当前位置:文档之家› 串联型线性稳压电路

串联型线性稳压电路

串联型线性稳压电路
串联型线性稳压电路

稳压电路具有自动维持输出电压稳定的功能。稳压电路之所以能够自动稳压,关键是在电路中有一个自动可调的调整元件。当输出电压升高时,调整元件会自动调整使输出电压降低;当输出电压降低时,调整元件又会自动调整使输出电压升高,从而使输出电压达到基本稳定。按照调整元件在电路中与负载的连接方式,稳压电路分为并联型和串联型。如图8. 4.1是最简单的并联型稳压电路,调整元件是稳压二极管Dz,电阻R起限流和电压补偿作用。用稳压管构成酌稳压电路只适用于输出电压固定且稳定度不高的场合。下面重点讨论用晶体管作为可调元件所构成的串联型稳压电路。典型的串联型晶体管稳压电路由四部分组成,它们是调整管、取样电路、基准电压电路和比较放大电路。图8.4.2是串联型晶体管稳压电路的框图。尽管实际应用中的串联型稳压电路有各种形式,但是,上述四个组成部分是最基本的,也是必不可少的。

1.串联型线性稳压电路由于晶体管的集一射极电压UCE和集电极电流记受基极电流ZB的控制,即ZB增大时,zc增大,而UCE减小,这相当于集一射极间的电阻减小;相反,当ie减小时,ic减小,而UCE增大,这相当于集一射极间的电阻增大。可见,晶体管集一射极间相当于一个受基极电流控制的可调电阻,因此,晶体管可以作为调整元件。晶体管作为调整元件时又称为调整管。典型的串联型晶体管稳压电路如图8.4.3所示。在该电路中,晶体管Ti为调整管,因为调整

管与负载RL串联,故称为串联型稳压电路。R3和Dz组成稳压管稳压电路,给晶体管T2的射极提供稳定的电压,稳定电压Uz称为基准电压。电阻Ri和Rz组成分压电路,又称取样电路,它的作用是取输出电压的一部分供给T2的基极。晶体管T2的作用是将取样电路送来的取样电压咒Uo与基准电压UZ进行比较,并把输出电压中变化部分nAUo进行放大后去控制调整管的基极,故晶体管T2构成比较放大级,Rc为T2的集电极负载电阻。该稳压电路的稳压原理如下:输入电压U.。增加(负载电流减小),将导致输出电压Uo增加;输出电压的增加,将引起取样电压UB2的增加,同时,由于Tz的射极电压UZ基本不变,其结果使U BE2增大,基极电流IB2增大,基极电流的增大又引起集电极电流IC2的增大,最后导致UC2(即UB1)下降,UBE1减小,Icl减小,而UCE1增大,由于UO=U.。-UCE,则UO下降,从而维持输出电压基本稳定。

2.稳压电路的主要性能指标衡量稳压电路质量的主要指标有两个。

1)稳压系数S 在负载RL和环境温度不变的情况下,输出电压的相对变化量与输入电压的相对交化量之比称为稳压系数。

2)输出电阻在输入电压和环境温度不变的情况下,输出电压的变化量与输出电流的变化量之比,称为稳压电路的输出电阻。 3.稳压电路中的过载保护电路为什么要设置保护电路?由串联型稳压电路可知,流过负载的电流要全部通过调整管。

因此,当输出过载,特别是输出端短路时,通过调整管的电流很大且输入电压要全部落在调整管的集一射极间,这样就会使得调整管的管耗很大。当调整管的损耗超过所规定的最大允许管耗PCM时,调整管将被损坏。尽管在多数稳压电源中有保险(丝)管,但由于晶体管的热惯性,普通保险丝起不到应有的保护作用。所以,在稳压电路中一般都要设置保护电路。

LDO线性稳压器

线性稳压器(LDO) 一、应用场景 图1所示电路是一种最常见的AC/DC电源,交流电源电压经变压器后,变换成所需要的电压,该电压经整流后变为直流电压。在该电路中,低压差线性稳压器的作用是:在交流电源电压或负载变化时稳定输出电压,抑制纹波电压,消除电源产生的交流噪声。 图 1 LDO在AC-DC电路中的应用 各种蓄电池的工作电压都在一定范围内变化。为了保证蓄电池组输出恒定电压,通常都应当在电池组输出端接入低压差线性稳压器,如图 2所示。低压差线性稳压器的功率较低,因此可以延长蓄电池的使用寿命。同时,由于低压差线性稳压器的输出电压与输入电压接近,因此在蓄电池接近放电完毕时,仍可保证输出电压稳定。 图 2 LDO在电池供电电路中的应用 众所周知,开关性稳压电源的效率很高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响。在开关性稳压器输出端接入低压差线性稳压器,如图 3所示,就可以实现有源滤波,而且也可大大提高输出电压的稳压精度,同时电源系统的效率也不会明显降低。 图 3 DC-DC电路中LDO的应用

在某些应用中,比如无线电通信设备通常只有一足电池供电,但各部分电路常常采用互相隔离的不同电压,因此必须由多只稳压器供电。为了节省共电池的电量,通常设备不工作时,都希望低压差线性稳压器工作于睡眠状态。为此,要求线性稳压器具有使能控制端。有单组蓄电池供电的多路输出且具有通断控制功能的供电系统如图 4所示。 图 4 多路LDO供电中的应用 二、原理 1)定义 LDO 是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或FET,从应用的输入电压中减去超额的电压,产生经过调节的输 出电压,即输出电压是输入电压与晶体管或FET产生的管压降的差值。 图 5 基本原理框图 所谓压降电压,是指稳压器将输出电压维持在其额定值上下100mV 之内所需的输入电压与输出电压差额的最小值。 2)工作原理

(完整版)串联型直流稳压电源设计

课程设计 课程名称模拟电子技术基础 题目名称串联型直流稳压电源 学生学院物理与光电工程学院 专业班级09级电子科学与技术3班学号3109008668 学生姓名崔文锋 指导教师何榕礼 2010年12 月20 日

目录 一、设计任务与要求。。。。。。1 二、电路原理分析与方案设计。。。。。。1 1、方案比较。。。。。。1 2、电路的整体框图。。。。。。3 3、单元设计及参数计算、元器件选择。。。。。。3 4、电路总图。。。。。。7 5、元器件清。。。。。。7 6、电路仿真过程及结果。。。。。。8 三、电路调试过程及结果。。。。。。10 四、总结。。。。。。10 五、心得体会。。。。。。11 六、组装后的实物电路图。。。。。。12

串联型直流稳压电源设计报告 一、设计任务与要求 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V 、9V 两档,同时具备正负极性输出; 2、输出电流:额定电流为150mA ,最大电流为500mA ; 3、在最大输出电流的时候纹波电压峰值▲V op-p ≤5mv ; 任务:1、了解带有的组成和工作原理: 2、识别的电路图: 3、仿真电路并选取元器件: 4、安装调试带有放大环节串联型稳压电路: 5、用仪器仪表对电路调试和测量相关参数: 6、撰写设计报告、调试。 二、电路原理分析与方案设计 采用变压器、二极管、集成运放、电阻、稳压管、三极管等元器件。220V 的交流电经变压器变压后变成电压值较小的电流,再经桥式整流电路和滤波电路形成直流稳压部分采用串联型稳压电路。比例运算电路的输入电压为稳定电压,且比例系数可调,所以输出电压也可以调节:同时,为了扩大输出电流,集成运放输出端加晶体管,并保持射级输出形式就构成了具有放大环节的串联型稳压电路。 1、方案比较 方案一: 先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R 2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由E B BE U U U -=可知BE U 将

线性电源设计基础知识

Literature Number:ZHCA563

作为电源行业的技术编辑,每天编写及整理出一篇篇技术文章便是我们工作的乐趣与重心,这是一个不停地思考、不停地接触新知识、不停地读书、不停地将灵感转化为现实的工作;同时,把自己编辑过程中的点滴努力都体现在文章中,留下一个个实实在在的印记。而今天我们有幸将所了解的知识变成一本电子书,这一份强烈的欣喜感油然而生。 熟悉电源网的网友都知道,一直以来,TI在技术培训上面投入了很大的精力,而作为行业门户网站的我们也不停的在思考,以何种方式给网友提供更好的培训课程。一直以来,我们联合TI进行在线课程的培训讲解,为的就是能够让大家不受地域、时间限制了解知识。 《线性稳压器基础知识》是电源网的第三本电子书,后期还会继续推出更多更好的培训及相应电子书。在此,也请广大读者以及工程师批评指正,形成更好的电子书分享给大家。在这里也对部分已经观看过培训视频、并给出很多积极反馈的工程师朋友们表示感谢。希望更多工程师朋友加入到与我们互动的行列中,分享你们的学习经验。 电源网 2013年7月

线性稳压器的工作原理是采用一个压控电流源以强制在稳压器输出端上产生一个固定电压,控制电路连续监视(检测)输出电压,并调节电流源(根据负载的需求)以把输出电压保持在期望的数值。 电流源的设计极限限定了稳压器在仍然保持电压调节作用的情况下所能供应的最大负载电流。输出电压采用一个反馈环路进行控制,其需要某种类型的补偿以确保环路稳定性。大多数线性稳压器都具有内置补偿功能电路,无需外部组件就能保持完全稳定。 《线性稳压器基础知识》电子书共分为二章,第一章线性稳压器基础知识,讲述了最基础的线性稳压器知识理论,第二章线性稳压器的分类,讲述了NPN型的LDO、PNP型的LDO、NMOS型的LDO、PMOS 型的LDO这四种不同线性稳压器的特性、架构图、功率损失的简单模型、传输元件,以及驱动电流与低/高负载电流的关系。

低压差线性稳压器(LDO)简介

低压差线性稳压器(LDO)的基本原理和主要参数 摘要:本文论述了低压差线性稳压器(LDO)的基本原理和主要参数,并介绍LDO 的典型应用和国内发展概况。 引言 便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。比如单体锂离子电池充足电时的电压为4.2V ,放完电后的电压为2.3V ,变化范围很大。各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波[1]。 一.LDO 的基本原理 低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT 、取样电阻R1和R2、比较放大器A 组成。 取样电压加在比较器A 的同相输入端,与加在反相输入 端的基准电压Uref 相比较,两者的差值经放大器A 放大 后,控制串联调整管的压降,从而稳定输出电压。当 输出电压Uout 降低时,基准电压与取样电压的差值增 加,比较放大器输出的驱动电流增加,串联调整管压 降减小,从而使输出电压升高。相反,若输出电压Uout 超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压 校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。 图1-1 低压差线性稳压器基本电路应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET 。 二.低压差线性稳压器的主要参数 1.输出电压(Output Voltage) 输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。低压差线性稳压器有固定输出电压和可调输出电压两种类型。 固定输出电压稳压器使用比较方便,而且由于输出电压是经过厂家精密调整的,所以稳压器精度很高。但是其设定的输出电压数值均为常用电压值,不可能满足所有的应用要求,但是外接元件数值的变化将影响稳定精度。 2.最大输出电流(Maximum Output Current) 用电设备的功率不同,要求稳压器输出的最大电流也不相同。通常,输出电流越大的稳压器成本越高。为了降低成本,在多只稳压器组成的供电系统中,应根据各部分所需的电流值选择适当的稳压器。 3.输入输出电压差(Dropout Voltage)

串联型稳压电源设计要求

串联型稳压电源电路原理图 串联型稳压电源电路PCB图

串联型稳压电源设计要求 要求: 1.PCB外形尺寸70 mm * 60 mm 2. 图中元件按指定位置摆放出 3.布线线宽>1.5 mm 输入插座IN、输出插座OUT分别位于PCB 的左右两侧。 由于流过BG1的电流大,连接BG1的导线粗些,BG1应靠边安装,以便加装散热器,画PCB时注意E、B、C脚不要画反。 大电位器RW1靠另一边,把手朝外。 加电前先检查线路、焊点、二极管、电解极性。用表检查输入输出,确认没有短路方可加电。 调整管BG1和电位器RW1直接装在外壳上,用导线将各端连到线路板相应的位置。由于流过BG1的电流较大,连接BG1的导线线径要

大些。BG1安装时应处理好它的绝缘和散热措施。 串联型稳压电源元器件清单

考核标准 报告10月8号学习委员按学号排序收齐后交到409。 考核标准(拟): 成绩组成:平时成绩(20%)+ PCB设计(40%)+ 纸质报告(40%) 封面包含: 设计题目、学院名称、专业、班级、姓名、学号、指导教师 报告内容包含: 一. 课程设计目的(5分) 培养学生掌握典型电路设计软件Altium Designer 09 ,具备独立绘制电子线路图、制作PCB电路板的能力。使得同学们在以后的学习和工作中掌握常用电子线路设计软件的使用方法。 1. 熟悉Altium Designer 09软件及环境 2. 掌握PCB设计流程; 3. 能熟练运用印制电路板设计软件Altium Designer9软件进行原理图设计,其中包括原理图图纸的设置、各种报表的生成和原理图的输出等; 4. 能熟练运用印制电路板设计软件Altium Designer9软件进行PCB设计,其中包括PCB 设计步骤、PCB图的设计规则等; 5. 掌握原理图元件库、封装库的创建,会绘制新元件及其封装。 通过此课程的训练,进一步提高对Altium Designer这一软件的综合运用能力,锻炼实际应用能力,巩固所学的知识,为同学们将来走向工作岗位奠定基础。 二. 课程设计要求(5分) 1.设计报告简述设计原理和思路,附上电路原理图、PCB设计图、元器件清单图、自建元件封装、元件连接网络表等;。 2.设计上述印制电路板图PCB尺寸为70mm*60mm,要求元件布局紧凑、科学合理、整齐美观。(单层板\局部手工布线); 3.按照相关要求撰写课程设计报告书。 三. 课程设计内容(5分) 1.了解电路图的原理。

线性稳压器原理

随着便携式设备(电池供电)在过去十年间的快速增长,象原来的业界标准LM340 和 LM317 这样的稳压器件已经无法满足新的需要。这些稳压器使用NPN 达林顿管,在本文中称其为NPN 稳压器(NPN regulators)。预期更高性能的稳压器件已经由新型的低压差(Low-dropout)稳压器(LDO)和准LDO稳压器(quasi-LDO)实现了。 NPN 稳压器(NPN regulators) 在NPN稳压器(图1:NPN稳压器内部结构框图)的内部使用一个PNP管来驱动NPN 达林顿管(NPN Darlington pass transistor),输入输出之间存在至少1.5V~2.5V 的压差(dropout voltage)。这个压差为: Vdrop =2Vbe +Vsat(NPN 稳压器) (1) LDO 稳压器(LDO regulators) 在LDO(Low Dropout)稳压器(图2:LDO稳压器内部结构框图)中,导通管是一个PNP管。LDO的最大优势就是PNP管只会带来很小的导通压降,满载(Full-load)的跌落电压的典型值小于500mV,轻载(Light loads)时的压降仅有10~20mV。LDO的压差为: Vdrop =Vsat (LDO 稳压器) (2)

准LDO 稳压器(Quasi-LDO regulators) 准LDO(Quasi-LDO)稳压器(图3:准LDO 稳压器内部结构框图)已经广泛应用于某些场合,例如:5V到3.3V 转换器。准LDO介于NPN 稳压器和LDO 稳压器之间而得名,导通管是由单个PNP 管来驱动单个NPN 管。因此,它的跌落压降介于NPN稳压器和LDO之间: Vdrop =Vbe +Vsat (3) 稳压器的工作原理(Regulator Operation) 所有的稳压器,都利用了相同的技术实现输出电压的稳定(图4:稳压器工作原理图)。输出电压通过连接到误差放大器(Error Amplifier)反相输入端(Inverting Input)的分压电阻(Resistive Divider)采样(Sampled),误差放大器的同相输入端(Non-inverting Input)连接到一个参考电压Vref。参考电压由IC内部的带隙参考源(Bandgap Reference)产生。误差放大器总是试图迫使其两端输入相等。为此,它提供负载电流以保证输出电压稳定: Vout = Vref(1 + R1 / R2)

串联型稳压电路的工作原理

. 9.5.1 串联型稳压电路的工作原理 一、基本调整管电路 如下图(a)所示为稳压管稳压电路,负载电流最大变化范围等于稳压管的最大稳定电流和最小稳定电流之差,即(I-I)。ZZM扩大负载电流的最简单方法是:利用晶体管的电流放大作用,将稳压管稳定电路的输出电流放大后,再作为负载电流。电路采用射极输出形式,因而引入了电压负反馈,可以稳定输出电压,如图(b)所示,常见画法如图(c)所示。 其工作原理如下: 调整管:晶体管的调节作用使U稳定,晶体管称为调整管。O要使调整管起到调整作用,必须使它工作在放大状态。 串联稳压电源:由于调整管与负载相串联,故称这类电路为串联型稳压电源。 线性稳压电源:由于调整管工作在线性区,故称这类电路为线性稳压

电源。 二、具有放大环节的串联稳压电路★电路构成 基本调整管稳压电路的输出电压不可调,且输出电压因U的变BE化而变,稳定性较差。为了使输出电压可调,加深电压负反馈,可在基本调整管稳压电路的基础上引入放大环节。 电路如图所示,由调整管、基准电压电路、取样电路和比较放大电路组成。 . . ★稳压原理 当电网电压波动(或负载电阻的变化)使输出电压U上升时,O取样电压U增大,由于稳压管的电压U不变,运放的输入电压 ZN U(=U-U=U-U)增大,使A的输出减小(即调整管的基极电位降ZNPNPN 低),而使调整管T的c-e压降低增大,从而调节输出电压U(=U-U) ceOI减小。使输出电压得到稳定。 可见,电路是靠引入深度电压负反馈来稳定输出电压。

★输出电压的可调范围 当电位器R的滑动端在最上端时,输出电压最小为2 当电位器R的滑动端在最下端时,输出电压最大为2 若R=R=R=300Ω,U=6V,则输出电压9V≤U≤18V。O213Z★调整管的选择 在串联型稳压电路中,调整管是核心元件,它的安全工作是电路正常工作的保证。调整管一般为大功率管,因而选用原则与功率放大电路中的功放管相同,主要考虑其极限参数I、U 和P。CMCMBRCEO)(◆I 的选取CM调整管中流过的最大集电极电流为 I=I+I R1CmaxLmax其中I为负载电流最大额定值,I为取样、比较放大和基准R1Lmax环节所消耗的电流,通常R上的电流可忽略,所以1I?I LmaxCM ◆击穿电压的选取 . . 当电网电压波动±10%时,稳压电路输入电压U到最大值U,ImaxI同时输出电压又最低时,调整管承受的管压降最大,所以要求调整管击穿电压为 U?U-U OminImax BRCEO )(◆功率P的选取CM调整管可能承受的最大集电极功耗为 P=U I=(U-U)I Cmax CmaxOminCmaxImax CEmax U是考虑到电网电压波动±10%时,稳压电路输入电

串联型直流稳压电源电路设计报告

串联型直流稳压电源设计报告 一、计题目 题目:串联型直流稳压电源 二、计任务和要求 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V 、9V 两档,正负极性输出; 2、输出电流:额定电流为150mA ,最大电流为500mA ; 3、纹波电压峰值▲V op-p ≤5mv ; 三、理电路和程序设计: 1、方案比较 方案一:先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R 2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由E B BE U U U -=可知BE U 将减小(升高)导致基极电流和发射极电流的减小(增大),使得R 两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。 图1 方案一稳压部分电路 方案二:经有中间抽头的变压器输出后,整流部分同方案一一样擦用四个二极管

组成的单相桥式整流电路,整流后的脉动直流接滤波电路,滤波电路由两个电容组成,先用一个较大阻值的点解电容对其进行低频滤波,再用一个较低阻值的陶瓷电容对其进行高频滤波,从而使得滤波后的电压更平滑,波动更小。滤波后的电路接接稳压电路,稳压部分的电路如图2所示,方案二的稳压部分由调整管,比较放大电路,基准电压电路,采样电路组成。当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(升高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。 图2 方案二稳压部分单元电路 对以上两个方案进行比较,可以发发现第一个方案为线性稳压电源,具备基本的稳压效果,但是只是基本的调整管电路,输出电压不可调,而且输出电流不大,而第二个方案使用了运放和调整管作为稳压电路,输出电压可调,功率也较高,可以输出较大的电流。稳定效果也比第一个方案要好,所以选择第二个方案作为本次课程设计的方案。 2、电路框图 整体电路的框架如下图所示,先有22V-15V的变压器对其进行变压,变压后再对其进行整流,整流后是高低频的滤波电路,最后是由采样电路、比较放大电路和基准电路三个小的单元电路组成的稳压电路,稳压后为了进一步得到更加稳定的电压,在稳压电路后再对其进行小小的率波,最后得到正负输出的稳压电源。

串联型三极管稳压电路。

用三极管V代替图8.2中的限流电阻R,就得到图8.3所示的串联型三极管稳压电路。 在基极电路中,VDZ与R组成参数稳压器。 图8.3 串联型三极管稳压电路 2. 工作原理 〔实验〕: ①按图8.3连接电路,检查无误后,接通电路。 ②保持输入电压Ui不变,改变RL,观察U0。 ③保持负载RL不变,改变UL,观察U0。 结论:输出电压U0基本保持不变。 该电路稳压过程如下: (1)当输入电压不变,而负载电压变化时,其稳压过程如下: (2)当负载不变,输入电压U增加时,其稳压过程如下: (3)当UI增加时,输出电压U0有升高趋势,由于三极管T基极电位被稳压管DZ固定,故U0的增加将使三极管发射结上正向偏置电压降低,基极电流减小,从而使三极管的集射极间的电阻增大,UCE增加,于是,抵消了U0的增加,使U0基本保持不变.

上述电路虽然对输出电压具有稳压作用,但此电路控制灵敏度不高,稳压性能不理想。 8.3.2 带有放大环节的串联型稳压电路 1.电路组成 在图8.3电路加放大环节.如图8.4所示。可使输出电压更加稳定。 图8.4带放大电路的串联型稳压电路 取样电路:由R1、RP、R2组成,当输出电压变大时,取样电阻将其变化量的一部分送到比较放大管的基极,基极电压能反映出电压的变化,称为取样电压;取样电压不宜太大,也不宜太小,若太大,控制的 灵敏度下降;若太小,带负载能力减弱。 基准电路:由RZ、VDZ组成,给V2发射极提供一个基准电压,RZ为限流电阻,保证VDZ有一个合 适的工作电流。 比较放大管V2:R4既是V2的集电极负载电阻,又是V1的基极偏置电阻,比较放大管的作用是将输出电压的变化量,先放大,然后加到调整管的基极,控制调整管工作,提高控制的灵敏度和输出电压的稳定 性。 调整管V1:它与负载串联,故称此电路为串联型稳压电路,调整管V1受比较放大管控制,集射极间相 当于一个可变电阻,用来抵消输出电压的波动。 2.工作原理 (1)当负载RL不变,输入电压UI减小时,输出电压U0有下降趋势,通过取样电阻的分压使比较放大管的基极电位UB2下降,而比较放大管的发射极电压不变(UE2=UZ),因此UBE2也下降,于是比较放大管导通能力减弱,UC2升高,调整管导通能力增强,调整管V1集射之间的电阻RCE1减小,管压降UCE1下降,使输出电压U0上升,保证了U0基本不变。其过程表示如下: (2)当输入电压不变,负载增大时,引起输出电压有增长趋势,则电路将产生下列调整过程: 当负载RL减小时,稳压过程相反。

串联型稳压电源设计

串联型直流稳压电源 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V、9V两档,同时具备正负极性输出; 2、输出电流:额定电流为150mA,最大电流为500mA; 3、在最大输出电流的时候纹波电压峰值▲V op-p≤5mv; 一.原理电路和设计程序 小功率稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成,如图所示。220V的交流电经变压器后变成电压值比较小的交流,再经桥式整流电路和滤波电路形成直流,稳压部分采用串联型稳压电路。下图为其基本框架 1.方案比较确定 方案一:用晶体管和集成运放组成的基本串联型直流稳压电源 方案二:用晶体管和集成运放组成的具有保护环节的串联型直流稳压电路

上面两种方案中,方案一较简单,但功能较少,没有保护电路和比较放大电路,因而不够实用,故抛弃方案一。从简单、合理、可靠、经济而且便于购买 的前提出发,选择方案二位最终的设计方案。 2.变压电路 (1)电源变压器T 的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压Ui 。变压器副边与原边的功率比为P2/ P1=η,式中η是变压 器的效率。变压器副边电压有效值决定于后面电路的需要。根据经验,稳压电 路的输出电压一般选取U i =(2~3)Uo 。所以选择15V10W 的变压器。 3.整流和滤波电路 整流电路在工作时,电路中的四只二极管都是作为开关运用,根据整流滤波电路工作原理图可知: 当正半周时,二极管D1、D2导通(D5、D4截止),在负载电阻上得到正弦波的正半周; 当负半周时,二极管D5、D4导通(D1、D2截止),在负载电阻上得到正弦波的负半周 滤波电路一般由电容组成,其作用是把脉动直流电压u 3中的大部分纹波加 以滤除,以得到较平滑的直流电压U I 。U I 与交流电压u 2的有效值U 2的关系为: 2)2.1~1.1(U U I = 在整流电路中,每只二极管所承受的最大反向电压为: 22U U RM = 流过每只二极管的平均电流为: R U I I R D 245.02== 4.稳压电路 交流电压经过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或负载变化时,其平均值也随机变化。稳压电路的功能是使输出直流电压基本不受电网的电压波动和负载电阻变化的影响,从而获得更高的稳定性。 由于成本、元件和仿真的条件限制,稳压电路只采取一个具有放大环节的基本串联型稳压电路和一个保护电路 由于简易串联稳压电源输出电压受稳压管稳压值得限制无法调节,造成电路

线性稳压器和开关模式电源的基本概念

线性稳压器和开关模式电源的基本概念 关键字:线性稳压器开关模式电源SMPS 摘要 本文阐述了线性稳压器和开关模式电源(SMPS)的基本概念。目的是针对那些对电源设计和选择可能不很熟悉的系统工程师。文章说明了线性稳压器和SMPS的基本工作原理,并讨论了每种解决方案的优势和劣势。以降压型转换器为例进一步解释了开关稳压器的设计考虑因素。 引言 如今的设计要求在电子系统中有越来越多的电源轨和电源解决方案,且负载范围从几mA(用于待机电源)到100A以上(用于ASIC电压调节器)。重要的是必需选择针对目标应用的合适解决方案并满足规定的性能要求,例如:高效率、紧凑的印刷电路板(PCB)空间、准确的输出调节、快速瞬态响应、低解决方案成本等。对于系统设计师来说,电源管理设计正成为一项日益频繁和棘手的工作,而他们当中许多人可能并没有很强的电源技术背景。 电源转换器利用一个给定的输入电源来产生用于负载的输出电压和电流。其必需在稳态和瞬态情况下满足负载电压或电流调节要求。另外,它还必须在组件发生故障时对负载和系统提供保护。视具体应用的不同,设计师可以选择线性稳压器(LR)或开关模式电源(SMPS)解决方案。为了选择最合适的解决方案,设计师应熟知每种方法的优点、不足和设计关注点,这是十分重要。 本文将着重讨论非隔离式电源应用,并针对其工作原理和设计的基本知识作相关介绍。 线性稳压器 线性稳压器的工作原理 我们从一个简单的例子开始。在嵌入式系统中,可从前端电源提供一个12V总线电压轨。在系统板上,需要一个3.3V电压为一个运算放大器(运放)供电。产生3.3V电压最简单的方法是使用一个从12V总线引出的电阻分压器,如图1所示。这种做法效果好吗?回答常常是―否‖。在不同的工作条件下,运放的V CC引脚电流可能会发生变化。假如采用一个固定的电阻分压器,则IC V CC电压将随负载而改变。此外,12V总线输入还有可能未得到良好的调节。在同一个系统中,也许有很多其他的负载共享12V电压轨。由于总线阻抗的原因,12V总线电压会随着总线负载情况的变化而改变。因此,电阻分压器不能为运放提供一个用于确保其正确操作的3.3V稳定电压。于是,需要一个专用的电压调节环路。如图2所示,反馈环路必需调整顶端电阻器R1的阻值以动态地调节V CC上的3.3V。

串联稳压电路的分析

简易串联稳压电源1、原理分析图4-1-1是简易串联稳压电源,T1是调整管,D1是基准电压源,R1是限流电阻,R2是负载。由于T1基极电压被D1固定在UD1,T1发射结电压(UT1)BE在T1正常工作时基本是一个固定值(一般硅管为0.7V,锗管为0.3V),所以输出电压UO=UD1-(UT1)BE。当输出电压远大于T1发射结电压时,可以忽略(UT1)BE,则UO≈UD1。 下面我们分析一下建议串联稳压电源的稳压工作原理:假设由于某种原因引起输出电压UO降低,即T1的发射极电压(UT1)E降低,由于UD1保持不变,从而造成T1发射结电压(UT1)BE上升,引起T1基极电流(IT1)B上升,从而造成T1发射极电流(IT1)E被放大β倍上升,由晶体管的负载特性可知,这时T1导通更加充分管压降(UT1)CE将迅速减小,输入电压UI更多的加到负载上,UO得到快速回升。这个调整过程可以使用下面的变化关系图表示:UO↓→(UT1)E↓→UD1恒定→(UT1)BE↑→(IT1)B↑→(IT1)E↑→(UT1)CE↓→UO↑当输出电压上升时,整个分析过程与上面过程的变化相反,这里我们就不再重复,只是简单的用下面的变化关系图表示:UO↑→(UT1)E↑→UD1恒定→(UT1)BE↓→(IT1)B↓→(IT1)E↓→(UT1)CE↑→UO↓这里我们只分析了输出电压UO降低的稳压工作原理,其实输入电压UI降低等其他情况下的稳压工作原理都与此类似,最终都是反应在输出电压UO降低上,因此工作原理大致相同。从电路的工作原理可以看出,稳压的关键有两点:一是稳压管D1的稳压值UD1 要保持稳定;二是调整管T1要工作在放大区且工作特性要好。其实还可以用反馈的原理来说明简易串联稳压电源的工作原理。由于电路是一个射极输出器,属于电压串联负反馈电路,电路的输出电压为UO=(UT1)E≈(UT1)B,由于(UT1)B保持稳定,所以输出电压UO也保持稳定。简易串联稳压电源由于使用固定的基准电压源D1,所以当需要改变输出电压时只有更换稳压管D1,这样调整输出电压非常不方便。另外由于直接通过输出电压UO的变化来调节T1的管压降(UT1)CE,这样控制作用较小,稳压效果还不够理想。因此这种稳压电源仅仅适合一些比较简单的应用场合。 2、电路实例图4-1-1是简易串联稳压电源的一个实际应用电路,这个电路用在无锡市无线电五厂生产的“咏梅”牌771型8管台式收音机上。其中T8、DZ、R18构成简易稳压电路,B6、D4~D7、C21组成整流滤波电路。由于T8发射结有0.7V压降,为保证输出电压达到6V,应选用稳压值为 6.7V左右的稳压管。

串联型直流稳压电源实验报告

模电课程设计实验报告 学校:XX 专业:XXXX 课题:串联型直流稳压电源 指导老师: XXX 设计学生: XXXXXXX XXX 学号:XXXX XXX XXXX 2011/7/4 惠州学院 HUIZHOU UNIVERSITY

目录 一、课题--------------------------------------------------3 二、课题技术指标--------------------------------------------------3 三、设计要求--------------------------------------------------3 四、元件器件清单--------------------------------------------------3 五、设计方案--------------------------------------------------3 六、直流稳压电源的元器件--------------------------------------------------4 七、设计计算--------------------------------------------------6 八、焊接实图--------------------------------------------------8 九、心得体会--------------------------------------------------9

一、课题:串联型直流稳压电源 二、课题技术指标 1、输出电压:8~15V可调 2、输出电流:I O=1A 3、输入电压:交流220V +/- 10% 4、保护电流:I Om =1.2A 5、稳压系数:S r = 0.05%/V 6、输出电阻:R O < 0.5 Ω 7、交流分量(波纹电压):<10mV 三、设计要求 1、分析电路组成及工作原理; 2、单元电路设计计算; 3、采用分立元件电路; 4、画出完整电路图; 5、调试方法; 6、小结与讨论。 四、元件器件清单 先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由可知将减小(升高)导致基极电流和发射极电流的减小(增大),使得R两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。 直流稳压电源一般由电源变压器,整流滤波电路及稳压电路组成。变压器吧市电交流电压变所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本次设计主要采用串联型直流稳压电路,通过220V 、50HZ交流电压经电源变压器降压后,通过桥式整

线性稳压器的基础

线性稳压器又称为三引脚稳压器或降压器等,由于电路简单而容易使用,是许多设计者以前早就耳熟能详的电源。过去由分立器件所构成,IC化普及后变得既简便又小型,被使用在各种不同电源的应用中。近年电子设备要求必须具有高效率,需要大输出功率的设备逐渐以开关电源为主流,不过简单又省空间且低噪声的线性稳压器则是哪里都用得到的电源。 本项从线性稳压器的工作原理开始,说明其主要规格与热计算。 线性稳压器基本上由输入、输出、GND引脚所构成,可变输出则在此增加反馈输出电压的反馈(feed back)引脚(参考图1)。 线性稳压器内部电路概述如图2所示。基本上由误差放大器(误差检测用运算放大器)、基准电压源、输出晶体管所构成。输出晶体管虽用Pch MOSFET,但也可使用Nch的MOSFET、双极的PNP、NPN晶体管。 图2:内部电路概述 工作是完全模拟,是使用了运算放大器基本控制电路之一,即反馈(feed back)环路。输入或负载变动后,即使输出电压开始变动,误差放大器也会连续比较来自稳压器输出电压的反馈电压和基准电压,调整功率晶体管使差分为零,将VO维持恒定。这是反馈环路控制稳定化(调节)。具体上如前所述,误差放大器非反转引脚的电压由于经常与VREF相同,故流向R2的电流将会恒定。流向R1和R2的电流通过REF÷R2可以求得,故Vo将为此电流×(R1+R2)。这就是欧姆定律,公式如下: 关键要点: ?使用误差放大器的反馈环路控制让线性稳压器的输出稳定。 线性稳压器的电路构成虽然基本上为图5的反馈环路电路,不过压差电压会因输出晶体管种类而异。

标准型和LDO型有极大不同,而LDO型中更可分为3种。使用双极NPN晶体管的LDO虽然品种不太多,但可以处理大电流。甚至可达10A之高,但压差电压则为1V~2V以下,在LDO 中为高压类。双极PNP晶体管的LDO目前是双极系LDO主流。起初很难克服启动时的浪涌电流或电流容量问题,不过已逐渐改善。输出晶体管使用MOSFET的产品可支持更低输出电压、以支持电池驱动应用产品的低功耗需求。 图5:基本电路和输出晶体管 图6:输出晶体管和压差电压 关键要点: ?压差电压视因使用的输出段(控制)晶体管种类而异,故根据使用条件分开使用。 系列稳压器、三引脚稳压器、降压器、LDO。这些想必有听过的名称全都是指线性稳压器。除了这些名称,根据其功能或方式可以分成几类。

串联反馈型稳压电路设计要点

模拟电子技术课程设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 学 生 姓 名 学 号 成绩

目录 第一章设计目的和要求..................................................... 1.1 实验目的 1.2 实验要求 第二章电路原理及分析....................................................... 2.1 题目分析 2.2 电路原理构成 2.3 稳压原理与输出电压的调节 第三章电路设计及构成................................................................ 3.1 设计思想 3.2 原件参数表 第四章仿真分析................................................................ 4.1 静态测量 4.2 动态测量 第五章实验结果分析................................................. 5.1 误差分析 第六章设计小结.................................................

串联反馈型稳压电路 第一章·设计要求和目的 1.1实验目的 (1) 通过实验进一步掌握稳压电路的工作原理。 (2) 学会电源电路的设计与调试方法。 1.2 实验要求 (1) 性能指示要求: a. 输入220V 交流电压,具有输出电压可调功能,输出电压范围3~18V 。 b. 电路具有自身保护功能,具有一定的带负载能力。输出电流大于500mA c. 负载电流为500mA 时,过流保护电路工作 d. 电路具有一定的抗干扰能力 (2) 报告要求: a. 作出电路设计与分析 b. 检验所设计电路是否满足设计要求。若改变电路或元件参数值,写出原因根系及调整后的电路或元件参数值 第二章.题目分析 2.1 电路框图 (1) 电子电路工作时都需要直流电源提供能量,电池因使用费用高,一般只用于低功耗便携式的仪器设备中。 电源变压器: 将交流电网电压v1变为合适的交流电压 整流电路: 将交流电压v2变为脉动的直流电压 滤波电路: 将脉动直流电压v3转变为平滑的直流电压v4 稳压电路: 清除电网波动及负载变化的影响,保持输出电压vo 的稳定。 四个环节的工作原理如下: 整 流 电 路 滤 波 电 路 稳 压 电 路 v 1 v 2 v 3 v 4 v o

低压差线性稳压器

低压差线性稳压器(LDO)的基本原理和 主要参数,LDO的典型应用和国内发展概况。 引言 便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。比如单体锂离子电池充足电时的电压为4.2V,放完电后的电压为2.3V,变化范围很大。各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波[1]。 一.LDO的基本原理 低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。 图1-1 低压差线性稳压器基本电路 取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A 放大后,控制串联调整管的压降,从而稳定输出电压。当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。 应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET。 二.低压差线性稳压器的主要参数 1.输出电压(Output Voltage)

串联型稳压电源的设计说明

集成直流稳压电源设计报告 一、计题目 题目:集成直流稳压电源 二、计任务和要求 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V 、9V 两档,正负极性输出; 2、输出电流:额定电流为150mA ,最大电流为500mA ; 3、纹波电压峰值▲Vop-p ≤5mv ; 三、理电路和程序设计: 1、方案比较 方案一:先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R 2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由E B BE U U U -=可知BE U 将减小(升高)导致基极电流和发射极电流的减小(增大),使得R 两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。 图1 方案一稳压部分电路 方案二:经有中间抽头的变压器输出后,整流部分同方案一一样擦用四个二极管

组成的单相桥式整流电路,整流后的脉动直流接滤波电路,滤波电路由两个电容组成,先用一个较大阻值的点解电容对其进行低频滤波,再用一个较低阻值的陶瓷电容对其进行高频滤波,从而使得滤波后的电压更平滑,波动更小。滤波后的电路接接稳压电路,稳压部分的电路如图2所示,方案二的稳压部分由调整管,比较放大电路,基准电压电路,采样电路组成。当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(升高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。 图2 方案二稳压部分单元电路 对以上两个方案进行比较,可以发发现第一个方案为线性稳压电源,具备基本的稳压效果,但是只是基本的调整管电路,输出电压不可调,而且输出电流不大,而第二个方案使用了运放和调整管作为稳压电路,输出电压可调,功率也较高,可以输出较大的电流。稳定效果也比第一个方案要好,所以选择第二个方案作为本次课程设计的方案。 2、电路框图 整体电路的框架如下图所示,先有22V-15V的变压器对其进行变压,变压后再对其进行整流,整流后是高低频的滤波电路,最后是由采样电路、比较放大电路和基准电路三个小的单元电路组成的稳压电路,稳压后为了进一步得到更加稳定的电压,在稳压电路后再对其进行小小的率波,最后得到正负输出的稳压电源。

线性稳压器件(Linear Regulators):工作原理及补偿

ǖ ? OQO! V DROP =2V BE +V SAT (NPN REG) MEP! MEP! V DROP =V BE +V SAT V OUT =V REF (1+R1/R2) 10123901 1.NPN 3. LDO 10123902 2.PNP LDO 10123903 ? 1148Chester Simpson 2000 5 ǖ ? AN-1148 ?2002National Semiconductor Corporation AN101239www https://www.doczj.com/doc/f418393507.html, āā ? ? LM340 LM317 ? ? ? NPN ? 1?? ? NPN ? ?LDO ? LDO ?quasi-LDO ? ? āā NPN ? PNP NPN ? ? ? 1.5V 2.5V ?dropout voltage ?? " "? ? ǖ āā ? 5V 3.3V ? LDO ? 3?? LDO NPN LDO ? PNP NPN ? ? NPN LDO ǖ āā , ? , 4?? āā ? ?? ? IC ? ? ? ? ? ǖ āā LDO ? ? ? PNP ? 2??LDO PNP ?LDO ǖ āāāāāāVdrop ǚVsat ?LDO ? āā 500mV ? 10mV 20mV ?

!) *! ? ? 10123904 4. 10123905 5. ? 6. 10123906 A N -1148 www https://www.doczj.com/doc/f418393507.html, 2 āāNPN ?LDO LDO ? ? ? ? ? ? ? IGND ? 4??? IC ? ?IGND IL ? āā NPN ? ? IL ? IGND ? ? mA ? LDO ? ? LM1085 10mA , 3A ? ?LDO ? ? ?PNP ? ? 15?20? LDO ? 7%? āāNPN ? ?? LDO ? , ? ? ? LDO ? LDO ?? ? āā ? ? ?? ?0dB ? ? āā ? ? ? dB ? ? 5?? ? , ?? 0dB ? āā? ? ? ? ? ? ? ? ? ? ǖ ? ? ? āā ? ? ? ? ? 2 LDO ? 6?? āā? "A"?"B" ? ? ? ? " " ? A ?B ? ? ? ǖ Loop Gain ǚVa /Vb āā ? Vb ? ? Va ? ? āā ? ? ? 6??? ? ? ? ?

相关主题
文本预览
相关文档 最新文档