当前位置:文档之家› 裂隙岩体渗透张量的对称性证明及主渗透性推导

裂隙岩体渗透张量的对称性证明及主渗透性推导

裂隙岩体渗透张量的对称性证明及主渗透性推导
裂隙岩体渗透张量的对称性证明及主渗透性推导

应力张量的认识(一)

应力张量的认识(一)
本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到 后来逐渐认识的过程。相关还有:Levy-Mises 理论的思考
从本科的材料成形原理教材上就认识了应力张量,然后一直出现在我们的视野里。初始,以一个基本定义记住 了它,进而有过疑惑,随着矩阵论的学习又有了新的认识。曾经就有记录下对其理解的想法,但因思路尚未完 善而一再搁置;直到今天重新想起,完成了方向余弦作为线性空间的证明,才终于开始详细记录。 我将这部分思考分为以下三部分: 应力张量的认识(一) 应力张量的认识(二) 应力张量的认识(三) 本文介绍第一部分应力的基本知识和常规认识。
应力
初中物理就已知道,因外力作用而在物体内部产生的力成为内力。单位面积上的内力即是应力,表征内力的强 度。 为了研究某一点 P 处的应力,用某个截面在 P 点处切开物体,如下图所示。根据定义可以得到 P 点的正应力 σ、切应力 τ,他们的合成即为全应力 T。
需要注意的是,一个确定的截面对应了一组正应力和切应力。但是过 P 点有无数的截面,那么如何才能真正 描述 P 点的应力状态呢?
应力状态
点的应力状态是受力物体内某一点各个截面上应力的变化情况。上面已经意识到过一点点有无数的截面,只有 任意截面上的应力分量都可以确定,才可以说应力状态是确定的。 通常在无数的截面中,任意取三个互相垂直的截面,并以他们的法线方向建立笛卡尔坐标系。也即在 P 点截 取一个无限小的平行六面体,称为单元体。

单元体无限小,视为一点,因此单元体上相互平行的两个平面视为过该点的同一平面,也即他俩的应力是相同 的。这样就只用三个互相垂直的截面上的应力来分析问题。 由于单元体处于静力平衡状态,由绕各轴合力矩为零可以得到切应力互等定律。 问题:既然单元体上相互平行的两个平面视为过该点的同一平面,那为什么上图平行的平面上应力是相 反的? 单元体上相互平行的两个平面视为过该点的同一平面,但是分别是被截开的的两部分的平面,截开前他 们是重合的,截开后成为了两部分各自的表面,而外表面是有方向的。所以,从各自的方向上来看,应 力方向还是相同的。
应力张量
根据上面的微单元体上的应力分量,是否可以求出任意截面的应力分量?
答案是肯定的。根据三个方向的静力平衡就可以列式计算得到上图的任意的法向为(n1,n2,n3)的截面上的应力 分量。 三个互相垂直的截面上的 9 个应力分量可以确定任意截面的应力,也就是说可以确定一点的应力状态了。同 时从这三个截面的选取上来看,他们和坐标系无关。 于是我们把用上面九个应力分量作为一个整体来描述一点应力状态的物理量叫作应力张量,记作
主应力 如果作用在某一截面上的全应力和这一截面垂直,即该截面上只有正应力,则这一截面称为主平面,其法线方 向称为应力主方向,其上的应力称为主应力。如果三个坐标轴方向都是主方向,则称这一坐标系为主坐标系。 求解方法依然是根据静力平衡条件。

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

最新应力张量的认识(一)

应力张量的认识(一) 本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到后来逐渐认识的过程。相关还有:Levy-Mises理论的思考 从本科的材料成形原理教材上就认识了应力张量,然后一直出现在我们的视野里。初始,以一个基本定义记住了它,进而有过疑惑,随着矩阵论的学习又有了新的认识。曾经就有记录下对其理解的想法,但因思路尚未完善而一再搁置;直到今天重新想起,完成了方向余弦作为线性空间的证明,才终于开始详细记录。 我将这部分思考分为以下三部分: 应力张量的认识(一) 应力张量的认识(二) 应力张量的认识(三) 本文介绍第一部分应力的基本知识和常规认识。 应力 初中物理就已知道,因外力作用而在物体内部产生的力成为内力。单位面积上的内力即是应力,表征内力的强度。 为了研究某一点P处的应力,用某个截面在P点处切开物体,如下图所示。根据定义可以得到P点的正应力σ、切应力τ,他们的合成即为全应力T。 需要注意的是,一个确定的截面对应了一组正应力和切应力。但是过P点有无数的截面,那么如何才能真正描述P点的应力状态呢? 应力状态 点的应力状态是受力物体内某一点各个截面上应力的变化情况。上面已经意识到过一点点有无数的截面,只有任意截面上的应力分量都可以确定,才可以说应力状态是确定的。 通常在无数的截面中,任意取三个互相垂直的截面,并以他们的法线方向建立笛卡尔坐标系。也即在P点截取一个无限小的平行六面体,称为单元体。

单元体无限小,视为一点,因此单元体上相互平行的两个平面视为过该点的同一平面,也即他俩的应力是相同的。这样就只用三个互相垂直的截面上的应力来分析问题。 由于单元体处于静力平衡状态,由绕各轴合力矩为零可以得到切应力互等定律。 问题:既然单元体上相互平行的两个平面视为过该点的同一平面,那为什么上图平行的平面上应力是相反的? 单元体上相互平行的两个平面视为过该点的同一平面,但是分别是被截开的的两部分的平面,截开前他们是重合的,截开后成为了两部分各自的表面,而外表面是有方向的。所以,从各自的方向上来看,应力方向还是相同的。 应力张量 根据上面的微单元体上的应力分量,是否可以求出任意截面的应力分量? 答案是肯定的。根据三个方向的静力平衡就可以列式计算得到上图的任意的法向为(n1,n2,n3)的截面上的应力分量。 三个互相垂直的截面上的9个应力分量可以确定任意截面的应力,也就是说可以确定一点的应力状态了。同时从这三个截面的选取上来看,他们和坐标系无关。 于是我们把用上面九个应力分量作为一个整体来描述一点应力状态的物理量叫作应力张量,记作 主应力 如果作用在某一截面上的全应力和这一截面垂直,即该截面上只有正应力,则这一截面称为主平面,其法线方向称为应力主方向,其上的应力称为主应力。如果三个坐标轴方向都是主方向,则称这一坐标系为主坐标系。求解方法依然是根据静力平衡条件。

(完整版)应力坐标变换

应力坐标变换 进行数值计算分析的时候经常会遇到要对应力的计算结果进行坐标变换,在此将其计算公式罗列如下: 式中:l1,m1,n1为x’与x、y、z的夹角余弦;l2,m2,n2为y’与x、y、z的夹角余弦;l3,m3,n3为z’与x、y、z的夹角余弦;x’y’z’为新坐标系,xyz为旧坐标系。 计算最后得到的公式为: dx'=l1^2*dx+2*l1*m1*Txy+2*l1*n1*Txz+m1^2*dy+2*m1*n1*Tyz+dz*n1^2 dy’=l2^2*dx+2*l2*m2*Txy+2*l2*n2*Txz+m2^2*dy+2*m2*n2*Tyz+n2^2*dz dz’=l3^2*dx+2*l3*m3*Txy+2*l3*n3*Txz+m3^2*dy+2*m3*n3*Tyz+n3^2*dz Tx’y’=(l1*n2+n1*l2)*Txz+(n1*m2+m1*n2)*Tyz+(l1*m2+m1*l2)*Txy+l1*l2*dx+m1*m2*dy+n 1*n2*dz Ty’z’=(l2*n3+n2*l3)*Txz+(n2*m3+m2*n3)*Tyz+(l2*m3+m2*l3)*Txy+l2*l3*dx+m2*m3*dy+n 2*n3*dz Tx’z’=(l1*n3+n1*l3)*Txz+(n1*m3+m1*n3)*Tyz+(l1*m3+m1*l3)*Txy+l1*l3*dx+m1*

§2.6 坐标变换的应力分量和应力张量 学习思路: 一点的应力不仅随着点的位置改变而变化,而且由于截面的法线方向不同,截面上的应力也不同。因此必须探讨一点任意截面应力之间的变化关系。应力分量能够描述一点的应力状态,因此确定不同截面应力分量的变化规律,就可以确定应力状态。 本节分析坐标系改变时应力分量的变化规律。为了简化分析,首先假设斜截面的法线与新坐标轴方向相同,建立斜截面应力矢量表达式。然后利用斜截面应力矢量与应力分量的关系,将应力矢量投影于各个坐标轴得到应力分量表达式。 应力分量的转轴公式说明:应力分量满足张量变换条件。 根据切应力互等定理,应力张量是二阶对称张量。 转轴公式说明了一点的应力状态,尽管截面方位的变化导致应力分量改变,但是一点的应力状态是不变的。 学习要点: 1. 坐标系的变换; 2. 坐标平面的应力矢量;

函数的对称性

函数的对称性 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。 一、对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为a b x 2-=。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2π π+=k x 是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,)0,2(ππ+k 是它的对称中心。 (11)正切函数:不是轴对称,但是是中心对称,其中)0,2(π k 是它的对称中心, 容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。 (12)对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能误以为最值处是它的对称轴。 (13)三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

傅里叶变换性质证明

傅里叶变换性质证明 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。

由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 ? 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。

(1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 ? 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t)为实函数对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t)

X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性

傅里叶变换性质证明

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即

叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。 (1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭

本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质 2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。

(1) f(t)为实函数 对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性 傅里叶变换与傅里叶反变换之间存在着对称关系,称为傅里叶变换的对称性质。若已知

一一点的应力状态与应力张量

一 一点的应力状态与应力张量 二 主应力与应力不变量 对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P 点处应力状态在直角坐标系可表示为 ij S σ==x xy xz yx y yz zx zy z στττστττσ?????????? 如图1-1所示。在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知,新旧坐标的应力分量具有一定变换关系。通常,我们称这种具有特定变换关系的一些量为张量。式(1-1)就是应力张量,它是二阶张量。因为它具有xz τ=zx τ,xy τ=yx τ,yz τ=zy τ。 已知物体内某点P 的九个应力分量,则可求过该点的任意倾斜面上的应力。在P 点处取出一无限小四面体oabc (图1-2) 它的三个面分别与x,y,z 三个轴相垂直。另一方面即任意斜面,它的法线N ,其方向余弦为l,m,n 。分别以dF 、x dF 、y dF 、z dF 代表abc 、obc 、oac 、 oab 三角形面积。 x y z dF ldF dF mdF dF ndF ?=?=??=? (1.2) 在三个垂直于坐标的平面上有应力分量,在倾斜面abc 上有合应力N P ,它可分解为正应力 N σ及切向剪应力N τ,即222N N N P στ=+ N P 沿坐标轴方向分量为N x ,N y ,N z ,由平衡条件可得 N x xy xz N yx y yz N zx zy z x l m n y l m n z l m n στττστττσ?=++?=++??=++? 求出N x ,N y ,N z 在法线上的投影之和,即得正应力N σ 222222N N N N x y z xy yz zx x l y m z n l m n lm mn nl σσσστττ=++=+++++ 1-5

函数的对称性82459

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。

函数的周期和对称性

专题:函数的周期性对称性 1、周期函数的定义 一般地,对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f y =就叫做周期函数,非零常数T 叫做这个函数的一个周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 显然,若T 是函数的周期,则)0,(≠∈k z k kT 也是)(x f 的周期。如无特别说明,我们后面一般所说的周期是指函数的最小正周期。 说明:1、周期函数定义域必是无界的。 2、周期函数不一定都有最小正周期。 推广:若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期; )2 ()2(T x f T x f -=+,则)(x f 周期为T ; ()f x 的周期为)(x f T ω?的周期为 ω T 。 2、常见周期函数的函数方程: (1)函数值之和定值型,即函数)()()(b a C x b f x a f ≠=+++ 对于定义域中任意x 满足)()()(b a C x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -= 特例:()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (2)两个函数值之积定值型,即倒数或负倒数型 若)()()(可正可负,C b a C x b f x a f ≠=+?+,则得 )]22()2[()2(a b a x f a x f -++=+,所以函数)(x f 的周期是)(2a b T -=

高中的函数对称性的总结

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图

离散傅里叶变换性质证明

1. [][]()()j j ax n by n aX e bX e ωω+?+ Proof: ([][])[][]()() j n j n j n j j ax n by n e a x n e b y n e aX e bX e ωωωωω∞ --∞ ∞∞ ---∞-∞ +=+=+∑∑∑ 2. (1)[]()d j n j d x n n X e e ωω--? Proof: ()[][].()d d j n d n j n n j n d n j n j x n n e x n n e e X e e ωωωωω∞-=-∞∞---=-∞--=-=∑ ∑ (2) 00()[]()j n j e x n X e ωωω-? Proof: 000()()[][]()j n j n j n j n n e x n e x n e X e ωωωωωω∞∞ ----=-∞=-∞==∑ ∑ 3. []()j x n X e ω--? Proof: ()[][]()j n j n j n n x n e x n e X e ωωω∞∞ ---=-∞=-∞-=-=∑ ∑ if []x n is real ()j X e ω-=*()j X e ω 4. ()[]j dX e nx n j d ωω? Proof: ()[]() ()[]()[]j j n n j j n n j j n n X e x n e dX e jn x n e d dX e j nx n e d ωωωωωωωω∞-=-∞∞-=-∞∞-=-∞=?=-?=∑∑∑

5. (1)22 1|[]||()|2j n x n X e d πωπωπ∞ =-∞-=∑ ? Proof: 2*2221 |()|21 ()()21 [][]21 |[]|21 |[]| 2|[]|j j j j n j n n n n n n X e d X e X e d x n e x n e d x n d x n d x n πωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞=-∞ -∞=-∞ -∞=-∞ =====??∑∑?∑?∑ ?∑ (2) **1[][]()()2j j n x n y n X e Y e d π ωωπωπ∞=-∞-=∑ ? Proof: *****1 ()()21 ()()21 [][]21[][]21 [][] 2[][] j j j j j n j n n n n n n n X e Y e d X e Y e d x n e y n e d x n y n d x n y n d x n y n πωωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞ =-∞-∞ ∞=-∞ =-∞-∞=-∞====??∑∑?∑?∑ ∑?∑ 6. []*[]()()j j x n y n X e Y e ωω? Proof:

函数的各种对称性

函数对称性的探究 函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。 一、函数自身的对称性探究 定理1.函数y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。 推论:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2.函数y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a ≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。

傅里叶变换性质证明

2。6 傅里叶变换得性质 2。6.1线性 若信号与得傅里叶变换分别为与,??? 则对于任意得常数a与b,有? ? 将其推广,若,则??? 其中为常数,n为正整数。? 由傅里叶变换得定义式很容易证明线性性质、 ?显然傅里叶变换也就是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性与叠加性。均匀性表明,若信号乘以常数a,则信号得傅里叶变换也乘以相同得常数a,即 ???叠加性表明,几个信号之与得傅里叶变换等于各个信号得傅里叶变换之与?? 2.6.2 反褶与共轭性 设f(t)得傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号得傅里叶变换。 (1)反褶 f(-t)就是f(t)得反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质得证明中,并没有特别指明f(t)就是实函数还就是复函数,因此,无论f(t)为实信号还就是复信号,其傅里叶变换都满足下面三条性质

2。6.3 奇偶虚实性 已知f(t)得傅里叶变换为。在一般情况下,就是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 下面根据f(t)得虚实性来讨论F()得虚实性、 (1) f(t)为实函数?对比式(2-33)与(2—34),由FT得唯一性可得 (1、1)f(t)就是实得偶函数,即f(t)=f(—t) X()得积分项就是奇函数,而奇函数在对称区间内得积分为零,故 这时X()=0,于就是??可见,若f(t)就是实偶函数,则F()也就是实偶函数,即 左边反褶,右边共轭 (1、2)f(t)就是实得奇函数,即-f(t)=f(-t)?R()得积分项就是奇函数,而奇函数在对称区间内得积分为零,故 这时R()=0,于就是 可见,若f(t)就是实奇函数,则F()就是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来瞧瞧一般实信号(即可能既不就是偶信号,又不就是奇信号,反正不清楚,或者说就是没有必要关心信号得奇偶特性)得FT频谱特点、

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性 关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性) 1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f (2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 2、奇偶性的拓展 : 同一函数的对称性 (1)函数的轴对称: 函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知, )2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。 ∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称 ?)()(x a f x a f -=+ ∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f -= ∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f +=- (2)函数的点对称: 函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2(c b a + 对称

傅里叶变换性质证明

2.6 傅里叶变换的性质 2.6.1线性 和,的傅里叶变换分别为和若信号 ,有则对于任意的常数a和b , 则将其推广,若 其中为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 反褶与共轭性2.6.2 的傅里叶变换为f(t),下面我们来讨论信设号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。 (1)反褶 供参考. f(-t)是f(t)的反褶,其傅里叶变换为

)共轭(2 )既反褶又共轭3 ( 本性质还可利用前两条性质来证明:h(t)=g*(t),则设g(t)=f(-t), 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质 供参考. 2.6.3 奇偶虚实性已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 的虚实性来讨论f(t)F()的虚实性。下面根据 (1) f(t)为实函数 ,由FT的唯一性可得对比式(2-33)与(2-34)

f(t)=f(-t) 是实的偶函数,即)f(t) (1.1 X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 (1.2)f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 供参考. 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边 共轭有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性 傅里叶变换与傅里叶反变换之间存在着对称关系,称为傅里叶变换的对称性质。若已知 F()=F[f(t)] 则有 F[f(t)]=2лf(-) 证明:因为 将变量t与互换,再将2乘过来,得 上式右边是傅里叶正变换定义式,被变换函数是F(t) 所以 F[F(t)]=2лf(-) 若f(t)为偶信号,即f(t)=f(-t),则有 F[F(t)]=2f() 从上式可以看出,当f(t)为偶信号时,频域和时域的对称性完全成立――即

知识点:函数的对称性总结

知识点:函数的对称性总结 函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个 方面来探讨函数与对称有关的性质。 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上, 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P

与点P'关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且 2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b 成轴对称(ab),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(ab),则y = f (x)是周期函数,且4| a-b|是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称, f (x) + f (2a-x) =2c,用2b-x代x得: f (2b-x) + f [2a-(2b-x) ] =2c(*)

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。

许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。(许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结 机床的位置 应力 应变 位移 油缸 27 5号顶尖 10 固定支撑钉 在分析中发现油缸所受的应力最大,油缸使用的是35钢,5号顶尖使用的材料是45钢,固定支撑钉使用的是T8,查《机械设计》三者都小于其许用应力,故设计满足要求。它们的主要力学性能参数如表,查《机械设计师手册》。 表4主要力学性能参数 材料名称 屈服强度( ) 抗拉强度 35钢 315 600 45钢 355 598 T8 900 采用安全系数法判断零件危险截面处的安全程度是疲劳强度计算中应用广泛的一种方法,其强度条件是:危险截面处的安全系数S 应大于等于许用安全系数 ,即 查《机械设计》S ,所以

函数对称性周期性和奇偶性的规律总结大全完整版

函数对称性周期性和奇 偶性的规律总结大全 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

函数对称性、周期性和奇偶性规律 一、同一函数的周期性、对称性问题(即函数自身) 1、周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、对称性定义(略),请用图形来理解。 3、对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知, )2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与 点),2(11y x a -关于x=a 对称。得证。

若写成:)()(x b f x a f -=+,函数)(x f y =关于直线 2 2)()(b a x b x a x += -++= 对称 (2)函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过 b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以 1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在) (x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数)(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一 个x 值,都有两个y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则有可能会出现关于b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、周期性: (1)函数)(x f y =满足如下关系系,则T x f 2)(的周期为 A 、)()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或

相关主题
文本预览
相关文档 最新文档