当前位置:文档之家› 线面垂直、面面垂直知识点总结、经典例题与解析、高考题练习与答案

线面垂直、面面垂直知识点总结、经典例题与解析、高考题练习与答案

线面垂直、面面垂直知识点总结、经典例题与解析、高考题练习与答案
线面垂直、面面垂直知识点总结、经典例题与解析、高考题练习与答案

直线、平面垂直的判定与性质

【考纲说明】

1、能够认识和理解空间中线面垂直的有关性质和判定定理。

2、能够运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。

【知识梳理】

一、直线与平面垂直的判定与性质 1、 直线与平面垂直

(1)定义:如果直线l 与平面α的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。 (2)判定定理:一条直线与一个平面的两条相交直线都垂直,则该直线与此平面垂直。 结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα?

?⊥?⊥?

(3)性质定理:垂直于同一个平面的两条直线平行。即,//a b a b αα⊥⊥?.

由定义知:直线垂直于平面的任意直线。 2、 直线与平面所成的角

平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角。一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面,则此直线与平面所成的角是0

0的角。

3、 二面角的平面角

从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。其作用是衡量二面角的大小;围:0

0180θ<<.

二、平面与平面垂直的判定与性质

1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.

2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。简述为“线面垂直,则面面垂直”,记作

l l βαβα⊥?

?⊥???

.

3、性质:两个平面垂直,则一个平面垂直于交线的直线与另一个平面垂直,记作l m m m l

αβαββα⊥??=?

?⊥???

?⊥?

I .

【经典例题】

【例1】(2012文)设l 是直线,a,β是两个不同的平面

( )

A .若l ∥a,l ∥β,则a ∥β

B .若l ∥a,l ⊥β,则a ⊥β

C .若a ⊥β,l ⊥a,则l ⊥β

D .若a ⊥β, l ∥a,则l ⊥β 【答案】B

【解析】利用排除法可得选项B 是正确的,∵l ∥a,l ⊥β,则a ⊥β.如选项A:l ∥a,l ∥β时, a ⊥β或a ∥β;选项C:若

a ⊥β,l ⊥a,l ∥β或l β?;选项D:若若a ⊥β, l ⊥a,l ∥β或l ⊥β.

【例2】(2012文)下列命题正确的是 ( )

A .若两条直线和同一个平面所成的角相等,则这两条直线平行

B .若一个平面有三个点到另一个平面的距离相等,则这两个平面平行

C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

D .若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C

【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确. 【例3】(2012)已知直线m 、n 及平面α,其中m ∥n ,那么在平面α到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集.其中正确的是 ( )

A .①②③

B .①④

C .①②④

D .②④ 【答案】C

【解析】如图1,当直线m 或直线n 在平面α时有可能没有符合题意的点;如图2,直线m 、n 到已知平面α的距离相等且所在平面与已知平面α垂直,则已知平面α为符合题意的点;如图3,直线m 、n 所在平面与已知平面α平行,则符合题意的点为一条直线,从而选C.

【例4】(2012理)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中

点,则异面直线1A M 与DN 所成的角的大小是____________. 【答案】90o

N M

B 1

A 1

C 1

D 1

B

D C

【解析】方法一:连接D1M,易得DN⊥A1D1 ,DN⊥D1M,

所以,DN⊥平面A1MD1,

又A1M?平面A1MD1,所以,DN⊥A1D1,故夹角为90o

方法二:以D为原点,分别以DA, DC, DD1为x, y, z轴,建立空间直角坐标系D—xyz.设正方体边长为2,则D(0,0,0),N(0,2,1),M(0,1,0)A1(2,0,2)

故,)

),

(2,1

2

1,2,0

1

-

=

=MA

DN

所以,cos<

|

MA

||

DN

|

1

1

1

MA

DN

MA

DN

?

=

?

?,= 0,故DN⊥D1M,所以夹角为90o

【例5】(2012大纲理)三棱柱

111

ABC A B C

-中,底面边长和侧棱长都相等,

11

60

BAA CAA

∠=∠=?,则异面直线

1

AB

1

BC所成角的余弦值为_____________.

【答案】

6

6

【解析】设该三棱柱的边长为1,依题意有

1111

,

AB AB AA BC AC AA AB

=+=+-

u u u r u u u r u u u r u u u u r u u u r u u u r u u u r

,

22

22

1111

||()222cos603

AB AB AA AB AB AA AA

=+=+?+=+?=

u u u r u u u r u u u r u u u r u u u r u u u r u u u r

222

22

11111

||()2222

BC AC AA AB AC AA AB AC AA AC AB AA AB

=+-=+++?-?-?= u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r

1111

()()

AB BC AB AA AC AA AB

?=+?+-

u u u r u u u u r u u u r u u u r u u u r u u u r u u u r

11111

1111

111

2222

AB AC AB AA AB AB AA AC AA AA AA AB

=?+?-?+?+?-?

=+-++-=

u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r

11

11

11

16

cos,

6

||||23

AB BC

AB BC

AB BC

?

∴<>===

?

u u u r u u u u r

u u u r u u u u r

u u u r u u u u r

【例6】(2011·)如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.

【答案】 2

【解析】∵EF∥面AB1C,∴EF∥AC.

又E是AD的中点,∴F是DC的中点.

∴EF =1

2

AC = 2.

【例7】(2012年文)如图,几何体E

ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.

(1)求证:BE DE =;

(2)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC .

【解析】(1)设BD 中点为O ,连接OC ,OE ,则由BC CD =知CO BD ⊥,

又已知CE BD ⊥,所以BD ⊥平面OCE .

所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.

(2)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,

∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°, 所以∠ABC =60°+30°=90°,即BC AB ⊥,所以ND ∥BC ,

所以平面MND ∥平面BEC ,又DM ?平面MND ,故DM ∥平面BEC .

另证:延长BC AD ,相交于点F ,连接EF.因为CB=CD,090=∠ABC . 因为△ABD 为正三角形,所以0

90,60=∠=∠ABC BAD ,则030=∠AFB , 所以AF AB 2

1

=

,又AD AB =, 所以D 是线段AF 的中点,连接DM,

又由点M 是线段AE 的中点知EF DM //,

而?DM 平面BEC , ?EF 平面BEC ,故DM ∥平面BEC . 【例8】(2011)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.

(1)证明:PB ∥平面ACM ; (2)证明:AD ⊥平面P AC ;

(3)求直线AM 与平面ABCD 所成角的正切值.

【解析】(1)证明:连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点.又M 为PD 的中点,所以PB ∥MO .因为PB ?平面ACM ,MO ?平面ACM ,所以PB ∥平面ACM . (2)证明:因为∠ADC =45°,且AD =AC =1,所以∠DAC =90°,即AD ⊥AC ,又PO ⊥平面ABCD ,AD ?平面ABCD ,所以PO ⊥AD .而AC ∩PO =O ,所以AD ⊥平面P AC .

(3)取DO 中点N ,连接MN ,AN .因为M 为PD 的中点,所以MN ∥PO ,且MN =1

2

PO =1.由PO ⊥平面ABCD ,

得MN ⊥平面ABCD ,所以∠MAN 是直线AM 与平面ABCD 所成的角,在Rt △DAO 中,AD =1,AO =1

2

,所以DO

=52,从而AN =12DO =5

4

.在Rt △ANM 中, tan ∠MAN =MN AN =15

4

=455,即直线AM 与平面ABCD 所成角的正切值为45

5.

【例9】(2012文)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD,底面ABCD 是等腰梯形,AD ∥BC,AC ⊥BD.

(1)证明:BD ⊥PC;

(2)若AD=4,BC=2,直线PD 与平面PAC 所成的角为30°,求四棱锥P-ABCD 的体积.

D

【解析】(1)因为,,.PA ABCD BD ABCD PA BD ⊥?⊥平面平面所以

又,,AC BD PA AC ⊥是平面PAC 的两条相较直线,所以BD ⊥平面PAC, 而PC ?平面PAC,所以BD PC ⊥.

(2)设AC 和BD 相交于点O,连接PO,由(Ⅰ)知,BD ⊥平面PAC, 所以DPO ∠是直线PD 和平面PAC 所成的角,从而DPO ∠30=o . 由BD ⊥平面PAC,PO ?平面PAC,知BD PO ⊥. 在Rt POD V

中,由DPO ∠30=o ,得PD=2OD. 因为四边形ABCD 为等腰梯形,AC BD ⊥,所以,AOD BOC V V 均为等腰直角三角形,

从而梯形ABCD 的高为

111

(42)3,222

AD BC +=?+=于是梯形ABCD 面积 1

(42)39.2

S

=?+?=

在等腰三角形AOD 中,

2

OD

AD =

= 所以2 4.PD OD PA ===

故四棱锥P ABCD -的体积为11

941233

V S PA =

??=??=.

【例10】(2012新课标理)如图,直三棱柱111ABC A B C -中,11

2

AC BC AA ==

,D 是棱1AA 的中点,BD DC ⊥1 (1)证明:BC DC ⊥1

(2)求二面角11C BD A --的大小. 【解析】(1)在Rt DAC ?中,AD AC =

得:45ADC ?

∠=

同理:1114590A DC CDC ??

∠=?∠=

得:111,DC DC DC BD DC ⊥⊥?⊥面1BCD DC BC ?⊥ (2)11,DC BC CC BC BC ⊥⊥?⊥面11ACC A BC AC ?⊥ 取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H

1111111AC B C C O A B =?⊥,面111A B C ⊥面1A BD 1C O ?⊥面1A BD 1OH BD C H BD ⊥?⊥ 得:点H 与点D 重合

且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则122

a

C O =

,1112230C D a C O C DO ?==?∠= 既二面角11C BD A --的大小为30?

【课堂练习】

1.(2012理)已知矩形ABCD ,AB =1,BC =2.将?ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中

( )

A .存在某个位置,使得直线AC 与直线BD 垂直

B .存在某个位置,使得直线AB 与直线CD 垂直

C .存在某个位置,使得直线A

D 与直线BC 垂直

D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 2.(2012理)下列命题正确的是

( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行

B .若一个平面有三个点到另一个平面的距离相等,则这两个平面平行

C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

D .若两个平面都垂直于第三个平面,则这两个平面平行 3.(2011)到两互相垂直的异面直线的距离相等的点( )

A .只有1个

B .恰有3个

C .恰有4个

D .有无穷多个 4.(2012)已知空间三条直线l ,m ,n 若l 与m 异面,且l 与n 异面,则 ( )

A .m 与n 异面.

B .m 与n 相交.

C .m 与n 平行.

D .m 与n 异面、相交、平行均有可能. 5.(2011)已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;②若m ∥α,n ∥β,m ⊥n ,则α∥β;③若m ⊥α,n ∥β,m ⊥n ,则α∥β;④若m ⊥α,n ∥β,α∥β,则m ⊥n .

其中正确命题的个数为( ) A .1 B .2 C .3 D .4 6.(2011潍坊)已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是( )

A .若α⊥γ,α⊥β,则γ∥β

B .若m ∥n ,m ?α,n ?β,则α∥β

C .若m ∥n ,m ∥α,则n ∥α

D .若n ⊥α,n ⊥β,则α∥β 7.(2010全国卷文)直三棱柱111ABC A B C -中,若90BAC ∠=?,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于( )

A .30°

B .45°

C .60°

D .90°

8.(2010全国卷)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为( )

A .

3

B .3

C .23

D .3

9.(2010全国Ⅱ卷理)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为( )

A .1

B

C .2

D .3

10.(2010全国Ⅰ卷)已知在半径为2的球面上有A .B .C .D 四点,若AB=CD=2,则四面体ABCD 的体积的最

大值为( )

A .

B C . D . 3

11.(2010理)过正方体1111ABCD A B C D -的顶点A 作直线L ,使L 与棱AB ,AD ,1AA 所成的角都相等,这样的直线L 可以作( )

A .1条

B .2条

C .3条

D .4条

12.(2012大纲)已知正方形1111ABCD A B C D -中,,E F 分别为1BB ,1CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为___ _.

13.(2010文)已知四棱椎P ABCD -的底面是边长为6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 .

α?

A

B

14.(2010卷)如图,二面角l αβ--的大小是60°,线段AB α?.

B l ∈,AB 与l 所成的角为30°

.则AB 与平面β所成的角的正弦值是 . 15.(卷文)长方体1111ABCD A B C D -的顶点均在同一个球面上,

11AB AA ==,

BC =A ,B 两点间的球面距离为

16.(2010理)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点。

(1)求直线BE 与平面ABB 1A 1所成的角的正弦值;

(2)在棱C 1D 1上是否存在一点F ,使B 1F//平面A 1BE ?证明你的结论。

17.

2012

,

P ABC

-中,90APB ∠=o ,60PAB ∠=o ,AB BC CA ==,点P 在平面ABC 的射影O 在AB 上.

(1)求直线PC 与平面ABC 所成的角的大小; (2)求二面角B AP C --的大小.

18.(2012文)直三棱柱ABC- A 1B 1C 1中,AB=A A 1 ,CAB ∠=

2

π (1)证明11B A

C B ⊥;[

(2)已知,求三棱锥11C A AB -的体积.

19.(2012课标文)如图,三棱柱111ABC A B C -中,侧棱垂直底面,∠ACB=90°,AC=BC=1

2

AA 1,D 是棱AA 1的中点.

(1)证明:平面1BDC ⊥平面1BDC

(2)平面1BDC 分此棱柱为两部分,求这两部分体积的比.

20.(2012文)如图,在长方体1111ABCD A B C D -中,11,2,AB AD AA M ===为棱1DD 上的一点.

(1)求三棱锥1A MCC -的体积;

(2)当1A M MC +取得最小值时,求证:1B M ⊥平面MAC

.

A D

B C

A 1 D 1

B 1

C 1

E

【课后作业】

1.(2012大纲全国)已知正四棱柱1111ABCD A B C D -中,12,AB CC E ==为1CC 的中点,则直线1AC 与 平面BED 的距离为( )

A .2 B.

C. D. 1

2.(2010文)用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题:

①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ⊥c ; ③若a ∥y ,b ∥y ,则a ∥b ; ④若a ⊥y ,b ⊥y ,则a ∥b . 其中正确的是( ) A .①② B .②③ C .①④ D .③④ 3.(2011日照)若l 、m 、n 为直线,α、β、γ为平面,则下列命题中为真命题的是( )

A .若m ∥α,m ∥β,则α∥β

B .若m ⊥α,n ⊥α,则m ∥n

C .若α⊥γ,β⊥γ,则α⊥β

D .若α⊥β,l ?α,则l ⊥β 4.(2011)正方体ABCD -A 1B 1C 1D 1中,

E 、

F 分别是AA 1、AB 的中点,则EF 与对角面BDD 1B 1所成角的度数是( )

A .30°

B .45°

C .60°

D .150° 5.(2010全国Ⅱ卷)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( )

A B C D .34

6.(2010卷理)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面的轨迹是

( )

A .直线

B .椭圆

C .抛物线

D .双曲线 7.(2009)如图,已知六棱锥ABCDEF P -的底面是正六边形,

AB PA ABC PA 2,=⊥平面则下列结论正确的是( )

A. AD PB ⊥

B. PAB 平面PBC 平面⊥

C. 直线BC ∥PAE 平面

D. 直线ABC PD 与平面所成的角为45°

8.(2008)已知平面α⊥平面β,α∩β= l ,点A ∈α,A ?l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...

成立的是( ) A. AB ∥m

B. AC ⊥m

C. AB ∥β

D. AC ⊥β

9.(2007)已知两条直线,m n ,两个平面,αβ,给出下面四个命题:

①//,m n m n αα⊥?⊥ ②//,,//m n m n αβαβ???

③//,////m n m n αα? ④//,//,m n m n αβαβ⊥?⊥

其中正确命题的序号是( )

A .①③

B .②④

C .①④

D .②③

10.(2011全国)已知直二面角l αβ--,点,,A AC l α∈⊥C 为垂足,,,B BD l D β∈⊥为垂足,若

2,1AB AC BD ===,则D 到平面ABC 的距离等于 ( )

A .

23 B. 33 C. 63

D. 1 11.(2009)设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( )

A .若,l ααβ⊥⊥,则l β?

B .若//,//l ααβ,则l β?

C .若,//l ααβ⊥,则l β⊥

D .若//,l ααβ⊥,则l β⊥ 12.(2010)各棱长为1的正四棱锥的体积V=____________。 13.下面给出四个命题:

①若平面α∥平面β,AB ,CD 是夹在α,β间的线段,若AB ∥CD ,则AB =CD ; ②a ,b 是异面直线,b ,c 是异面直线,则a ,c 一定是异面直线 ③过空间任一点,可以做两条直线和已知平面α垂直; ④平面α∥平面β,P ∈α,PQ ∥β,则PQ ?α; 其中正确的命题是________(只填命题号) .

14.(2009)设α和β为不重合的两个平面,给出下列命题:

(1)若α的两条相交直线分别平行于β的两条直线,则α平行于β; (2)若α外一条直线l 与α的一条直线平行,则l 和α平行;

(3)设α和β相交于直线l ,若α有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α的两条直线垂直。 上面命题中,真命题...

的序号 (写出所有真命题的序号). w. 15.已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ?β⊥γ”是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有________个.

16.(2012文)已知直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点. (1)求异面直线1CC 和AB 的距离;

(2)若11AB A C ⊥,求二面角11A CD B --的平面角的余弦值.

17. (2009)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1分别是棱AD 、AA 1的中点. w.w.w.k.s.5.u.c.o.m

(1) 设F 是棱AB 的中点,证明:直线EE 1//平面FCC 1;

(2) 证明:平面D 1AC ⊥平面BB 1C 1C.

18.(2008)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC ==.

E A B C

F E 1 A B

C

D

D F 1

A

B

C M

P

D

(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.

19.(2011)如图,在四面体P -ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ;

(2)求证:四边形DEFG 为矩形;

(3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由.

20.(2012理)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,0

=45ABC ∠,

==2PA AD ,=1AC . (1)证明PC 丄AD ;

(2)求二面角A PC D --的正弦值;

(3)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为0

30,求AE 的长.

【参考答案】

【课堂练习】

1-11、BCDDB DCDABD 12、90o 13、96 14、

34

15、

3π 16、2

,3

存在

D

B

A

P

17

、13

,arctan 2 18、

23

19、(1)设知BC ⊥1CC ,BC ⊥AC,1CC AC C ?=,∴BC ⊥面11ACC A , 又∵1DC ?面11ACC A ,∴1DC BC ⊥,

由题设知0

1145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥,

又∵DC BC C ?=, ∴1DC ⊥面BDC , ∵1DC ?面1BDC , ∴面BDC ⊥面1BDC ; (2) 1:1 20、(1)

13

(2) 将侧面11CDD C 绕1DD 逆时针转动90°展开,与侧面11ADD A 共面.当1A ,M,C 共线时,

1A M +MC 取得最小值AD=CD=1 ,1AA =2得M 为1DD 的中点连接M 1C 在1MCC V 中,1MC

,1CC =2,

∴2

1CC =2

1MC +2MC , ∴∠1CMC =90°,CM ⊥1MC , ∵11B C ⊥平面11CDD C ,∴11B C ⊥CM ∵AM∩MC=C ∴CM ⊥平面11B C M ,同理可证1B M ⊥AM ∴1B M ⊥平面MAC 【课后作业】

1-11、DCBAD DDDCCC 12

6

13、①④ 14、(1)(2) 15、2 16

13

17、(1)在直四棱柱ABCD-A 1B 1C 1D 1中,取A 1B 1的中点F 1, 连接A 1D ,C 1F 1,CF 1,因为AB=4, CD=2,且AB//CD , 所以CDA 1F 1为平行四边形,所以CF 1//A 1D ,

又因为E 、E 1分别是棱AD 、AA 1的中点,所以EE 1//A 1D , 所以CF 1//EE 1,又因为1EE ?平面FCC 1,1CF ?平面FCC 1,

E

A

B

C

F

E 1 A 1

B 1

C 1

D 1

D

所以直线EE 1//平面FCC 1.

(2)连接AC,在直棱柱中,CC 1⊥平面ABCD,AC ?平面ABCD, 所以CC 1⊥AC,因为底面ABCD 为等腰梯形,AB=4, BC=2, F 是棱AB 的中点,所以CF=CB=BF ,△BCF 为正三角形,

60BCF ∠=?,△ACF 为等腰三角形,且30ACF ∠=?

所以AC ⊥BC, 又因为BC 与CC 1都在平面BB 1C 1C 且交于点C, 所以AC ⊥平面BB 1C 1C,而AC ?平面D 1AC, 所以平面D 1AC ⊥平面BB 1C 1C. 18、(1)在ABD △中,

由于4AD =,8BD =,45AB =, 所以2

2

2

AD BD AB +=.

故AD BD ⊥.

又平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =,

BD ?平面ABCD , 所以BD ⊥平面PAD , 又BD ?平面MBD ,

故平面MBD ⊥平面PAD .

(2)1

24231633

P ABCD V -=??=

19、(1)证明:因为D ,E 分别为AP 、AC 的中点,

所以DE ∥PC .

又因为DE ?平面BCP , 所以DE ∥平面BCP .

(2)证明:因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点, 所以DE ∥PC ∥FG ,DG ∥AB ∥EF ,[来源:学+科+网Z+X+X+K] 所以四边形DEFG 为平行四边形. 又因为PC ⊥AB , 所以DE ⊥DG .

所以四边形DEFG 为矩形.

(3)存在点Q 满足条件,理由如下: 连接DF ,EG ,设Q 为EG 的中点.

由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =1

2

EG ,

分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN .

与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =1

2

EG .

所以Q 为满足条件的点.

20、(1)以,,AD AC AP u u u r u u u r u u u r

为,,x y z 正半轴方向,建立空间直角左边系A xyz -

则11(2,0,0),(0,1,0),(,,0),(0,0,2)22

D C B P -

(0,1,2),(2,0,0)0PC AD PC AD PC AD =-=?=?⊥u u u r u u u r u u u r u u u r

g

(2

(3

)AE =

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

圆的知识点总结

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或 两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线;(3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB=,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB=,半径OM⊥AB,∴AN=BN= ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60°

圆的知识点总结史上最全的

A 图4 图5 圆的总结 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 点与圆的位置关系: 点在圆内 dr 点A 在圆外 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dR+r 外切(图2) 有一个交点 d=R+r 相交(图3) 有两个交点 R-r

高中数学线面角与线线角例题、习题-学生

线面角与线线角专练(小练习一)【知识网络】 1、异面直线所成的角:(1)范围:(0,]2π θ∈; (2)求法; 2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 【典型例题】 例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成60o 角 (2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( ) A 、2个 B 、4个 C 、6个 D 、8个 (3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( ) A .90o B .60o C .45o D .30o (4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。 (5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___. 例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。 (I )若D 为BC 的中点,E 为AD 上不同于 A 、D 的任意一点,证明EF ⊥FC 1; (II )试问:若AB =2a ,在线段AD 上的E 点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。 例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD. (Ⅰ)证明:BC ⊥侧面PAB; (Ⅱ)证明: 侧面PAD ⊥侧面PAB; (Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C D P

《圆》知识点归纳及相关题型整理

第五章中心对称图形(二) ——知识点归纳以及相关题目总结 一、和圆有关的基本概念 1.圆: 把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转1周,另一个端点P运动所形成的图形叫做圆。其中,定点O叫做圆心,线段OP叫做半径。 以点O为圆心的圆,记作“⊙O”,读作“圆O”。 圆是到定点的距离等于定长的点的集合。 2.圆的内部可以看作是到圆心的距离小于半径的点的集合。 3.圆的外部可以看作是到圆心的距离大于半径的点的集合。 4.弦:连接圆上任意两点的线段。 5.直径:经过圆心的弦。 6.弧:圆上任意两点间的部分。 优弧:大于半圆的弧。 劣弧:小于半圆的弧。 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。 7.同心圆:圆心相同,半径不相等的两个圆叫做同心圆。 8.等圆:能够重合的两个圆叫做等圆。(圆心不同) 9.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。(在大小不等的两个圆中,不存在等弧。 10.圆心角:顶点在圆心的角。 11.圆周角:顶点在圆上,两边与圆相交的角。 12.圆的切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长。 13.正多边形: ①定义:各边相等、各角也相等的多边形 ②对称性:都是轴对称图形;有偶数条边的正多边形既是轴对称图形有是中心对称图形。 14.圆锥: ①:母线:连接圆锥的顶点和底面圆上任意一点的线段。 ②:高:连接顶点与底面圆的圆心的线段。 15.三角形的外接圆:三角形三个顶点确定一个圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。

16.三角形的内切圆:与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。 二、和圆有关的重要定理 1.圆是中心对称图形,圆心是它的对称中心。 2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 3.在同圆或等圆中,如果两个圆心角、两条弦、两条弧中有一组量相等,那么它们所对应的其余各组量都分别相等。 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 4.圆心角的度数与它所对的弧的度数相等。 5.圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。 6.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 垂径定理的实质可以理解为:一条直线,如果它具有两个性质:(1)经过圆心;(2)垂直于弦,那么这条直线就一定具有另外三个性质:(3)平分弦,(4)平分弦所对的劣弧,(5)平分弦所对的优弧。 推论:圆的两条平行弦所夹的弧相等。 7.同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。 8.直径(或半圆)所对的圆周角是直角,90°的圆周角所对的弦是直径。 9.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 10.确定圆的条件 不在同一条直线上的三个点确定一个圆 经过三角形三个顶点可以画一个圆,并且只能画一个.这个三角形叫做这个圆的内接三角形。 经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心。 三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。 11.三角形的外接圆的圆心是三边的垂直平分线的交点 12.圆的切线垂直于经过切点的半径。 13.经过半径的外端并且垂直于这条半径的是直线是圆的切线。

圆的知识点总结

圆的知识的归纳总结与复习 【知识与方法归纳】 1. 圆的特征:圆是由一条曲线围成的封闭图形,圆上任意一点到圆心的距离都相等。 2. 圆规画圆的方法:(1)把圆规的两脚分开,定好两脚间的距离;(2)把有针尖的一只脚固定在一点上;(3)把装有铅笔尖的一只脚绕这个固定点旋转一周,就可以画出一个圆。 3. 圆各部分的名称:圆心用O表示;半径通常用字母r表示;直径通常用字母d表示。 4. 圆有无数条直径,无数条半径;同(或等)圆内的直径都相等,半径都相等。 5. 圆心和半径的作用:圆心确定圆的位置,半径决定圆的大小。 6. 圆的轴对称性:圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。 7. 同一圆内半径与直径的关系:在同一圆内,直径的长度是半径的2倍,可以表示为d=2r 或r= 。 8. 圆的周长:圆的周长是指围成圆的曲线的长。直径的长短决定圆周长的大小。 9. 圆周率:圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14. 10. 圆的周长的计算公式:如果用C表示圆的周长,那么C=πd或C=2πr。 11. 圆的周长计算公式的应用: (1)已知圆的半径,求圆的周长:C=2πr。 (2)已知圆的直径,求圆的周长:C=πd。 (3)已知圆的周长,求圆的半径:r=C π 2. (4)已知圆的周长,求圆的直径:d=C π。 12. 圆的面积的含义:圆形物体所占平面的大小或圆形物体表面的大小就是圆的面积。 13. 圆的面积计算公式:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式是:S= 。 14. 圆的面积计算公式的应用: (1)已知圆的半径,求圆的面积:S= 。 (2)已知圆的直径,求圆的面积:r= ,S= 或。 (3)已知圆的周长,求圆的面积:r=C 2 π,S= 或。 【经典例题】

线面角的计算方法

教师姓名 余永奇 学生姓名 洪 懿 上课时间 2014.11.15 辅导学科 数学 学生年级 高二 教材版本 人教版 课题名称 线面角,二面角的计算方法(文科) 本次学生 课时计划 第(10)课时 共(60)课时 教学目标 线面角的计算方法 教学重点 线面角的计算方法 教学难点 线面角的计算方法 教师活动 学生活动 上次作业完成情况(%) 一.检查作业完成情况,并讲解作业中存在的问题 二.回顾上次课辅导内容 三.知识回顾,整体认识 1、本章知识回顾 (1)空间点、线、面间的位置关系; (2)直线、平面平行的判定及性质; (3)直线、平面垂直的判定及性质。 2、本章知识结构框图 (二)整合知识,发展思维 1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。 公理1——判定直线是否在平面内的依据; 公理2——提供确定平面最基本的依据; 公理3——判定两个平面交线位置的依据; 公理4——判定空间直线之间平行的依据。 2、空间问题解决的重要思想方法:化空间问题为平面问题; 3、空间平行、垂直之间的转化与联系: 平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与直线的位置关系 直线与平面的位置关系 平面与平面的位置关系 直线与直线平行 直线与平面平行 平面与平面平行

4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。 典型例题: 线面夹角的计算 例1(2014浙江高考文科20题)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2, DE=BE=1,AC=2. (Ⅰ)证明:AC⊥平面BCDE; (Ⅱ)求直线AE与平面ABC所成的角的正切值. 例2(2013浙江,文20)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=7,PA =3,∠ABC=120°,G为线段PC上的点. (1)证明:BD⊥平面APC; (43 3 ) (2)若G为PC的中点,求DG与平面APC所成的角的正切值; (3)若G满足PC⊥平面BGD,求PG GC 的值.(3/2) 直线与直线垂直直线与平面垂直平面与平面垂直

圆的知识点总结与典型例题

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以 圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论 1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推 出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④ 平分弦所对的优弧;⑤平分弦所对的劣弧。 推论2 圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两 条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论 1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论 2 半圆(或直径)所对的圆周角是直角;90 °的圆周角所对的弦是直径;推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质圆内接四边形的对角互补,并且任何一个外角都等于它的内对 角。 探8.轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; 2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; 3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1.已知:如图1,在。O中,半径0M丄弦AB于点N。 图1 ①若AB = , ON = 1,求MN的长; ②若半径0M = R,/ AOB = 120。,求MN的长。 解:①??? AB =,半径0M 丄AB,二AN = BN =

初中数学圆的知识点总结

圆 知识点一、圆的定义及有关概念 1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。 2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 圆上任意两点间的部分叫做圆弧,简称弧。连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。 ' 在同圆或等圆中,能够重合的两条弧叫做等弧。 例 P 为⊙O 内一点,OP =3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;? 最长弦长为_______. 解题思路:圆内最长的弦是直径,最短的弦是和OP 垂直的弦,答案:10 cm ,8 cm. 知识点二、平面内点和圆的位置关系 平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内 。 当点在圆外时,d >r ;反过来,当d >r 时,点在圆外。 当点在圆上时,d =r ;反过来,当d =r 时,点在圆上。 当点在圆内时,d <r ;反过来,当d <r 时,点在圆内。 例 如图,在Rt ABC △中,直角边3AB =,4BC =,点E ,F 分别是BC ,AC 的中点,以点A 为圆心,AB 的长为半径画圆,则点E 在圆A 的_________,点F 在圆A 的_________. 解题思路:利用点与圆的位置关系,答案:外部,内部 % 练习:在直角坐标平面内,圆O 的半径为5,圆心O 的坐标为(14)--,.试判断点(31)P -,与圆O 的位置关系. 答案:点P 在圆O 上. 知识点三、圆的基本性质 1圆是轴对称图形,其对称轴是任意一条过圆心的直线。 2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

线线角-线面角-二面角的一些题目.

B 1 D 1 A D C 1 B C A 1 线线角与线面角习题 新泰一中 闫辉 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο和45ο ,则异面直线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 4 6 (B). 36 (C).62 (D).6 3 3.平面α与直线a 所成的角为 3 π ,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο ,BC 是贴于桌面上, 当三角尺与桌面成45ο 角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο 角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要 有严格的推理论证过程,还要有合理的步骤. 例2.如图在正方体AC 1中, (1) 求BC 1与平面ACC 1A 1所成的角; (2) 求A 1B 1与平面A 1C 1B 所成的角. 备课说明:求直线与平面所成角的关键是找直线在此平面上的射影,为此必须在这条直线上找一点作平面的垂线. 作垂线的方法常采用:①利用平面垂直的性质找平面的垂线.②点的射影在面内的特殊位置. A C B A D C 1D 1 A 1 B 1C B D B P C D A C B F E

圆知识点总结及归纳

第一讲圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为:

(x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E 2);③当D 2+E 2-4F <0时,方程没有实数解, 因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为 1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. 2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆的参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是: (1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0.

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

圆知识点总结及典型例题.docx圆知识点总结及典型例题

《圆》章节知识点复习 一、圆的概念 集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂 线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内 ?d r ? 点A 在圆外; 三、直线与圆的位置关系 1、直线与圆相离 ?d r >?无交点; 2、直线与圆相切 ?d r =?有一个交点; 3、直线与圆相交 ?d r

四、圆与圆的位置关系 外离(图1)?无交点 ?d R r >+; 外切(图2)? 有一个交点 ?d R r =+; 相交(图3)? 有两个交点 ?R r d R r -<<+;内切(图4)? 有一个交点 ?d R r =-; 内含(图5)? 无交点 ?d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 图1 图 3 r R d 图2

九年级数学圆的知识点总结大全

r B 一、知识回顾 第四章:《圆》 圆的周长 : C=2πr 或 C=πd 、圆的面积 : S=πr 2 圆环面积计算方法: S=πR2- πr 2或 S=π( R2-r 2) (R 是大圆半径, r 是小圆半径) 二、知识要点一、圆的概念 集合形式的概念: 1 、 圆可以看作是到定点的距离等于定长的点的集合; 2 、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3 、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 固定的端点 O 为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是: 平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系 1、点在圆内 d r 点C 在圆内; A d 2、点在圆上 d r 点B 在圆上; O d 3、点在圆外 d r 点 A 在圆外; C 三、直线与圆的位置关系 1、直线与圆相离 d r 无交点; 2、直线与圆相切 d r 有一个交点; 3、直线与圆相交 d r 有两个交点; r d d=r r d

C D 四、圆与圆的位置关系 外离(图 1) 无交点 d R r ; 外切(图 2) 有一个交点 d R r ; 相交(图 3) 有两个交点 R r d R r ; 内切(图 4) 有一个交点 d R r ; 内含(图 5) 无交点 d R r ; d d d R r R r R r 图 1 图2 图 3 d d r R r R 图4 图 5 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2) 弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其 它 3 个结论,即: ① AB 是直径 ② AB CD ③ CE DE ④ 弧 BC 弧 BD ⑤ 弧 AC 弧 AD 中任意 2 个条件推出其他 3 个结论。 A 推论 2:圆的两条平行弦所夹的弧相等。 C D 即:在⊙ O 中,∵ AB ∥ CD O O ∴弧 AC 弧BD A B E B 六、圆心角定理 顶点到圆心的角,叫圆心角。 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定

圆的知识点归纳总结大全

圆的知识点归纳总结大全 一、圆的定义。 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素。 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质。 1、圆的对称性。 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距 五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O 的半径为r ,OP=d 。 7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三 个点的距离相等。 (直角三角形的外心就是斜边的中点。) 8、直线与圆的位置关系。d 表示圆心到直线的距离,r 表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。 2 9、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。 则AB=221221)()(y y x x -+- 10、圆的切线判定。 (1)d=r 时,直线是圆的切线。 d = r 直线与圆相切。 d < r (r > d ) 直线与圆相交。 d > r (r d ) 点P 在⊙O 内 d > r (r

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】 考点一:平面直角坐标系中点的特征 例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围. 解:由第一象限点的坐标的特点可得: 20 m m > ? ? -> ? , 解得:m>2. 故答案为:m>2. 点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正. 例1 如果m是任意实数,则点P(m-4,m+1)一定不在() A.第一象限B.第二象限C.第三象限D.第四象限 思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5, ∴点P的纵坐标一定大于横坐标, ∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P一定不在第四象限. 故选D. 点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是() A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1) 分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;

初三数学圆的知识点总结及例题详解

初三数学圆的知识点总 结及例题详解 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

圆的基本性质 1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧. 9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。 直线与圆的位置关系 1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角. 4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线. 6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径. 圆与圆的位置关系 1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦. 3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点. 正多边形基本性质 1.正六边形的中心角为60°. 2.矩形是正多边形. 3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.

圆的基本性质 1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数 是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . ° ° ° ° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . ° ° ° ° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=90 5.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离 为 . A.3cm B.4cm C.5cm D.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . ° ° ° 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . ° ° ° ° 9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. .4 C D. 10 点、直线和圆的位置关系 1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝, 那么这条直线和这个圆的位置关系为 . A.相离 B.相切 C.相交 D.相交或相离 2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 相离或相交 3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定 4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . 个 个 个 D.不能确定 ? B ? ? C B A O ? B O C A D ? B O C A D ? B O C A D D C A O ? D B C A O ? D B C A O

线面垂直面面垂直知识点总结经典例题及解析高考题练习及答案第次补课

直线、平面垂直的判定与性质 【知识梳理】 一、直线与平面垂直的判定与性质 1、 直线与平面垂直 (1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。 (2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα? ?⊥?⊥? (3)性质定理:垂直于同一个平面的两条直线平行。即,//a b a b αα⊥⊥?. 由定义知:直线垂直于平面内的任意直线。 2、 直线与平面所成的角 平面的一条斜线和它在平面上的射影所成的锐角或者直角叫做这条直线和这个平面所成的角。一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面内,则此直线与平面所成的角是0 0的角。 3、 二面角的平面角 从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。其作用是衡量二面角的大小;范围:0 0180θ≤≤. 二、平面与平面垂直的判定与性质 1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直. 2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。简述为“线面垂直,则面面垂直”,记作 l l βαβα⊥? ?⊥??? . 3、性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直,记作l m m m l αβαββα⊥??=? ?⊥??? ?⊥? I . 【经典例题】 【例1】(2012浙江文)设l 是直线,a,β是两个不同的平面 ( ) A .若l ∥a,l ∥β,则a ∥β B .若l ∥a,l ⊥β,则a ⊥β C .若a ⊥β,l ⊥a,则l ⊥β D .若a ⊥β, l ∥a,则l ⊥β 【答案】B

相关主题
文本预览
相关文档 最新文档