、概述 大体积混凝土是指混凝土结构物实体最小尺寸不小于1m的大 体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土。 随着我国建筑技术的不断提高,大体积混凝土结构的应用也越来越广泛。大体积混凝土的截面尺寸较大,由荷载引起裂缝的可能性较小,但由于温度产生的变形对大体积混凝土却极为不利。在混凝土硬化初期,水泥水化的同时释放出较多热量,而混凝土与周围环境的热交换较慢,所以混凝土内部的热量不断增加,使其内部温度不断升高,混凝土的体积膨胀变大。随着混凝土水化速度减慢,释放的热量也越来越少,积聚在混凝土中的热量由于热交换的进行逐渐减少,混凝土的温度降低,因而产生收缩。当此收缩受到约束时,混凝土内部产生拉应力(简称主温度应力),此时混凝土的强度较低,如不足抵抗拉应力时,混凝土内部就产生了裂缝。此外,混凝土的导热系数相对较小。其内部的热量不易散失,而表面热量易与周边环境进行热交换而减少,从而温度降低,就形成混凝土内外的温差。如温差较大,则混凝土表里收缩不一致,也使混凝土开裂。 因此,在大体积混凝土中,必须考虑温度应力和温差引起的不均匀收缩应力(简称温差应力)的影响。而温度应力和温差应力大小,又涉及到结构物的平面尺寸、结构厚度、约束条件、周边环境情况、

含筋率、混凝土各种组成材料和物理力学性能、施工工艺等许多因素影响。故为了保证大体积钢筋混凝土施工质量,国家建设部于2010 年颁布的《高层建筑混凝土结构技术规程》(JGJ 3-2010)中第13.9.6 条规定:“大体积混凝土浇筑后,应在12h 内采取保湿、控温措施。混凝土浇筑体的里表温差不宜大于25℃,混凝土浇筑体表面与大气温差不宜大于20℃”。中华人民共和国住房和城乡建设部颁发的《大体积混凝土施工规范》(GB 50496-2009)中第5.5.1 、5.5.3 、6.0.1 、6.0.2 、6.0.3 、6.0.6 条及《混凝土结构工程施工规范》(GB 50666-2011)中第8.5.2 、8.5.4 、8.5.6 、8.7.3 、8.7.4 、8.7.6 、8.7.7 条中都对大体积混凝土浇筑后的养护和测温作了明确的规定。 二、工程概况 吉地?澜花语三期工程项目由河南吉地置业有限公司开发、新浦集团公司承建。该项目位于郑东新区白沙镇文华路南、仁爱路西。基础为筏板基础,筏板厚度为1800mm,系大体积混凝土结构,混凝土设计强度等级为C40,抗渗等级为P6。钢筋混凝土基础筏板全长68.86m,宽13.8m,厚1.8m,需浇注的混凝土量约计2650m3,强度等级为C40,P6。因筏板的厚度大,连续浇注的混凝土量大,按大体积混凝土组织施工。重点控制三项内容: 第一、混凝土浇注后的内外温差,防止裂缝产生。 第二、合理组织浇注顺序,防止产生冷缝。 第三、所用水泥品种、外加剂品种的选用与合理的配比,满足

混凝土的温控计算及温控措施(计算公式)

4.混凝土的温控计算及温控措施 4.1 C30大体积混凝土配合比设计及试配。 为降低C30大体积混凝土的最高温度,最主要的措施是降低混凝土的水化热。因此,必须做好混凝土配合比设计及试配工作。 4.1.1原材料选用 水泥:C30大体积混凝土应选用水化热较低的水泥,并尽可能减少水泥用量。本工程选用了普通硅酸盐水泥,即PO42.5海螺牌水泥。 细骨料:根据试验采用Ⅱ区中砂。 粗骨料:在可泵送情况下,选用粒径5-32.5连续级配石子,以减少水泥用量和混凝土收缩变形。 含泥量:在大体积混凝土中,粗细骨料的含泥量是要害问题,若骨料中含泥量偏多,不仅增加了混凝土的收缩变形,又严重降低了混凝土的抗拉强度,对抗裂的危害性很大。因此骨料必须现场取样实测,石子的含泥量控制在1%以内,砂的含泥量控制在2%以内。 掺合料:采用添加粉煤灰技术。项目部根据试验选定才用二级粉煤灰,在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,大大降低了混凝土前3天的水化热。 外加剂:采用外加膨胀剂(AEA)技术。在混凝土中添加占胶凝材料8%的AEA。试验表明,在混凝土添加了AEA之后,混凝土内部产生的膨胀应力可以抵消一部分混凝土的收缩应力,从而提高了提高混凝土抗裂强度和抗渗性能。 4.1.2试配及施工配合比确定 根据试验室配合比设计试配,确定每立方米混凝土配合比为PO42.5级水泥 305kg,砂(中砂)752kg、连续级配碎石(粒径5—31.5mm)1063kg,掺合料65kg,外加剂25kg,水190kg,坍落度120士20mm。 4.2混凝土温度验算 假若承台周边没有任何散热和热损失条件(现场为砖地模且在砼施工时周边分层回填夯实),水化热全部转化成温升后的温度值,在混凝土表面覆盖一层麻袋作为保温层,则混凝土水化热绝热温升值为(混凝土在3-3.5d的水化热为峰值,则取3d砼温度): 计算参数:混凝土为C30 P8、普硅水泥为P.O42.5

混凝土入模温度控制

石家庄至武汉客运专线新建铁路工程 (河南段2标段) 混凝土入模温度控制措施 编制: 审核: 审批: 中铁二十局集团石武客专河南段项目部一分部

2008年11月

混凝土入模温度控制措施 黄河公铁两用桥北引桥是我分部施工的一个重点工程。施工中对于混凝土的耐久性指标要求比较高,每一个施工环节都应严格控制,以确保混凝土能够真正达到耐久性要求。结合我单位施工实际情况,本着既要保证混凝土施工质量,又要保证工期顺利进行的原则,针对混凝土入模温度这一要求,特制定以下措施: 一、夏期施工中对砼入模温度的控制 当昼夜平均气温(当地时间6时、14时及21时室外气温的平均值)高于30℃时,即已进入夏期施工,混凝土入模温度不宜高于30℃ 1、采用砼搅拌运输车运输砼。运输车储运罐装混凝土前用水冲洗降温,并在砼搅拌运输车罐顶设置棉纱降温刷,及时浇水使降温刷保持湿润,在罐车行走转动过程中,使罐车周边湿润,蒸发水汽降低温度,并尽量缩短运输时间。运输混凝土过程中宜慢速搅拌混凝土,不得在运输过程加水搅拌。 2、夏期浇筑砼前,要做好充分准备,备足施工机械,创造好连续浇筑的条件。砼从搅拌机到入模的时间及浇筑时间要尽量缩短。 3、施工时间段的选择 环境温度势必会增加用于拌制混凝土的各种材料的温度。根据夏季天气的特征,通过试验室测得睛天时不同时间段的平均温度: 8:00温度为27.5℃,14:00温度为33.7℃,17:00温度为28.7℃,19:00温度为27.3℃,进入夜间后温度会逐渐降低。所以,施工开盘时间选定在19:00以后,避开高温时段。 4、原材料的温度控制

(1)、水泥和粉煤灰的温度控制 优先采用进场时间较长的水泥和粉煤灰进行拌制混凝土,尽可能降低水泥及粉煤灰在生产过程中存留的余热。通过测温得出新进材料与放置24小时以上的材料相比温度平均差15℃,2天后温度基本稳定。通过对温度相对稳定的水泥进行测试得出平均温度为 38.6℃。粉煤灰温度为33.6℃。所以采用温度较稳定的胶凝材料是控制混凝土温度最为关键的一点。 (2)、集料的温度控制 从混凝土配合比中可以看出,一方混凝土中粗细骨料用量将近占总量80%,所以控制好粗细骨料的温度是控制混凝土入模温度的基础。通过对粗细骨料的温度测试得出:8:00为27.3℃,14:00为33.2℃,17:00为28.9℃,19:00为27.3℃,根据以上不同时段对集料温度测试结果,综合考虑,降低骨料温度可以采用以下措施: A、采用通风良好的遮阳大棚料场,避免太阳直射达到降温目的。 B、避开白天高温时段,在晚19:00以后环境温度逐渐下降之后和早上7:00以前环境温度还未上升之前这一时间段内进行施工。 C、应急时可采用对骨料洒水降温的方法进行降温。(注意含水率的测试,以保证混凝土配合比的质量) (3)、水温控制 水温控制是降低混凝土入模温度的最佳方法。通过对刚抽出的地下水进行测温,测得温度为18℃(必要时可采用冰块降温),采用刚抽出的地下水用于砼拌制混凝土可以满足降温要求。 (4)、外加剂温度控制 外加剂掺量较少,并且,外加剂罐放置在拌和楼下通风阴凉处,所以对混凝土的温度影响很小,故不考虑其温度对混凝土入模温度的影响。

大体积混凝土水化热温度检测方案

大体积混凝土水化热温度检测方案

大体积混凝土水化热温度 检 测 方 案 方案编制人: 方案批准人: XX工程质量检测有限责任公司 20 年月日

目录 封面 (1) 一、测温描述 (3) 二、工程概况 (4) 三、依据标准规范及温控指标 (5) 四、测温仪器及设备 (5) 五、测温点的布置 (5) 六、温度测试元件的安装及保护 (7) 七、测温时间 (7) 八、温控措施与建议 (8) 九、监测程序 (9) 十、安全、文明措施 (9) 十一、质量保证体系及服务承诺 (10) 十二、委托单位的配合工作 (11) 十三、测温点布置图………………………………………附图页

XX名都工程2#、3#楼筏板基础 大体积混凝土水化热温度和温差 监测方案 一、测温描述 因大体积混凝土的截面尺寸较大,由荷载引起裂缝的可能性较小,但由于温度产生的变形对大体积混凝土却极为不利。 在混凝土硬化初期,水泥水化释放出较多热量,而混凝土与周围环境的热交换较慢,故混凝土内部的热量不断增加,使其内部温度不断升高,混凝土的体积膨胀变大。随着混凝土水化速度减慢,释放的热量也越来越少,积聚在混凝土中的热量由于热交换的进行慢慢减少,混凝土的温度降低,混凝土产生收缩。当此收缩受到约束时,混凝土内部产生拉应力(此应力简称为温度应力),此时混凝土的强度较低,如不足抵抗拉应力时,混凝土内部就产生了裂缝。 此外,混凝土的导热系数较小。混凝土内部热量不易散失,而表面热量易与周边环境进行热交换而减少,从而温度降低,就形成了混凝土里表温差。如温差较大,则混凝土表里收缩不一致,也使混凝土开裂。 因此,在大体积混凝土中,必须考虑温度应力和温差引起的不均匀收缩应力(简称温差应力)的影响。而温度应力和温差应力大小,又涉及到结构的平面尺寸,结构厚度,约束条件,周边环境情况,含筋率,混凝土各种组成材料的特性和物理力学性能,施工工艺等许多因素影响。故为了保证大体积混凝土施工质量,

混凝土温控的措施1

1绪论 实习任务:根据所学内容和相关专业知识,简述大体积混凝土温度应力 的概念以及应力作用下产生的裂缝。详述大体积混凝土温度控制的任务和作用, 以及在不同施工阶段解释说明温控的具体措施。 实习的作用:全面检验和巩固课程学习效果,可以利用所学理论解决实 际水利工程问题的能力,增强我们的专业素质,提高自我的学习能力,和实践 能力。 2温度应力 2.1温度应力的概念:由于温度变化,结构或构件产生伸或缩,而当伸缩受到限制时,结构或构件内部便产生应力,称为温度应力。 2.2产生的原因:在凝固、冷却的过程中因为产品结构、环境等因素造成各个位置散热条件不会完全相同,热胀冷缩而形成的互相之间因为收缩而产生的作用力。 3温度裂缝 3.1裂缝的类型:(1)表面裂缝(2)贯穿裂缝和深沉裂缝 3.2裂缝的部位 (1)表面裂缝:多发生在浇筑块侧壁,方向不定,数量较多。 (2)贯穿裂缝和深沉裂缝:这种裂缝自基础面向上开展,严重时可能贯穿整个坝段。此种裂缝切割的深度达3~5m,宽度达1~3mm,且多垂直基面向上延伸,既能平行纵缝贯穿,也能沿流向贯穿。 3.3温度裂缝的原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果, 一方面是 混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 (1)表面裂缝:混凝土浇筑后,其内部由于水化热温升,体积膨胀,如遇寒潮,表层降温收缩。内胀外缩,在混凝土内部产生压应力,表层产生拉应力。在混凝土内处于内外温度平均值的点应力为零,高于平均值的点承受压应力,低于平均值的点承受拉应

大体积混凝土温控

一般为一次浇筑量大于1000 m3或混凝土结构实体最小尺寸等于或大于2 m,且混凝土浇筑需研究温度控制措施的混凝土。 所属学科: 电力(一级学科);水工建筑(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 日本建筑学会标准(JASS5)规定:“结构断面最小厚度在80cm以上,同时水化热引起混凝土内部的最高温度与外界气温之差预计超过25℃的混凝土,称为大体积混凝土”。 无明确定义 美国混凝土学会(ACI)规定:“任何就地浇筑的大体积混凝土,其尺寸之大,必须要求解决水化热及随之引起的体积变形问题,以最大限度减少开裂”。 大体积混凝土一般在水工建筑物里常见,类似混凝土重力坝等。 大体积混凝土特点是:结构厚实,混凝土量大,工程条件复杂(一般都是地下现浇钢筋混凝土结构),施工技术要求高,水泥水化热较大(预计超过25度),易使结构物产生温度变形。大体混凝土除了最小断面和内外温度有一定的规定外,对平面尺寸也有一定限制。因为平面尺寸过大,约束作用所产生的温度力也愈大,如采取控制温度措施不当,温度应力超过混凝土所能承受的拉力极限值时,则易产生裂缝。[1] 在建筑施工中常碰到大体积砼,为帮助项目部施工技术人员学习了解大体积砼防裂和温度控制方面的问题,加强施工技术方面的交流,本人根据自己的认识所及,参考了一些相关书籍,文章以问答的形式,先提出问题,再用通俗的语言和科学道理解答,问题解答也侧重于技术要领和做法,主要从实际出发,以实用为主,所提出的问题都是实际施工中常碰到的,目的是使项目部施工技术人员既知道大体积应该如何控制质量,又懂得为什么要进行防裂和温度控制的道理。 遇到对大体积砼防裂和温度控制方面问题不懂的地方,大家可带着问题翻阅,从中找到答案,增长学识,相信对提高实际工作能力有所帮助。1、大体积砼的定义 大体积砼指的是最小断面尺寸大于1m以上的砼结构,其尺寸已经大到必须采用相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展的砼结构。(该定义摘录自建筑施工手册缩印版第二版建筑施工手册第三版编写组1999年1月第二版中国建筑工业出版社) 大体积混凝土与普通混凝土的区别表面上看是厚度不同,但其实质的区别是由于混凝土中水泥水化要产生热量,大体积混凝土内部的热量不如表面的热量散失得快,造成内外温差过大,其所产生的温度应力可能会使混凝土开裂。因此判断是否属于大体积混凝土既要考虑厚度这一因素,又要考虑水泥品种、强度等级、每立方米水泥用量等因素,比较准确的方法是通过计算水泥水化热所引起的混凝土的温升值与环境温度的差值大小来判别,一般来说,当其差值小于25℃时,其所产生的温度应力将会小于混凝土本身的抗拉强度,不会造成混凝土的开裂,当差值大于25℃时,其所产生的温度应力有可能大于混凝土本身的抗拉强度,造成混凝土的开裂,此时就可判定该混凝土属大体积混凝土。(摘录自《地下工程防水技术规范》GB50108-2001) 高层建筑的箱形基础或片筏基础都有厚度较大的钢筋砼底板,高层建筑的桩基础则常有厚大的承台,这些基础底板和桩基承台均属大体积钢筋砼结构。还有较常见的一些厚大结构转换层楼板和大梁也属大体积钢筋砼结构。 2、大体积砼与普通砼的区别 不能以截面尺寸来简单判断是否大体积砼,实际施工中,有些砼厚度达到1m,但也不属于大体积砼的范畴,有些砼虽然厚度未达到1m,但水化热却较大,不按大体积砼的技术标准施工,也会造成结构裂缝。 大体积砼与普通砼的区别表面上看是厚度不同,但其实质的区别是由于砼中水泥水化要产生热量,大体积砼内部的热量不如表面的热量散失得快,造成内外温差过大,其所产生的温度应力可能会使砼开裂。因此判断是否属于大体积砼既要考虑厚度这一因素,又要考虑水泥品种、强度等级、每立方米水泥用量等

相关主题
文本预览
相关文档 最新文档